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Uniqueness of the ground state in exactly solvable Hubbard,
periodic Anderson, and Emery models
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We study the exactly solvable strongly interacting electron models recently introduced by Brandt
and Giesekus and further generalized by other authors. For a very general class of models, including
the Hubbard, the periodic Anderson, and the Emery models with certain hopping matrices and
infinitely large on-site Coulomb repulsion on d sites, we prove that the known exact ground state is
indeed the unique ground state for a certain electron number. The uniqueness guarantees that one
can discuss physics of various strongly interacting electron systems by analyzing the exact ground
states.

In spite of considerable interest, various aspects of
strongly interacting electron systems remain to be un-
derstood. Recently Brandt and Giesekus introduced
models of tight binding electrons with infinitely large on-
site Coulomb repulsion, in which they were able to write
down the exact ground states. Some generalizations of
the models were found by Mielke, by Strack, and by
Tasaki. In particular the cell construction in Ref. 4,
which we shall use in the present paper, provides the most
general treatment of the class of the solvable models.
The class of models now includes various versions of the
Hubbard, the periodic Anderson, and the Emery models
with speci6c hopping matrices and U = oo on d sites.

Unlike in many solvable models, the ground states of
Brandt and Giesekus have nontrivial structure, and are
expected to contain rich physics. Although the solvable
models are in some sense arti6cial, it is expected that
the models provide typical examples which exhibit var-
ious interesting phenomena generated by interplay be-
tween strong Coulomb interaction and kinetic motion of
electrons. In Ref. 4 it was pointed out that the exact
ground states have the so-called resonating-valence-bond
structure, and was speculated that some of them exhibit
superconductivity. In Ref. 7, Bares and Lee performed
a detailed analysis of the solvable Emery model in one
dimension, and discussed its relevance to the physics of
the Kondo insulator.

In Refs. 1, 2, and 4, the exact ground state was spec-
ulated to be the comique ground state of each model, but
no proof was given. This has been a serious disadvantage
when one wishes to draw physical conclusions by analyz-
ing the exact ground states. Recently Bares and Lee '

announced that they obtained a proof of uniqueness of
the ground state for some one-dimensional models. In
the present paper, we prove that the exact ground state
is nonvanishing and is indeed the unique ground state
(in a 6nite volume) for quite a general class of models
with the number of electrons 6xed at twice the num-
ber of "cells" in the lattice. (Our argument is different
&om that of Bares and Lee. ) The class includes all the
concrete models (of Brandt-Giesekus type) considered
in the literature, among which are the two- and three-

dimensional Hubbard and periodic Anderson models in-
troduced in Refs. 1 and 2, the two-dimensional Emery
and Hubbard models which mimic the CuOs structure,
the one-dimensional Emery model and the periodic An-
derson models (see Fig. 1).

We believe that the present results provide a basis for
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FIG. 1. Examples of models (lattice structures) to which
our uniqueness theorem applies. A d site with U = oo is de-
noted by ~, and a p site with U = 0 is denoted by o. On the
left of each lattice is the corresponding unit cell. The models
are (a) the one-dimensional periodic Anderson model (Ref. 3),
(b) the two-dimensional Cu02-like model with extra hopping
between 0 sites (Ref. 1), and (c) the two-dimensional ex-
tended Emery model (Ref. 3). These models become solvable
by choosing appropriate hopping matrices and filling factors.
We fix the electron number equal to twice the number of cells
in the lattice. The "three electrons condition" is satisfied in
the models (a) and (b) with open boundary conditions, and
in the model (c) with open or periodic boundary conditions.
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H(C) = Q n (C)P(C)nt(C),
with

(2)

where A are nonvanishing real coefIicients. The pro-
jection operator onto the space of the allowed sates is

'P(C) = (1 —n gn g),

where CU — is the set of U = oo sites in C.
Then the Hamiltonian for the whole lattice AN is

H~ =) H(C),
i=1

(4)

where the coefIicients A
' are chosen and fixed indepen-(c,)

dently in each cell.
Before discussing the ground state of the model,

we shall rewrite the Hamiltonian (4) into the "stan-
dard form" (6). (This rewriting is not necessary for
the uniqueness proof. ) Note that there are operator
identities s c„~p(C)ct = p(C)ct cz~p(C) —for z
y E C, c p(C)ct = P(C)(1 —n ~

—n ~)p(C) for z E

future studies, in which one extracts various physics out
of the exact ground states of the Brandt-Giesekus type.

The models and main results. We shall describe the
solvable models in their most general forms. We first
construct the lattice to work with. A cell C is a finite
set of sites, where each site x g C is classified either as
a U = oo site (or a d site) which can carry at most one
electron, or a U = 0 site (or a p site) which can carry
at most two electrons. The lattice AN is constructed by
starting &om the empty set Au ——P, and successively
adding cells C1, C2, . . . , CN, where the cells need not be
identical. When adding a new cell C; to the lattice Ai
(which consists of Ci, . . . , C, i), we identify some (in-
cluding none) of the sites in C; with sites in A; i in a one-
to-one fashion, noting that sites of the same type should
be identified (see Fig. 1). The only nontrivial require-
ment (which is introduced in the present paper) in the
construction is the following "three electrons condition. "
Let C, be the set of sites in C; which are not identified
with A, i when we form A, . For each i = 2, 3, . . . , N,
we either have that (1) the sites in C; together can carry
at least three electrons, or (2) C, consists of a single p
site. This is a quite reasonable requirement, which is
satisfied in all the concrete models (of Brandt-Giesekus
type) studied in the literature. iu

We shall consider an electron system on the resulting
lattice AN ——C1U UCN. For a site x g AN, c, c
and n = ct c denote the annihilation, the creation,
and the number operators, respectively, of an electron at
site z with spin o =g, $. The states are constructed by
operating c~ with various z and o to the vacuum state
4p, but we only allow the states which satisfy n gn ~C =
0 for any U = oo site x. This restriction efI'ectively takes
into account infinitely large on-site Coulomb repulsion on
d sites.

With a cell C, we associate the Hamiltonian

C~, and (trivially) c P(C)ct = P(C)(1—n )P(C)
for z g' C~ . By using these identities we find

a=/, $ x,y&C

cr=t, $ z,y&C

where t „=P,. i t „',Eo ———P, i e(C, ), and

~ h

i=1

To derive (6), we have used the fact that H~ operates
only on the allowed states, which are now characterized
as PN4 = C.

The main result of the present paper is the following.
Theorem. Consider the model on AN. Then we have

the following.

(i) Let N~, N~ be non-negative integers with N~ ( N
or N~ ( ¹ Then there is no state 4 with N~ up electrons
and Ng down electrons that satisfies HN4 = 0.

(ii) There exists a unique state 4 with N up electrons
and N down electrons that satisfies HNC = 0. It is
written as

C = 'PNA~~@P,

where

(8)

AN—
N

n (C).

From the simple operator identity
P(C;)nt (C,)P~n (C ) = 'PN(nt)' = 0, and the
fact that the Hamiltonian (4) is non-negative, it obvi-
ously follows that the state (8), if nonvanishing, is an
exact ground sate of the model. More delicate issues,
which are solved in the present paper, have shown that
the state (8) is nonvanishing and is the unique ground
state.

By using the standard argument based on the SU(2)
invariance of the model, the above theorem implies the
following.

Corollary. Consider the model on AN. In the sector
with the total electron number 2N, the ground state of
the Hamiltonian (4) is unique, and is given by (8).

For the electron number strictly greater than 2N, one
can easily see (by construction) that the ground states
are degenerate. ' Although we do not study such cases
in detail, we remark that (i) of the above theorem has an
immediate consequence that the ground states for 2N+n
electrons has a total spin not greater than n/2.

Proof. We shall prove the theorein by induction. We
first set N = 0 and Au ——P. Then both (i) and (ii) are

z EC~, t = (A ) ifz g'CU, ands(C) =

P zz(A ) . By summing up this expression, we get

HN — @0 PN ) ) 4yc ~cud)
o —P $x yE+N
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trivial, where in the latter we let A0: 1.t

We assume the statements of the theorem for A~ ——

C1 U. . . U C~, and prove them for A~+1 ——C1 U ~ ~ U

C~+1 ——AN U C~+1. In what follows, we abbreviate A~
and C~ as A and C, respectively.

We start from (ii). Let 4 be a state on A~+1 ——A U C
with (N + 1) up electrons and (N + 1) down electrons,
and assume that

zqC x,y&C

Let us assume that the cell C satisfies (1) of the "three
electrons condition, " and start &om the sector with three
electrons in C. The contribution comes only &om 411,
and we get from (18) that

O = p(C) ) X(~)ct. ) y. „ct,ct„p Wt C.

aN+1e = 0. (10) ) y. ,„&( )P(C)ct.ct,",P ~t„e„
x,y, z&C

(19)

Since H~+1 is a sum of non-negative operators, we find

that (10) is equivalent to the condition that both

and

P(C)nt (C)4 = 0, (12)

for 0 =g, $ hold.
Let C be the set of sites in C which are not identified

with sites in A when one constructs A~+1 ——A U C. (We
then have A A C = P and A U C = A)v+1, where U means
the simple union. ) We can decompose 4 according to
the numbers of up and down electrons (denoted as nt
and ng, respectively) contained in C as

ng ——0,1,2, ... ng ——0,1,2, ...
(13)

In the state 4 „with n ) 1 for a' =g or $, the number
of spin-0 electrons in A is strictly less than N. Then (11)
and the assumed (i) for A imply 4„„~= 0. Thus the
decomposition (13) becomes

@ —@1,1 + @ 1,0 + @0,1 + @0,0

with

41 1 —) c gc gal 1(z) g))

(14)

and
z,yqC

410 = ) c t@1o(z), 401 = ) cv~@01(y),t

~qC (16)

where various 4 denote states in which electrons live only
on A.

Since H~ acts only on A, the condition (11) implies
(among other relations) HN@11 ——0, which further re-

duces to H)v@1 1(z, y) = 0 for each z, y E C. Noting
that the state 41 1(z, y) has N up electrons and N down
electrons, the assumed (ii) for A implies

4'1 1(z, y) = g „P~A~~40, (17)

where g „are undetermined coefficients.
Next we examine the condition (12), which, with the

decomposition (14), now reads

p(C) ) A~ c~~(41,1 + 41,0 + 40,1 + 40,0) —0)
z&C

for o =g, $, where we used the definition (2) of n (C).
We shall again decoxnpose the left-hand side of (18) ac-
cording to the numbers of up and down electrons in C.
Clearly each state in the decomposition must vanish in-

dependently.

where we used the explicit form of 41 1(z, y) in (17). The
equation is easy to analyze since the right-hand side fac-
torizes into the states on C and on A. It is also essential
that P~A&40 is nonvanishing from the assumed (ii) for
A. By setting 0 =g, (19) yields

(2o)

for the compatible combinations of x, y, z g C, i.e., those
satisfy z g y, and z g z, y if z 6 CU — . By setting 0 =$
in (19), we get

p(C') —y pX')

again for z, y, z g C with similar compatible conditions.
Because of (1) of the "three electrons condition, " we see
that the sets of compatible (z, y, z) in (20) and (21) are
not empty. Then Eqs. (20) and (21) are easily found
to possess the unique (apart from multiplication by a
constant) solution

p(&)p(&) (22)

When the cell C satisfies (2) of the "three electrons
condition, " the analysis is trivial. Since we must have

z = y in (15), we can set g = (A )2 to be consistent
with (22). In the following, we do not have to distinguish
between cases (1) and (2).

Next we set a =$ in (18) and consider the sector with

one up electron and one down electron in C. Both 411
and 41 0 contribute, and we get

~ yqC zqhC

+ ) A( )p( C)c,~ c~@10(z) = 0, (23)
z, zqC

where b'C = C$C (i.e., the set of sites in C identified
with those in A). We also used the solution (22). By
using the operator identities in Ref. 13, we find that
P(C)c ic ~c )P~ = 'P(C)'P, c )c )c,~P,P(Ai(zH
'P(C)c ~c„~P,c,~PzP(A)(z)) = P(C)c tc„~P~c,),
where P(A)(z)) = P z(z&&,&) (1 —n ~n ~) com-

mutes with ct&. Then Eq. (23) can be rewritten as

~,y&C zgBC

-(~( ') '4 ..(*))=o (24)

which is again factorized, and yields

e, .(z) = W( )P ) X( )c'„,W'„4, .
ygbC
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By setting e =$ in (18) and looking at the same sector,
we get

e, , (y) = —~( )P ) ~( )c.',W'„C, .
*ghC

(26)

Finally we set o =g in (18) and consider the sector
with only one up electron in | . We see that 4z 0 and
alp p contribute, and by using (25), we get

which clearly satisfies (10).
It only remains to show that C is nonvanishing. From

(29), we find

e, , = V (C) ) a(~)a(~)ct.,c„'„PN~'„ep.
x,y&C

~qC y, zphC

which imply

+ Q A( )c,tripp
——0, (27)

zqC

(29)

z,ygbC

By combining the solutions (17), (22), (25), (26), and
(28) with the decomposition (14), (15), and (16), and
noting that 'P(C)P~ = 'P~+i, we find that, only by us-

ing necessary conditions for (10), the state 4 has been
uniquely determined to have the desired form

t'. .
4 = Piv+i n. (C) A&co = 'PN+iA~+iC'p,

Noting that 'P(C) P &&
A( )Av( )c &ct&4p is nonva-

nishing due to the "tCee electrons condition, " and
'P~A~@p is nonvanishing due to the assumed (ii) for A,
we find that 4'i i (which may be regarded as the direct
product of these sates) is nonvanishing as well. Since the
states in the decomposition (14) are mutually orthogo-
nal, we have shown that C is nonvanishing. The desired
(ii) in the theorem has been proved.

To prove (i), we assume that 4 is a state on Aiv+i ——

A U C with the number of up or down electrons strictly
less than N + 1, and that O satisfies (10). Again we de-
compose 4 as in (13). The condition (12) implies that
there is at least one combination (nt, n~) with n~ ) 1,
n~ ) 1 such that 4„~ „i g 0. This, however, contradicts
with the conclusion from (11) and the assumed (i) for A

that 4„„=0 whenever n~ & 1, ng & 1.
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