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Critical properties of the two-dimensional order-disorder phase transitions of the p(2x2) and the
(V3 x v/3)R30° superstructures of sulfur chemisorbed on Ru(001) were determined by spot-profile
analysis using high-resolution low-energy electron diffraction. Both transitions are continuous, as
evident from the power-law behavior observed for 0.01 < |t| < 0.1 (¢ = T/T. —1) and from the values
obtained for the criticial exponents. For smaller [t| the phase transitions are finite-size rounded by
an interaction of the superstructure domains with steps (average distance between steps ~275 A).
The values of the effective exponents 3 of the order parameter, v of the correlation length, v of the
susceptibility and the exponent 7 [only determined for p(2x2)] fall close to the values theoretically
predicted for the four-state and three-state Potts universality classes, respectively. Deviations of
experimental values from Potts values, found for 8 and +, are attributed to corrections to scaling
which in part might be specific to the lattice gas. Additional experiments on vicinal surfaces with
higher step densities show that pinning of the superstructure domains at monoatomic steps limits
the correlation length to values below the average terrace width. The finite-size-induced effects are

quantitatively compatible with predictions from finite-size scaling theory.

INTRODUCTION

Continuous phase transitions in two dimensions (2D)
have been a matter of growing interest in experimen-
tal and theoretical studies over the past ten years since
critical fluctuations play a more important role in lower
dimensions and significant deviations of critical expo-
nents from Landau’s classical mean field exponents are
expected. For the experimental study of 2D phase
transitions, chemisorbed layers on high symmetry crys-
tal surfaces in the submonolayer coverage regime are
attractive test systems because lattice-gas-type super-
structures with only one specific adsorption site popu-
lated are formed in many cases. Using symmetry argu-
ments the order-disorder phase transitions of such su-
perstructures can be classified and grouped into univer-
sality classes.! Remarkably, there are only very few uni-
versality classes in 2D which exhibit continuous phase
transitions,’? among which the Ising (¢ = 2), the three-
state and four-state Potts models (¢ = 3 and 4), respec-
tively and the XY model with cubic anisotropy are the
most important. Experimental verifications for these uni-
versality classes can be found by order-disorder phase
transitions in adsorbed layers. A relatively small num-
ber of experiments using diffraction techniques has been
reported in the literature.3™> Often a general understand-
ing of the experimental situation is only possible by help
of computational studies using Monte Carlo simulations
(MCS) on lattice-gas models.® In addition, studies of
phase diagrams of adsorbed layers are a major source
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of information about the lateral interactions between the
adsorbed particles which can be obtained from a com-
parison of the experimental phase diagrams with MCS
model calculations.®

In this work we report an experimental analysis of the
critical properties of the order-disorder phase transitions
of the p(2x2) and (v/3 x v/3)R30° superstructures of
atomic sulfur adsorbed on the Ru(001) base plane using
low-energy electron diffraction (LEED). This system is of
interest since both transitions can be continuous accord-
ing to the “Landau rules,”! and they actually are, as will
be shown below. In this case, the critical behavior of the
p(2x2) and the (\/§ X \/§)R30° phase transitions is ex-
pected to fall into the four-state and the three-state Potts
universality classes, respectively.! Therefore, this system
allows a direct comparison of two continuous phase tran-
sitions of superstructures with different symmetries in
2D. For the /3 structure, our results represent experi-
mental verification of critical exponents in the three-state
Potts universality class for a chemisorbed system.

Experimentally, the quantitative determination of crit-
ical behavior and exponents requires data over a sufficient
range in reduced temperature, t = (T — T.)/T. (T, is the
critical temperature), close to the phase transition. This
is not easy to obtain because close to the phase transi-
tion the length scale of the fluctuations, i.e., the correla-
tion length £, becomes very large and causes an extreme
sensitivity to surface defects such as point defects and
steps. This limits the range in t where critical behav-
ior can be observed, even for well prepared surfaces, as
we will demonstrate. In the simplest case, i.e., if the
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defects such as steps limit the length over which fluc-
tuations are correlated, finite-size rounding is expected.
On the other hand, if the lateral interactions in the ad-
sorbate are strong enough that the correlations persist
across step edges no finite-size effects due to the steps are
observed. Instead, the overall symmetry of the system is
lowered and the critical exponents can be changed. This
situation was found recently by us for p(2x2)-ordered
oxygen on Ru(001).”® Explicit vectors connecting oxy-
gen atoms on different terraces across monoatomic steps
can be given® using the phase information from a LEED-
IV study for profile simulation of split superstructure
profiles. Whereas on the flat surface the order-disorder
phase transition of this structure is continuous with ex-
perimental exponents in the four-state Potts universality
class, exponents change to Ising-like values on stepped
surfaces.?

For sulfur on Ru(001), the influence of imperfections of
the sample turns out to be very different from that found
for oxygen. Here the monoatomic steps limit the range
of correlations to single terraces and reduce the temper-
ature range where power-law behavior can be observed.
Nevertheless, the determination of critical exponents is
still possible with reasonable accuracy. Because of the
limited temperature range of one order of magnitude for
the determination of the critical exponents, we cannot
separate corrections to scaling from our data. The de-
termined exponents therefore have to be considered as
effective exponents.!® As we will show, deviations from
the critical behavior of the Potts universality classes are
observed for both transitions, indicating that there are
indeed corrections present, which are probably enhanced
due to the lattice-gas character of the phase transitions.

The influence of finite-size effects on 2D phase transi-
tions on surfaces has been studied only in a small num-
ber of experiments so far, mainly with physisorbed ad-
sorbates or with reconstructions of clean surfaces.!1:12 In
contrast, variation of system size is a common method
in MCS.'3 Therefore, there is also strong interest in ex-
perimental data. Since the correlation length is limited
by steps and can be controlled by the step distance for
S/Ru(001), this chemisorbed system offers the possibil-
ity to investigate finite-size effects systematically. For
this purpose, we have performed experiments on two vic-
inal surfaces with well defined increased step densities in
addition to the experiments on a surface with small step
density. The data of the p(2x2) phase transition on the
different surfaces were then compared for the different
step densities. Indeed, we observed that the finite-size
rounding is in accordance with the finite size scaling hy-
pothesis.

This work is organized as follows. We start with the
description of the experimental setup and the character-
ization of the nominally flat surface followed by a de-
scription of the relevant section of the S/Ru(001) phase
diagram. The analysis of the critical behavior of p(2x2)
and (v/3 x v/3)R30° phase transitions and the determi-
nation of the effective critical exponents forms the main
part of the present work. It is supplemented by experi-
ments on vicinal surfaces. We close with a discussion and
a summary.

EXPERIMENT

The experiments were performed in a standard UHV
chamber (base pressure 2 x 10~*! mbar) with a double u
metal shielding. The Ru samples were cut by spark ero-
sion from a Ru single crystal of 99.99% purity, oriented
to better than 0.5° by Laue diffraction and polished with
diamond pastes down to 0.25 pum grain size. The samples
were cleaned in ultrahigh vacuum by extensive tempera-
ture cycles in oxygen. Three different surfaces were pre-
pared. The first was cut in the (001) plane and is termed
as the nominally flat surface in this work. Two vicinal
surfaces were prepared with tilt angles of 4.0° and —1.8°
with respect to the (001) plane and the direction of steps
chosen along the close-packed rows (TK direction). The
average terrace widths were 33 A and 85 A, respectively.
Details of the vicinal surfaces can be found in Ref. 9;
those of the nominally flat surface are reported below.

The computerized temperature control had a resolu-
tion of 0.1 K and allowed temperature ramping linear in
time.'* The sample was cooled with liquid N3 and heated
by direct current through its mounting. The mounting
consisted of two tungsten wires spot welded to the back
of the sample. For LEED measurements the heating cur-
rent was chopped with 12.5 Hz. Diffracted electrons were
detected only during off times of the heating current.
As temperature dropped during the measuring intervals,
an effective averaging of temperatures took place over
0.4 K at most. Further apparative details are described in
Ref. 7. LEED profile measurements were carried out us-
ing a high-resolution LEED instrument (SPALEED) with
a nominal transfer width of 1200 A.15 In addition, inten-
sities integrated over the diffraction spots were measured
versus temperature using a Faraday-cup instrument with
low angular resolution.

Sulfur was dosed wusing an electrochemical
Ag,S/Agl/Ag cell which primarily emits S,. For details
see Ref. 16. For fine tuning of the coverage, parts of the
layer were either desorbed or the sample was exposed to
small amounts of H,S in addition. Heating to more than
1000 K causes slow diffusion of S into the bulk. S seg-
regates back to the surface close to room temperature.
Care was taken, monitoring T, versus time, that changes
in coverage due to this effect were less than 0.001 mono-
layer per hour for relevant measurements. For quantita-
tive evaluations one-dimensional cuts through first order
superstructure beams were measured in the symmetry
directions I'M and 'K as well as in the MK directions
normal to these at 100 eV beam energy. In addition, peak
intensities versus temperature curves were measured at
heating rates between 0.2 and 2 K/s. Peak intensities,
integrated intensities, and profiles were found to be fully
reversible in all cases considered in this paper with no
hysteresis detectable.

SURFACE MORPHOLOGY

In order to characterize the surface morphology of the
nominally flat surface, one-dimensional cuts through the
specular (0,0) spot were taken as a function of k., i.e.,
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the component of the scattering vector k perpendicular
to the surface, by variation of the beam energy. The full
width at half maximum (FWHM) of profiles for two per-
pendicular scan directions are plotted versus k, in Fig. 1.
Both data sets show an approximately linear increase
with k, with pronounced equidistant oscillations due to
monoatomic steps on the surface. The minima of the os-
cillations are found at energies where all terraces of the
surface scatter in phase, i.e., where k,d = n 2w, d being
the height of the steps on the surface. Since the am-
plitude of the oscillations depends systematically on the
scan direction, the steps must be preferentially oriented,
and thus the macroscopic surface is slightly vicinal to
the (001) plane due to a small accidental misorientation
during the preparation. From the amplitude (3Ak,) of
the oscillations we estimate the FWHM Ak, of the spot
profiles at the antiphase conditions and thus the average
terrace width A = 27/ Ak, of (275 % 50) A, which corre-
sponds to a miscut angle of 0.5°. Since the terrace-width
distribution is not fully known, the correct value for A
might differ from the estimated value by a factor of the
order of one.!” Nevertheless, this uncertainty should not
be a source of major error in the further analysis since
absolute values for correlation lengths (see below) are de-
rived from the inverse FWHM of spot profiles in the same
manner. The direction of the step edges was determined
from the direction of maximum splitting to be 10° off
the T K-direction.

The general linear increase of the FWHM with k&, in
Fig. 1 is due to the mosaic spread of the crystal and the
limited angular resolution (FWHM of A7) of the LEED
instrument. The mosaic spread, i.e., the angular distri-
bution of the orientation of individual grains around the
averaged [001] direction, has approximately radial sym-
metry and can be described by its FWHM, A© here. Ac-
counting for both contributions and approximating them
with two Gaussian functions, the FWHM at the minima
(in phase conditions) of Fig. 1 are given by Ak = ck,,
with ¢2 = (240)% + A7%. From this we estimate a
FWHM of the mosaic spread A© = 0.08°. It is the mo-
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FIG. 1. FWHM of the (0,0) spot versus momentum trans-
fer perpendicular to the surface k. for two almost perpendic-
ular scan directions [at constant azimuthal angles of 15° (A)
and 115° (O) with respect to TM|. Dash-dotted line, con-
tribution to the FWHM due to the instrumental resolution
alone; dashed line, contribution to the FWHM due instru-
mental resolution and mosaic spread of the sample. In-phase
conditions are numbered by the Bragg index £.
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saic spread of the sample that causes the minimal FWHM
of the beam profiles to be larger than the nominal instru-
mental resolution, and thus the effective transfer width

W (W = 2m/Ak)) is only 400 A (E = 100 eV), which is

far below the nominal instrumental value of 1200 A.

PHASE DIAGRAM

The section of the phase diagram relevant to the
present investigation is shown in Fig. 2. The phase dia-
gram was determined by measurements of intensity ver-
sus temperature (I-T) curves at various constant cover-
ages using the temperatures of the respective points of
inflection as transition temperatures.!® Coverages were
calibrated from the ratio of Auger peaks at 151 and
272 eV of S and Ru, respectively, assuming perfect order
at the maximal transition temperatures of the p(2x2),
(V3 x v/3)R30°, and c(2x4) structures with correspond-
ing coverages of 0.25, 0.33, and 0.50. A hard sphere
model of the p(2x2) and (v/3 x v/3) R30° superstructures
together with the surface Brillouin zone and the diffrac-
tion patterns is given in Fig. 3. As seen from Fig. 2,
p(2x2)-ordered islands are formed at coverages below
6= 0.22 (phase A) followed by a homogeneous p(2x2)
phase (B) with a maximal critical temperature T, of
449.0 + 1 K. With increasing coverages, and at temper-
atures below 350 K, the coexistence of large p(2x2) and
(V3x \/§)R30° ordered islands is observed, which ends in
a homogeneous (\/§ X \/§)R30° phase (D) with a maxi-
mal T, of 438.0+1 K. Atoms added to the (\/ﬁx \/§)R30°
phase order as superheavy domain walls in a striped
configuration (phase E), whereas they do not order at
high enough temperatures close to § = 0.33 (shaded
area in Fig. 2). They are still detectable by broaden-
ing of superstructure beam profiles compared to the pure
(V3 x /3)R30° phase. A characteristic narrowing of
profile width as a function of temperature at a constant
coverage around 0.35 is interpreted as an order-disorder
phase transition of the domain wall phase. Scanning tun-
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FIG. 2. Phase diagram of S/Ru(001) for coverages © be-
tween 0.20 and 0.45. Phase A consists of p(2x2) ordered is-
lands coexisting with a lattice gas. In the hatched area above
© = 0.33 a (v/3 x v/3) R30° phase with disordered superheavy
domain walls is formed.
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pl2x2)

(V3 xV3 ) R30°

FIG. 3. Surface Brillouin zone with p(2x2) (o) and
(V3 x v/3)R30° (A) LEED patterns (top) and hard sphere
models of the p(2x2) and (v/3 x v/3)R30° structures.

neling microscopy (STM) investigations show that only
one specific adsorption site of threefold coordination is
occupied up to coverages 0.33,'® which is in agreement
with a recent LEED-IV analysis.!® Population of the sec-
ond threefold adsorption site occurs in phase E. This can
be deduced by symmetry argumients from LEED and di-
rectly observed by STM.16:20 Further details of the phase
diagram are given in Ref. 16.

In order to avoid Fisher renormalization?! quantita-
tive evaluations of the critical behavior of the p(2x2)
and (\/5 X v/3) R30° order-disorder phase transitions were
only carried out at the respective maxima in the phase
diagram.

STRUCTURE FACTOR
AND DATA EVALUATION

We parametrized our data using the following form of
the structure factor??23 from which the exponents 3, v,
v, and 7 can be extracted:

S(ky,t) = m?(t)8(ky) * 7(ky)
Xo
1+ 7 282k2 + m2£2k2)1-n/2

+bg(ky), (1)

with k| = (q — g), q) the scattering vector, g a recip-
rocal lattice vector of the superstructure under consider-
ation, and the reduced temperature t = (T —T¢)/T.. The
first term contains the order parameter m and stems from
the contribution of the long range order that vanishes at
T. as m? ~ |t|??. The second term describes the corre-

+( *T(k”)

lation function of short range fluctuations (critical scat-
tering) with the correlation length and the susceptibility
diverging as £ = 53: |t|”" and xo = Cx |t| 7, respectively.
The factor of 7! was introduced in Eq. (1) to achieve
¢ = 2 (FWHM)~! where FWHM is the full width at
half maximum of the deconvoluted profiles.2 This defi-
nition is useful for the discussion of finite-size effects (see
below). The last term denotes a linear background which
was also fitted. This structure factor is not exact for the
models under consideration, but has proper scaling form
for small {q; and small ¢. The convolution with the in-
strumental profile 7(k) is crucial and has to be carried
out in two dimensions even for one-dimensional cuts of
the beam profile. For reasons of numerical stability, fits
to the experimental profiles were carried out instead of
direct deconvolutions. For the instrument function we
took an experimental profile of minimal half-width mea-
sured 20 K below T..7

For the integrated intensity I;,; of a superstructure
spot, i.e., the intensity measured with the low-resolution
Faraday-cup instrument with a small transfer width W
compared to the correlation length £, the decrease with
temperature at a continuous phase transition is given by
the exponent « of the specific heat as?®

Iint(t) = dzk” I(k”,t)
Iklllgkmax
=Ao— Ait FBx|t|' ™+ -, (2)

where the integration radius kmax is related to W by
kmax = m/W. Ag and A, are positive constants, and the
amplitudes By and B_ and the exponents a; and a_
refer to situations with¢ > 0 and ¢t < 0, respectively. This
form of Iy is only valid for small ¢ as long as £ > W.
Further away from the phase transition a crossover to
Eq. (1) occurs.2®

PROFILE EVOLUTION
OF SUPERSTRUCTURE SPOTS AND THE
DETERMINATION OF Tc¢

The following description of the results concentrates
on the p(2x2) structure because the principal behavior
of the p(2x2) and (v/3 x v/3)R30° phase transitions is
very similar.

Before we turn to the actual analysis of the phase tran-
sitions, we survey the evolution of the superstructure pro-
files as a function of temperature. For this purpose, Fig. 4
shows the inverse FWHM of the first order superstruc-
ture spot profiles (undeconvoluted) for two perpendicular
scan directions (M and MK) versus temperature. (For
the determination of T,, see below.) Remarkably, three
temperature regions with different trends of (FWHM) ™!
are observed for both scan directions. In the first region
T < (T.—15K), the (FWHM) ! is constant, demonstrat-
ing that the temperature increase leads only to uncorre-
lated point defects. The values of 2mr(FWHM) ™!, which
can be regarded as a measure for the average domain
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FIG. 4. Inverse FWHM (average domain size) of a p(2x2)
first order superstructure spot along the I'M (O) and MK
(o) directions as a function of temperature.

size, are ~290 and ~240 A. Both values are below the
effective transfer width of the instrument of 400 A, but
close to the average terrace width. Therefore, it seems
that the p(2x2) correlations end at the monatomic steps.
This model is proved in detail by the experiments on the
higher step density surfaces reported below. The above
values do not exactly agree with the average step distance
of 275 A since none of the scan directions was aligned
to the step directions and since undeconvoluted profiles
were considered. In the second region, for (7. — 15 K)
< T < (T. — 5 K), the profiles show a small narrowing
(<10% of their FWHM). It is reversible and must be due
to spontaneous disappearance of antiphase domains as
the temperature is raised because of partial depinning of
adsorbate domains from step edges at temperatures close
to the phase transition. This is the second indication for a
considerable interaction of the sulfur layers with the steps
(see below). The disappearance of antiphase boundaries
indicates an increased mobility of the sulfur atoms in a
small temperature interval below T.. This might be an
indirect hint of the presence of critical fluctuations be-
low T, although the intensity of those critical fluctua-
tions below T, is very small in 2D phase transitions,?’ so
that this contribution to the spot profiles could not be
detected in the profile analysis (see below). In the third
temperature region T > (T.—5 K), the (FWHM) ™! de-
creases rapidly, demonstrating the thermal excitation of
antiphase boundaries with the onset of critical fluctua-
tions when the phase transition is passed. In fact, the
broadening of the FWHM starts already at ~5 K below
T.. This is interpreted as a consequence of the rounding
of the transition by finite-size effects, which will be ana-
lyzed further below. No peak shift is observed, indicating
a transition to a disordered lattice gas.

The value of T, was determined from the optimization
of power-law behavior of the data both below and above
T, (see below) as well as from the points of inflection in
I-T curves of peak intensities and integrated intensities.
All values coincided within +0.5 K. The use of the inflec-
tion points of peak intensity curves for the determination

of T, (Ref. 25) was still possible with reasonable accuracy
for the nominally flat surface, since there the transfer
width of 400 A is not far beyond the maximal correlation
lengths (see below). However, this is no longer true for
the vicinal surfaces with much smaller maximal correla-
tion lengths (see below).

CRITICAL EXPONENTS

In order to determine the exponent 3 of the order pa-
rameter, data of peak intensities, i.e., the intensities of
the spot maxima, are plotted versus temperature and re-
duced temperature in Fig. 5 after dividing out the Debye-
Waller factor. It was estimated from extrapolations of
low temperature data to 7' = 0 K.” We obtained an ef-
fective Debye temperature of 540 K using the mass of a
single Ru atom. Approximate power-law behavior [ac-
cording to the first term in Eq. (1)] can be observed
within 0.01 < |t| < 0.1 whereas for smaller |t| devi-
ations due to the finite-size effects can be seen. The
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FIG. 5. (a) Peak intensities versus temperature for the
order-disorder phase transitions of the p(2x2) and the
(v/3 x v/3)R30° structure after division by the Debye-Waller
factor. Solid lines: fits to a power law m? ~ |t|?#. Left ends of
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average slope of data for 0.01 < |¢| < 0.1.
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effective exponents [ obtained as averages over 7 — 8
of these plots are 8 = 0.11 £ 0.02 for the p(2x2) and
B = 0.1440.03 for the (/3 x v/3) R30° phase transitions.
These values are ~30% larger than those expected for
the three- and four-state Potts universality classes, re-
spectively, and seem to be influenced by corrections to
scaling. A separation of the corrections, however, is not
possible here because of the small range in [¢|. Especially,
in the four-state Potts class logarithmic corrections for
the order parameter are expected.2® The inclusion of this
type of correction, however, did not improve the quality
of the fits for the accessible range of ¢t. Significant contri-
butions from critical scattering in the considered interval
of t < —0.01, on the other hand, can be excluded by
profile analysis. This result is in agreement with theo-
retical estimates of very large ratios of the amplitudes
C. above and below T. of 2D phase transitions?? and
MCS for the p(2x2) and (v/3 x v/3)R30° phase transi-
tions which yielded C,/C_ ~ 40.2°

For an evaluation of the exponents 7,v, and 7 only
the temperature range above 7. was used. Fits to the
experimental profiles according to Eq. (1) were carried
out either with the full expression allowing £, # &, and
1 > 0, using a 2D Fourier transformation for the convolu-
tion with the instrument function or, for better numerical
stability and smaller computing times, under the addi-
tional restrictions {, = §, and n = 0 using the algorithm
already described in Ref. 7. (For n = 0 the Ornstein-
Zernike approximation?? is fitted.) A set of typical fits
for the p(2x2) structure is displayed in Fig. 6. Values
of £ and xo, fitted with {; = &, and 5 = 0, are plot-
ted versus reduced temperatures in Fig. 7 for the p(2x2)
phase transition. A similar plot for the (v/3 x v/3)R30°
structure is shown in Fig. 8. For both phase transitions

p(2x2)
o
A .

e

Intensity

P M N
-02 0.0 0.2
k, (A7)

FIG. 6. Spot profiles of a p(2x2) first order superstructure
spot along the TM direction slightly above T., as indicated.
The lines mark fits to the experimental data points accord-
ing to Eq. (1). Lower line: contribution to the profile of
the critical scattering alone (Lorentzian shape, 1 fixed to 0).
The vertical dashed lines indicate the integration range of the
low-resolution Faraday-cup instrument.
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both types of fits yielded the same exponents, only the
amplitudes differed by 15 — 20 % for £ and by up to 50%
for xo. As can be seen from Figs. 7 and 8, the above men-
tioned changes in £ and xo due to the two different fit
procedures would be still within the overall uncertainties
of the determination of the fit parameters, which justifies
to use mainly the faster fit procedure with n = 0.
Figures 7 and 8 clearly reveal the presence of finite-size
effects for reduced temperatures below ¢t < 0.01 for two
reasons. First, the divergence of the correlation length
and the susceptibility levels off at ¢ ~ 0.01. Second,
for data below t = 0.01 an inclusion of the first term
in Eq. (1) gave better fits to the data than a fit to the
second term alone, and thus values of m? > 0 are ob-
served. This must be due to finite size effects, since
the long range order, which is responsible for the m?
term below T, vanishes at the phase transition by def-
inition. Thus values of m? > 0, for T > T,, are not
indicative for a persisting long range order but for the
influence of finite-size effects on the critical fluctuations.
(For T > T. the parameter m should not therefore be
called an order parameter.) Values m? > 0 above T, in-
dicate that the correlation functions differ from the ideal
ones because the longer correlations are suppressed by
the finite size effects. Therefore, they do not fall off ex-
ponentially on all length scales, which would give exclu-
sively the second (Lorentzian) term, but result in spot
profiles which can be better approximated by a sum of
the first two terms in Eq. (1). Consequently, the values
for the correlation lengths fitted in the finite-size-rounded
temperature regime should not be interpreted as expo-
nential decay lengths of correlations. Instead, it is more
appropriate to interpret the inverse FWHM of the fit-
ted Lorentzian profile as the average size of temporarily
p(2x2) ordered domains. In the parametrization used
for £ (see above) it is thus possible to compare the up-
per limits of £ with those values deduced for the average
terrace width. Maximal values of ¢ are ~200 A [p(2x2)]
and ~300 A [(\/3 X \/§)R30°], and agree well with the
average terrace width of ~275 A. Thus we conclude that
the critical fluctuations end at the steps (as the static
order below T, does) and that the steps are mainly re-
sponsible for the finite-size rounding of the transitions.
This interpretation of the finite-size-affected profile form
is corroborated by the additional experiments on the vic-
inal surfaces. The slightly larger values of the maximal
correlation length obtained for the (\/§ X \/§)R30° phase
transition are likely to be due to an increased average
terrace width that results from a partial change of the
surface morphology at higher S coverages, which could
be observed in detail on the vicinal surfaces.30 A totally
different interpretation would be that the observed pro-
files consist of an incoherent superposition of intensities
scattered from long range ordered and from short range
ordered regions, but this would imply a local variation
of T (due to a local variation of coverage) or a variation
of T. Both possibilities can be excluded, since extreme
care was taken to prepare homogeneous coverages (see
above). In addition, the temperature averaging of the
experiment (0.4 K) was smaller by approximately one or-
der of magnitude than the width of the finite-size-affected

temperature region.

The influence of the finite-size effects vanishes fur-
ther away from the phase transition when the correlation
length falls far below the average step distance. As a con-
sequence, only the data for ¢ > 0.01 can be used for the
determination of exponents from power-law fits. Simi-
lar to the peak intensities below T, scaling, i.e., power-
law behavior, for xo and £ was found again in the range
0.01 < |t| < 0.1 with exponents v = 1.04 £+ 0.08 and
v = 0.66 £ 0.06 for the p(2x2) transition. The corre-
sponding values for the (\/5 X \/§)R30° transition are

= 1.18 £ 0.14 and v = 0.81 + 0.09. Most of the uncer-
tainties are due to corresponding uncertainties in 7, but
can also be partly caused by small variations in coverages
during the experimental runs (see above).

Figures 7 and 8 also show that ¢ is not isotropic for
both phase transitions with a maximal ratio of ampli-
tudes in different scan directions of 2 for the p(2x2) and

1.7 for the (v/3 x v/3)R30° structure. This could be an
effect of the anisotropy introduced by the steps. On the
other hand, spot profiles in general only have the sym-
metry of the respective points on the Brillouin zone edge
and need not be isotropic.2® As this anisotropy is not af-
fected by the step density, the latter possibility seems to
be more relevant.

For the p(2x2) structure the quality of the data was
sufficient to include the exponent 7 as an additional fit
parameter. Values of n > 0 lead to softer profile wings
and improve the quality of the fits slightly for values of
&k > 2 with respect to fits with n = 0. Two fits with
n = 0 and n > 0 are compared in Fig. 9(a). The dif-
ference between the two fits is small since the influence
of 7 on the profile wings can be also partially obtained
for the fits with n = 0 by larger values of the correla-
tion length in combination with an increase of the linear
background. The fitted values of 1 are given as a function
of temperature in Fig. 9(b). The exponent n turns out
to be temperature independent with an average value
of n = 0.27 £ 0.2 for the p(2x2) transition. The large
error bar is mainly caused by the uncertainties in back-
ground determination which strongly influence the value
of n. The results for all determined critical exponents are
given in Table I.

In order to test whether the integrated intensities (I;,)
measured with the low-resolution Faraday-cup instru-
ment scale too, we analyzed them according to Eq. (2).
The data were taken at an energy of 57 eV and the trans-
fer width W was approximately 50 A. For the measured
first order p(2x2) and (v/3 x v/3)R30° superstructure
spots this corresponds to an integration area of 0.24%
and 0.23% of the surface Brillouin zone, respectively (see
also Fig. 6). These intensities I;,;, are plotted versus
temperature in Fig. 10(a) and versus reduced tempera-
ture on log-log scale in Fig. 10(b). Power-law fits to the
data with the exponents « fixed to the theoretical values
of the four-state- (o = 2/3) and three-state Potts model
(a = 1/3), respectively, and A, fixed to zero are shown
as lines. The value T, was determined from the inflection
point of the data.?®

It is obvious from Fig. 10(b) that the data for T < T,
follow approximately a power law for 0.01 < |¢| < 0.10
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FIG. 9. (a) Spot profile of the p(2x2) first order super-
structure spot (MK direction). Solid line, fit with 7 fixed
to 0; dashed line, fit with = 0.31 according to Eq. (1).
(b) Fitted values of the exponent 7 versus reduced tempera-
ture above T.. Dashed line, theoretical value n = 0.25 of the
four-state Potts model.

for both phase transitions, whereas this range is much
smaller for the data at T > T.. The ratio of the ampli-
tudes B_/B. is approximately 1.3 for both the p(2x2)
and (\/5 X \/§)R30° phase transitions. We interpret the
deviations from power-law behavior to be partly due to
a violation of the integration condition £kmax > 1 and
partly due to the presence of corrections in the tem-
perature range considered. The deviation of the ratio
of B_/B, from the theoretical value of 1 for the Potts
models3! might be an effect of these corrections to scal-
ing. One reason for the better power-law behavior for
T < T. may be that for T' below T, the intensity is com-
posed of a dominant contribution of the long range or-
der [with a temperature independent profile shape with a
FWHM« 27 /W cf. Eq. (2)] and the critical scattering,
whereas above T, only critical scattering contributes. In

TABLE I. Comparison of experimental and theoretical
critical exponents (see Ref. 31).

Four-state Three-state
p(2x2) Potts (V3 x v/3)R30° Potts
B 0.11 +0.02 0.083 0.14 £ 0.03 0.11
v 1.04 £0.08 1.17 1.18 £ 0.14 1.44
v 0.66+0.06 0.67 0.81 +£0.09 0.83
n 027402 0.25 0.27
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FIG. 10. (a) Integrated intensities (Iint), measured with
the low-resolution Faraday-cup instrument, versus tempera-
ture for the p(2x2) and the (v/3 x v/3)R30° structures after
division by the Debye-Waller factor. Solid line, fit to a power
law Ao + Bx|t|'™°. (b) Log-log plots of |fint|t| — fint(0)| ver-
sus absolute reduced temperature below and above T¢. Lines,
same power-law fit to the data as in (a).

comparison to the data measured earlier for the p(2x2)
phase transition of oxygen on the same surface” the de-
viations from power-law behavior are more significant
here, which we attribute to the smaller integration ra-
dius used here because of experimental reasons.3? These
results show that the exponent o can in principle be de-
termined by this method. However, the results depend
crucially on the experimental conditions and their exact
definition so that they are less reliable than the determi-
nation of other critical exponents.

INTERACTIONS WITH STEPS
AND FINITE-SIZE EFFECTS

To obtain further information about the interaction of
the superstructures with steps and to study the influence



7724

of the steps on the phase transitions explicitly, we have
performed additional experiments on the two vicinal sur-
faces with average terrace widths A of 33 A and 85 A,
respectively. The quantitative experiments concentrated
on the p(2x2) superstructure since an analogous situa-
tion is observed for the (v/3 x v/3)R30° superstructure.
The preparation of sulfur layers of defined coverages by
thermal desorption is difficult on these vicinal surfaces,
as heating to temperatures above 700 K causes changes of
the surface morphology via step doubling and facetting.3°
These complications were avoided by dosing H»S at 500 K
(Ref. 33) and limiting the annealing cycles to tempera-
tures below 500 K. The step morphology was controlled
by the (0,0)-spot profile.® In the phase diagram, up to
coverages of 0.5, only small changes in the positions of
the phase boundaries (less than 5%) were observed on
the stepped surface with 85 A wide terraces with respect
to the nominally flat surface. Optimal coverages for the
p(2x2) and (v/3 x v/3)R30° phase transitions were ob-
tained by maximizing the inflection points of the I-T
curves (see above).

We start with the examination of the position of the
p(2x2) superstructure domains relative to the steps. For
this purpose profiles of superstructure spots were mea-
sured on the 33 A stepped surface at different energies.
Figure 11 displays a set of such profiles for first order su-
perstructure spots in the direction perpendicular to the
steps. For those spots where the scattering vector k|| has
a zero or integer component parallel to the step edges,
for the (%,0) spot, e.g., the profile is composed out of
two peaks: a broad peak with a FWHM = 27/A and a
sharp peak with a FWHM of the order of the instrumen-
tal resolution. As can be seen from Fig. 11, the relative
contributions of the two peaks vary with energy.>* For
spots with a non-integer component of k| parallel to the
step edges, the profile consists systematically only of the
broad peak [see, for instance, the (1,%) spot in Fig. 11].
In the direction parallel to the steps, all profiles have

Stepped Surface, A=33A p(2x2)

Energy (eV) spot:
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FIG. 11. Profiles of first order p(2x2) superstructure spots

measured on the vicinal surface (terrace width A = 33 A) in
the direction perpendicular to the steps (I'M), T' = 100 K.
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FWHM close to the instrumental resolution.

The observed profiles are only compatible with a model
of p(2x2) domains pinned at the positions of the step
edges on each terrace and with essentially no interac-
tion between S atoms on different terraces so that or-
der is limited to one terrace. The pinning must be due
to adsorption energies higher at specific adsorption sites
at steps compared to all other sites. Under this condi-
tion, the scattered intensity can be separated into two
parts. One stems from the interference between p(2x2)
domains on different terraces, the other from the inter-
ference within individual terraces. Details of this model
are given by Kleban.3® The interface scattering provides
the sharp peak, which is a consequence of the spatial cor-
relations of the sulfur domains induced by the periodic
arrangement of the steps. This contribution is absent for
spots with a noninteger component of k|| in the direction

parallel to the step edges, for the (1,%) spot, e.g., since

no correlation of the p(2x2) domains parallel to the steps
can be induced by the pinning. The interface scattering
causes the broad peak with a FWHM corresponding to
the inverse terrace width. This contribution is present
for all spots. It would be the only one, if the positioning
of the p(2x2) domains were fully random; such a situa-
tion is found for the p(2x2) domains of oxygen on this
surface at coverages below 0.18.° Qualitatively identical
spot profiles are observed for the 85 A surface, although
the two components cannot be separated as easily due to
the increased terrace width.

We now turn to the influence of the steps on the crit-
ical behavior at the phase transitions which we studied
on the 85 A surface in detail and compared the results
to those of the nominally flat surface (A = 275 A). In
order to demonstrate the stronger finite-size rounding,
peak intensities versus temperature are shown for both
surfaces in Fig. 12. The maximal slope of the curve of the
85 A surface is reduced by approximately a factor of 4
compared to the curve for the 275 A surface, which indi-
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FIG. 12. Comparison of peak intensities versus tempera-
ture for the p(2x2) phase transitions on the nominally flat
surface with terrace width A; = 275 A and the vicinal sur-
face with A; = 85 A. Left ends of horizontal lines mark T.
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cates finite-size rounding over a much larger temperature
range. This is expected from theory, as the temperature
interval, where the curve of the finite system deviates
from the curve of the ideal system as a function of the
characteristic system size [ scales with I+ .3% Quantitative
estimates of the rounded region can be given from profile
analyses described below.

The stronger finite-size rounding also influences the de-
termination of 7., as for this surface T, deviates from
the position of the inflection point of the (peak) inten-
sity curve (in contrast to the 275 A surface). This can
be easily explained since £ remains small compared to
the transfer width of 400 A, and therefore the condition
kmax€é > 1 is not fulfilled. Instead 7. was determined
from the optimization of power-law dependence both for
Xo and £ (see below). T, determined in this way was
found to be consistently 3-5 K higher than the inflec-
tion points. The value obtained for T, is 450+3 K and
agrees within error limits with the value determined for
the 275 A surface (449.0 = 1 K). Although the tempera-
ture values may be subject to small additional systematic
errors (<5 K) of different thermocouples we can exclude
a significant shift in 7T, due to finite-size effects.

In order to study the finite-size effects more quanti-
tatively, we evaluated the profiles of the (%,0) spot at
temperatures above T, according to Eq. (1), similar to
the nominally flat surface. For the instrument function
we took a profile which corresponded to the sharp peak of
the spot profile. In this analysis the long range order con-
tribution [m?é(k ) * (k) )] was fitted to the interterrace
scattering of the averaged p(2x2) domains (sharp peak in
Fig. 11) and the critical fluctuations [x(k;) * 7(k;)] are
fitted to the intraterrace scattering (broad peak) Fxg-
ure 13 shows the values obtained for ¢, xo, and m?

As can be seen from this figure the range, where power-
law behavior is observed, is further reduced, but within
error limits we obtain the same values for the critical
exponents v and v (y = 0.86 £ 0.1, v = 0.66 + 0.1)
as on the nominally flat surface. A small difference in
the slopes is observed for the xo data, which, however,
is still within the error limits. In fact, the correlation
lengths in both scan directions, perpendicular and paral-
lel to the steps, are limited by the average terrace width.
These findings demonstrate that no crossover to a quasi-
one-dimensional system occurs when £ approaches the
average terrace size A. The finite-size rounding observed
for £ is also in quantitative agreement with finite-size
scaling theory,3” which requires that ¢ ~ 1 Qg¢(z) with
x = 1Y/¥t, where [ is the characteristic system size. We
took I = A/a, a being the lattice constant. In addition,
X0 ~ 1"/*Q,(z) is predicted by theory. Both functions
Q¢(x) and Qy(z) depend only on the boundary condi-
tions, but should be universal as long as these do not
change.3” Plots ¢/1 versus z for the 85 A and the nomi-
nally flat surface gave reasonable agreement and similar
leveling off for £ was obtained for £/A — 1. While the
second proportionality [xo ~ I7/¥Q, ()] cannot be tested
directly in the experiment, because of experimental dif-
ficulties in comparing absolute intensities measured on
different crystals, the ratio m?2/xo at constant z can test
whether Q,(z) scales. Within rather large error bars
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FIG. 13. Log-log plots of (a) fitted correlation lengths ¢
and (b) susceptibilities xo and m? versus reduced temperature
above T, for the p(2x2) structure on the vicinal surface with
A, =85 A wide terraces.

the same ratios were found, indeed, on the two surfaces
tested for an x range between 1 and 10. The scatter of
data, however, does not seem to contain any systematics,
so that semiquantitative agreement with theory can be
concluded.

Remarkably, for £ we find the same amplitude ratios
for the different scan directions for both surfaces. This
demonstrates again that the anisotropy of £ is not due
to the influence of steps. This analysis reveals that the
main influence of steps in this system is to limit the cor-
relation length to one terrace. The resulting finite-size
effects agree with the expectations from finite-size scal-
ing theory.

DISCUSSION

Although the effective exponents determined in our
study for the p(2x2) and the (v/3 x v/3)R30° order-
disorder phase transitions of S on Ru(001) do not match
exactly those which are expected theoretically for the
four-state Potts and the three-state Potts universality
classes,3! they are closest to these classes. Deviations
from the exact values due to corrections to scaling can
be expected for the accessible temperature range 0.01 <
[t| < 0.1, where the data can be described by power-law
fits. As these effective exponents still obey scaling laws
(see below), it seems to be fully justified to claim that
these phase transitions are continuous.

This assignment is in agreement with the first of the
Landau rules,! if adsorption of sulfur takes place on
high symmetry sites (top or threefold coordinated hol-
low sites), and the same type of site is occupied in both



7726 M. SOKOLOWSKI AND H. PFNUR 49

the ordered and the disordered phases. Whereas the ge-
ometry of the disordered phase has not yet been deter-
mined, adsorption solely on the threefold coordinated hcp
site (hollow site without substrate atom below S in the
second substrate layer) has indeed been found for both
phases.'® From our findings of continuous phase transi-
tions this adsorption site should also be maintained in
the disordered phase. It is an interesting and still not
answered question how strictly this rule must be fulfilled
without changing the character of the phase transitions.
Occupation of additional sites may be one reason why
the order-disorder transition of O/Ni(111) does not show
the expected four-state Potts behavior.3%:3°

A continuous phase transition in the four-state Potts
universality class has also been found for the order-
disorder transition of the p(2x2) structure of oxygen on
the same surface” so that both results can be easily com-
pared. Interestingly, the interactions with steps in these
two systems are very different, although the critical be-
havior of the p(2x2) structures of S and O on Ru(001)
(Ref. 7) is very similar. For O the lateral interactions be-
tween the atoms are sufficiently strong to extend p(2x2)
correlations across steps,3® whereas for S these interac-
tions are weaker so that correlations end at steps. This
difference in interaction strength is expressed roughly in
the difference of critical temperatures (750 K and 450 K,
respectively). It is also found in the adsorbate induced
relaxations of the substrate atoms of the first two sub-
strate layers. For p(2x2) ordered oxygen these are ap-
proximately twice as large as for the same structure of S.
As the lateral interactions are mediated by the substrate,
these relaxations should also reflect the strength and the
effective range of interactions.

As a consequence of the different strength of interac-
tion in these systems, the influence of the steps on the
phase transitions is totally different. For O a crossover
to Ising behavior occurs due to the reduced symmetry®
of the whole system containing many steps within the
correlation length. In contrast, for sulfur pronounced
finite-size rounding occurs. This behavior is more sim-
ilar to the one observed for the p(2 x 1)order-disorder
phase transition of O at half monolayer coverage.® These
pronounced finite-size effects were limiting for the obser-
vation of scaling for S/Ru resulting in clearly visible cor-
rections to scaling. On the other hand, they allowed a
closer investigation of these effects.

Deviations especially of the exponents 3 and v from
the theoretical values indicate that corrections to scaling
are in fact present for the p(2x2) and (v/3 x v/3)R30°
phase transitions of S/Ru(001). Whereas the experimen-
tal values for the exponents 8 and v come out larger by
~30% and smaller by ~20%, respectively, compared to
the theoretical values (see Table I), the agreement of the
theoretical and the experimentally determined values of
v is very good (within a few percent). Interestingly, the
deviations for 3 and v compensate each other so that the
scaling law v = 1y + 3 (Ref. 22) is still fulfilled within
experimental errors for both phase transitions.

It is instructive to compare the exponents obtained
here with those of the p(2x2) order-disorder phase tran-
sition of oxygen on the same surface” and those found in a

MCS of the p(2x2) and (v/3 x v/3)R30° superstructures
on triangular nets by Bartelt, Einstein, and Roelofs.2?
Smaller values for v and relatively good agreement for v
with respect to Potts values were also observed in these
systems. This seems to indicate that similar corrections
to the exponents, probably due to the same higher or-
der terms of the Hamiltonians, are present in the exper-
imentally accessible not-finite-size-affected ranges of t in
all these systems. This means that neither Monte Carlo
simulations nor experimental data have been extended
to sufficiently small values of ¢ so that the pure Potts
exponents could be observed.

These corrections are probably stronger than in Potts
models due to the fact that the Landau-Ginzburg-Wilson
Hamiltomans of the p(2x2) and (v/3 x v/3)R30° phase
transitions on a lattice gas are only identical with the re-
spective Potts Hamiltonians in the leading terms. Only
in the limit of £ — oo the higher order terms are ex-
pected to become negligible so that the same (univer-
sal) behavior is obtained.?® Corrections might also be
the reason why the observed ratios of the amplitudes of
the specific heat B_ /B, are different from 1, the value
of the Potts models. The anisotropy of the correlation
length observed in our experiments, which again is not
present in the Potts models, is most likely due to the in-
fluence of the symmetry of the lattice, which differs from
that of a Potts system, and reflects the symmetry of the
corresponding Bragg point in the surface Brillouin zone.
Therefore, isotropic behavior can only be expected very
close to the Bragg point, where measurements in our case
are strongly influenced by finite size effects. Because of
the highly symmetric adsorption site the anisotropy can-
not be due to simple lattice anisotropy,?® which in the
related Ising-model on a rectangular lattice was found
to be a marginal parameter leading to anisotropic scal-
ing of the correlation length with the same exponent v
for different directions.! Instead, in the present system
the anisotropy could be due to higher order terms in the
Hamiltonians which break the degeneracy for the excita-
tion of antiphase boundaries in different directions with
respect to the substrate to vanish only in the limit of
€ — 00.2% An anisotropy for ¢ was also observed in MCS
of the p(2x2) and (\/§ X \/§)R30° phase transitions.?°
In the case of the p(2x2), a ratio &rp;/&prg =~ 0.85
was observed for 0.01 < t < 0.1, whereas we observe
Erar/&arr ~ 2. This obviously system specific difference
is not understood yet.

The exponent n of the p(2x2) structure was deter-
mined here using the common Fisher approximation for
the structure factor [see Eq. (1)]. Although this is the
simplest parameterization, one should bear in mind that
its reliability for the determination of n from profile fits
has been questioned in the case of the Ising model.*? Nev-
ertheless, this analysis of the data seems to be meaningful
because the experimentally determined exponent 7 is not
dependent on temperature. Therefore, the p(2x2) struc-
ture factor possesses the scaling behavior of Eq. (1). The
value found is in good agreement with the theoretically
expected one, but in view of the large scatter of the data
this may be accidental. Considering Fisher’s scaling law
n =2 — /v, values for 7 of 0.42 and 0.56 are calculated
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for the p(2x2) and (v/3 x v/3) R30° phase transitions, re-
spectively. For the p(2x2) this value is at the upper limit
of the determination of 7 by the profile fit.

Finally, we note that the difference between experimen-
tal and theoretical exponents cannot be due to Fisher
renormalization?! because this would cause a shift to
larger values for all exponents, e.g., v = v/(1 — @),
which we do not observe. A further reason could be
that the theoretical models are not fully applicable to
the experimental situations since the underlying lattice
gas model, i.e., the exclusive population of only one ad-
sorption site in the ordered and in the disordered phases,
may be violated by a thermally activated spillover of the
S atoms onto less favorable adsorption sites at elevated
temperatures. The influence of this effect on critical be-
havior was demonstrated recently for the order-disorder
phase transition of p(2 x 1) ordered oxygen by MCS.*3
Such a mechanism, however, would be more likely for
the (v/3 x v/3)R30° phase transition since adsorption on
the second threefold site starts at coverages above the
(V3 x v/3)R30° phase,'® but should be less important
for the p(2x2). Since the deviations of experimental from
theoretical exponents observed are of the same order for
the p(2x2) and (v/3x v/3) R30° phase transitions, we con-
clude that this mechanism is not mainly responsible for
the observed deviations.

SUMMARY AND CONCLUSIONS

The order-disorder phase transitions of the p(2x2) and
(V3 x v/3)R30° superstructures on the Ru(001) surface
are both continuous and the effective critical exponents
can be determined by a temperature resolved low-energy
electron diffraction experiment within a scaling range of

one order of magnitude in ¢. Scaling laws are fulfilled
within error bars. The values of the exponents fall close
to those of the four- and three-state Potts universality
classes, respectively, indicating that the four- and three-
state Potts models provide the correct descriptions of the
two phase transitions in the limit of diverging . Never-
theless, the deviations between theoretical and experi-
mental exponents, especially for v, and the significant
anisotropy observed for ¢ indicate the presence of cor-
rections to scaling. These are likely to be due to higher
order terms in the respective Hamiltonians, which play
a role in the accessible scaling range 0.01 < [t| < 0.10.
These higher order terms might be more significant than
in pure Potts models due to the lattice-gas character of
the systems.

The interaction of sulfur with monoatomic steps limits
the correlation length at the phase transition, leading to
finite-size effects which scale according to finite-size scal-
ing theory with the average terrace width as the charac-
teristic length. In this system it is thus possible to study
the scaling behavior as a function of the system size by
use of vicinal surfaces with a well defined step density,
in addition to scaling in the temperature domain. For
the typical surface qualities, with 300 A wide terraces,
finite-size effects limit the scaling range of |t| > 0.01.
Therefore, an improved surface preparation is required
to enlarge the scaling range in ¢ which would then open
a possibility to separate the corrections to scaling.
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