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Disclinations of monolayer graphite and their electronic states

Ryo Tamura and Masaru Tsukada
Department of Physics, Faculty of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan
(Received 23 July 1993)

The local density of states (LDOS) of a single disclination and a disclination pair of various
configurations in the monolayer graphite is calculated by the recursion method introduced by Haydock
[J. Phys. C 5, 2845 (1972)]. The LDOS shows the existence of some resonant states near the Fermi ener-
gy. At the Fermi level, the value of the LDOS vanishes for a single disclination of five- and seven-
membered rings, and remains a finite value for four- and eight-membered rings. On going away from the
disclination center, the shape of the LDOS approaches that of the perfect lattice. At the Fermi level, a
sharp peak structure, which corresponds to a localized state, appears in the LDOS of fused disclinations
consisting of a four-membered ring and a seven-membered ring, and the value of the LDOS vanishes in
the case of fused disclinations consisting of two five-membered rings. But these features are drastically
changed if the configuration of the disclination pair satisfies a certain simple condition. Using the fact
that the Fermi level of these systems with disclinations is the same as that of the perfect monolayer
graphite, the charge and the stability energy at each site are calculated from the LDOS. We show that
the disclination center of a five-membered ring has a negative charge, that of a seven-membered ring has
a positive charge, and that of an even membered ring is neutral.
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I. INTRODUCTION

Recently, various kinds of exotic materials made of
closed curved surfaces of graphite layers have been
found, and their unique properties have attracted much
interest. They include fullerene, carbon nanotubes, and
others.! A perfect planar graphite layer has the form of
honeycomb network; its structure is characterized by a
six-membered ring of carbon atoms. To make a curved
surface from a graphite layer, other types of carbon rings,
i.e., n-membered rings with n different from six, have to
be introduced in the graphite layer. For example, ac-
cording to Euler’s theorem on polyhedra, a closed surface
of a graphite layer includes 12 five-membered rings in ad-
dition to any number of six-membered rings. This is
clearly demonstrated by the actual structure of fullerenes
and capped nanotubes.? On the other hand, at the join-
ing part of the carbon nanotubes with different diameters,
there should be a saddle point which is formed by an
n (> 6)-membered ring.}

The special portion of the curved graphite layer
characterized by n (#6)-membered ring(s) corresponds to
a disclination center in the otherwise perfect two-
dimensional (2D) periodic lattice structure of the graph-
ite. This is illustrated in Fig. 1. A disclination is a topo-
logical defect; local geometry at any sites around the dis-
clination is completely the same as that of the perfect lat-
tice, i.e., each atom is connected to three nearest-
neighbor atoms. It exerts some influence on the electron
wave function, only when an electron wave splits into two
before encountering the disclination, and combines again
to be a single wave function after passing it. Therefore
the change of the local electronic structure induced by
the disclination is not a trivial problem, and much more
complicated than the effect by a local potential, e.g., by
an impurity center. Thus the investigation of electronic
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states due to topological disorder has attracted much in-
terest from theorists. For example, dislocation has been
studied by Irie and Kawamura, with an analogy model to
the Aharonov-Bohm effect.*

Moreover, for the case of the 2D graphite, there is par-
ticular interest in the effect around the Fermi level, Ef,
because of the degenerate band states and the cusp-

(a)

(b)

FIG. 1. The shape near a disclination center; (a) for a five-
membered ring, and (b) for a seven-membered ring.
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shaped density of states at the K point in the Brillouin
zone. It is expected that the situation is drastically
different from the free-electron systems which were stud-
ied recently by Nagaoka and Ikegami.> They found that
the effect of the kinetic energy normal to the surface ap-
pears as an effective potential for the electrons confined
in a curved 2D surface. Our interest in this paper is fo-
cused on the topological aspect related to the lattice
structure, and is quite different from the problems of the
free electron. Our calculation takes into account only
how atoms are connected, and the effect of the curvature
of the surface is not a major concern. Kitahara, Araki,
and Nakazato studied the diffusion of a particle on a
curved surface, and derived the Fokker-Plank equation
that has an effective potential which either enhances or
reduces the diffusion.® In this calculation, the effective
potential appears as an effect of a topological disorder.

Studying the local change of the electronic structure
induced by the disclination is of interest as a search for a
general property characteristic of closed curved graphite
surfaces. It is possible that the growth process of carbon
nanostructures is initiated from such a disclination
center, because it tends to act as a chemical reaction
center.” Moreover, new functions of these nanostructures
in electronic devices are related to special electronic
states around singular points.

II. MODEL AND METHOD FOR THE CALCULATION

We investigate the electronic properties of disclination
by means of the recursion method introduced by Hay-
dock.® In this method, one can calculate the local density
of states (LDOS) for any tight-binding system with
infinite size without assuming artificial finite models as
clusters or supercell structures. The only required condi-
tion is that the structure is unambiguously designated
with a definite rule. Therefore this method is most con-
venient for the description of scattering states.

A. Model for the calculation

To construct a model for disclination(s) in a graphite
layer, we adopt the following procedure: from the center
of a six-membered ring in a perfect monolayer graphite,
we draw three linear lines at 120° to each other, which
run through centers of the C-C bonds of the innermost
hexagon [see Fig. 2(a)]. By these lines the whole plane is
divided into six sectors.

An n-membered ring can be formed either by removing
6—n sectors (if n <6), or inserting n —6 sectors (if n > 6).
At the boundary of the sectors, a carbon atom on one
side of the sector is bonded to the nearest-neighboring
carbon atom in the adjacent sector in a natural way. In
the case of n < 6, the n-membered ring becomes a top of a
conical shape, and in the case of n > 6 it becomes a center
of the saddle point (see Fig. 1). For example, Fig. 2(b)
shows this procedure for the case of n =5 and 7. From
now on, we shall call such a system an » system.

It is also easy to form a system which contains two dis-
clinations, an n-membered ring and an m-membered ring,
which will be called an n-m system hereafter. The

(a)

FIG. 2. (a) Six sectors divided from the perfect graphite lat-
tice. (b) A 5 system and a 7 system. An n system is formed by
connecting n sectors. For an n system, the 2n equivalent sites
are sites 2, 4, 5, 7, 8, and 9, and the n equivalent sites are 1, 3, 6,
and 10.

configuration is described by the vector that joins the two
disclination centers, ie;+ je,, and will be represented by
(i,j) hereafter (see Fig. 3). An n-7 system is formed by
connecting n + 1 sectors as below. We connect n sectors
in the same way as in the case of the single disclination
discussed above, but connect the last sector after shifting
it by i sites in the radial direction. There are i —1 hexa-
gons between the n-membered ring and the seven-
membered ring, so its configuration is (/,0). Examples
are shown in Fig. 4(c) for the case of n =4 and i=1. We
introduce a sector which has the shape of a trapezoid for
the purpose of forming an n-5 system. It can be done by
connecting n —1 isosceles triangle sectors and one tra-
pezoid sector, as shown in Fig. 5. The number of hexa-
gons between the n-membered ring and the pentagon can
be changed by changing the size of the trapezoid sector
(see Fig. 5 in the case of n =5). The configurations of the
systems shown in Figs. 5(a), 5(b), and 5(c) are (1,0), (2,0),
and (3,0), respectively. For the case of the configuration
(i,j), where neither i nor j is zero, it is also possible to
form an n-m system by connecting such sectors appropri-
ately. By a simple geometrical rule connecting C-C
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FIG. 3. The label to define configuration of two disclination
centers. The position of the n-membered ring disclination
center is taken as (0,0), and the position of the m-membered ring
disclination center is represented by (i, j). Here (i, j) means posi-
tion vector ie, + je,, where both i and j are integers.

bonds between each sectors, one can easily generate the
coefficients of the recursion formula.

B. Recursion method

In this section we give a brief summary of Haydock’s
recursion method, details of which are given in Ref. 8.

First, it is easy to number every site of each sector.
The carbon 2p, orbital at site i will be indicated by |i),
and for simplicity these are assumed to form an orthogo-
nal normalized set. In the real system, the 2p, orbital is
mixed with the o orbital, because the system is not on a
flat plane. However, for simplicity, this effect is ignored.
The assumption is reasonable when the radius of the cur-
vature of the graphite layer is large. We choose the ori-
gin of energy as the common site energy (i|H|i ), and as-
sume the matrix elements of the Hamiltonian to be

—T if i andj are nearest neighbors

(ilH|j)= 0 otherwise .

In the following, the value of T is constant and treated as
the unit of energy, that is, 7=1. The index O is assigned

to the site where we want to obtain the LDOS, Ny(E).
Then N, (E) is obtained from the Green’s function G;;(E)

def
G,;(E)= (i(E—H)"j) (1)
as
No(E)= lim LImGoo(E—ib) . @
8—»+0 T

Here i is the unit of imaginary number, Im is the imagi-
nary part, and § is a positive infinitesimal.
We can obtain Gy, (E) from the moment u,,,

def
un= (O|H™0)

= Y (O|Hl|a){alH|b) - -{f|H|O), (3)
ab,....f
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by the relation
-1
Go(E)=(0|E! |0)

1——

=(0|E"! l1+ D> —Z—:];m

m=1
=g |1+ 3 £ @)
m=1 E
The nonzero contributions appear only when

Oa,ab, ..., f0 form a sequence of nearest neighbors.
There must be closed chains starting and finishing at site
0. Thus u,, can be calculated by counting the number of
such chains of length m.

FIG. 4. (a) Fused disclination pair consisting of a five-
membered ring and a seven-membered ring. Except for the sites
1, 6, and 7, there are two equivalent sites due to a mirror sym-
metry. (b) Fused disclination pair consisting of a four-
membered ring and a seven-membered ring. There are two
equivalent sites, except site 5 due to a mirror symmetry. (c) The
way of connecting five sectors in order to form fused disclina-
tions consisting of a four-membered ring and a seven-membered
ring.
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(a)

FIG. 5. Disclination pair consisting of two five-membered
rings. The configuration is (1,0) for (a), (2,0) for (b), and (3,0) for
(c). The way of connecting the sectors in order to form each
system is shown. Because the system shown in (a) has two mir-
ror planes, there are four equivalent sites 2, 5, 6, and 7, and two
equivalent sites 1, 3, 4, and 8.

In the recursion method a mutually orthogonal set of
states |n} is introduced by the following procedure:

def
l1}=10),
def
12}=HI[1}—a,l1}, (5)

def
In+1}=Hl|n}—a,|ln}—b,_4in—1} (n=2).

In the above @, and b, _, can be determined from the
condition {n|n+1}={n—1|n+1}=0, which entails
{rln}=0,forr<n—1.

With the use of the normalized state |r’ri}, the matrix
element H,,, is defined as

def
|A}=|n}/Vi{nln}, (6)
def
H,,= {r|H|R} . ¥
The following relations can be demonstrated easily:
H, = {nlHIn} _ - (8)
{nln}

172
H —(b,,_,>1/2=——u’—|1]—-— 9)

nn—1" {n—-1|n-—1}1/2 ’

H,,=0 (for [n—m|>1). (10)

H

n—l,n "

The matrix element H,,, corresponds to that of the
Hamiltonian of a fictitious linear chain of “atoms” with
local orbital |#}, diagonal energy a,, and overlap matrix
elements b,/? with the “atom” n +1. By the set |#}, u,,
can be counted as

(11HIA, )

X{ﬁllH!ﬁz} {ﬁm—llH’T} -

(11)

Then we find that, for any given length, the contributions
of the closed walks to the original lattice and to the
weighed linear chain are the same. It is convenient to
resolve a closed path into irreducible paths which do not
return to atom O at any of the intermediate steps. For ex-
ample, ,u3=i23+2;’27jl,+ﬁi. Here fi, is the sum of irre-
ducible paths of length r. For the one-dimensional case,
it is easy to handle irreducible paths because looping
back paths do not exist in contrast to two- or three-
dimensional cases. Then Gy, (E) is given by the following
recursion formula:

1
[E_al _blgl(E)] ’

1
[E—a,—byg,(E)] ’

GylE)=

(12)

g((E)=

(13)

1
(E—a,—b,g,(E)] .

8&n— I(E )=
The above procedure can be continued to any desired
value of n. When a, and b, have settled down to an

essentially constant value after nmax steps of the above
process, we can terminate this process with Eq. (14):

(E_anmax) 1— 12
2b, max

(14)

4bnmax

1—— M
(E ——anmax)z

gnmax_l(E)=

Once the Green’s function is calculated by the above
process, the LDOS at a particular site is given by Eq. (2).
The imaginary part comes from the square root in Eq.
(14). We have summed over all irreducible paths of
length up to 2nmax and all reducible paths that can be
built up out of these. So, the first 2nmax moments of
Ny(E) remain exact. In this paper, we take nmax to be
190.

III. ELECTRONIC STRUCTURE
OF THE DISCLINATION

A. General feature

Our tight-binding model has no quantitative disorder.
Every atomic site has a fixed coordination number z, i.e.,
the number of nearest neighbors is three. The
Schrodinger equation becomes
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_TEaJ=Eal . (15)
J

Here 3; represents the summation over j which is
confined to the nearest neighbors of i. a; represents the
amplitude of the eigenfunction at site i. Suppose that i la-
bels the site where this eigenfunction has the maximum
amplitude; then |E|<T3;la;|/|a;|<zT, ie., all the
states must lie within the band. So the sum rule

J7 dE No(E)=1 (16)

holds with an excellent numerical accuracy in all the
cases in this paper.

The state corresponding to E = —zT is a bonding state,
which is realized when the amplitude a; of all sites i have
the same sign and the same magnitude. This state forms
the lowest-energy state in the band for all the cases in this
paper.

On the other hand, the state corresponding to E =zT is
an antibonding state, and is realized when all coefficients
a; and a;, with i and j being nearest-neighbor sites, have
the same magnitude and opposite sign. In this case q;
must alternate in sign around every ring of the network.
This is possible for even-membered rings, but not for
odd-membered rings. In an odd-membered ring, it is
inevitable that sites having amplitude of the same sign be-
come nearest neighbors. We call such a situation a “frus-
tration.” The effect of odd-membered rings is more
significant to the antibonding states than to the bonding
states due to the frustration.

Now we consider the moment which corresponds to
the number of closed paths. A perfect lattice can be di-
vided into sublattices, consisting of 4 and B sites, in a
way such that all A sites are connected only to B sites,
and vice versa. This will be called a sublattice structure
in the following. In the sublattice structure, the closed
path takes the form 4—>B—>A4—>B— ‘- A4, and its
length is necessarily even. Therefore all the odd mo-
ments are zero, and the LDOS has a symmetric shape
with respect to E =0. This is easily understood consider-
ing the relation between the shape of the LDOS and the
moment p, represented by p,, = [ dEN,(E)E™
However, if an odd-membered ring exists, the system
cannot be divided into sublattices. Connections between
A and A, or B and B, necessarily occur because there are
closed paths with odd length which wind around the odd
ring an odd number of times. Odd moments are not zero,
so the LDOS is not symmetric with respect to the origin
of the energy.

Figure 6 shows the sectors described in Sec. II for the 5
system on the left, and for the 6 system (perfect graphite
lattice) on the right. Consider a closed path starting and
finishing at site zero in both systems. If a path in one sys-
tem has the same local geometry as a path in another sys-
tem, we will say that the two paths correspond to each
other.

The winding number is defined as follows. If a closed
path in an n system winds around an n ring n, times
clockwise, and n,; times counterclockwise, then its wind-
ing number is n,—n;. Here an n ring means the n-
membered ring formed by apexes of the isosceles triangle
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FIG. 6. The correspondence between the closed path of 5
system and that of perfect graphite lattice. The 5 system is
shown on the left and the perfect lattice is shown on the right.
The shaded area in the left represents the removed sector. The
configuration for C and O is the same as that for C’ and O’ in
(b) and that for C" and O" in (c) if the sector is rotated by 7/3
clockwise or counterclockwise, respectively. The paths in one
system have the same local geometry as those in another system.

sector in an n system. For closed paths whose winding
number is zero, there is one-to-one correspondence be-
tween both systems [see Fig. 6(a)], while for a closed path
in the 5 system whose winding number is neither zero nor
a multiple of six, the corresponding path in the 6 system
does not close [see Fig. 6(b)]. Therefore the moment of
the 5 system corresponding to this path increases com-
pared to that of the 6 system. It is also true if we ex-
change 5 and 6 in the above sentences [see Fig. 6(c)]. Itis
the paths winding around the n ring or the 6 ring that
change the LDOS of the n system as compared to that of
the 6 system.

B. Single disclination; n system

Figure 7(a) shows the LDOS at the C atom in the five-
and the seven-membered rings in n systems (n =5 and 7),
compared with the perfect lattice. For an n system with
odd n, since it does not have a sublattice structure, the
shape of the LDOS is not symmetric with respect to the
origin of the energy. For the five-membered ring the
LDOS is reduced in the energy region between 0.4T and
T, and increased between —T and O as compared with
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FIG. 7. The LDOS at the site of the single disclination center
in n systems. The attached number shows n.

that of the perfect lattice. Roughly speaking, the LDOS
of the 7 system is enhanced where that of the 5 system is
reduced, and vice versa. Thus it resembles that of the 5
system if the direction of energy axis is reversed.

At the Fermi level Eg, where Ep is chosen as the origin
of the energy, the sharp V-shaped valley structure is kept
for both five- and seven-membered rings, and the LDOS
value vanishes exactly at E,. If we look more closely into
the change of the spectra near Ep, a significant increase
of the absolute value of the gradient at E, can be found.
This would indicate the appearance of resonant states
around the Fermi level.

At the energies where the LDOS of the perfect lattice
shows the logarithmic divergence, i.e., E =T, the diver-
gence disappears for the n system (n=35,7). But the
derivative becomes divergent when E approaches T from
lower energy when n =5, and from higher energy when
n=7.

To see the spatial extent of the distorted LDOS spectra
due to the disclination, the LDOS’s are calculated for
each atom site around the n (n6)-membered ring. The
results are shown in Figs. 8 and 9 for the case of the five-
membered ring and the seven-membered ring, respective-
ly. The label of the atom site attached to the spectrum is
illustrated in Fig. 2(b).

On the second carbon ring (-2-3-2-2-3-2-) measured
from the center of n(n+6)-membered ring, the distor-
tion of the spectra at the disclination center is already
considerably reduced. In particular, the spectral feature
of the van Hove singularity at =T is already recovered.
On the third carbon ring (-4-5-6-5-4-4-5-6-5-4-), the dis-
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tortion of the LDOS from the perfect 2D crystal is fur-
ther reduced, though we still notice some significant
modification as compared with the perfect one. A clear
shoulder structure appears in the third ring at an energy
slightly higher than the Fermi level (E =0) for the case
of the 7 system, and at an energy slightly lower than the
Fermi level for the case of the 5 system. This indicates a
well-defined resonant state.

In the energy region deeper than the saddle-point ener-
gy (E<Er—T, Ex+T<E), an oscillatory behavior of
the spectra is found. The period of the oscillation be-
comes shorter on going to the outer carbon rings, as is
shown by a comparison of the oscillations for the LDOS
of 1-2,3—-54,5,6—7,8,9,10. This feature can be ex-
plained by the interference of the incoming and outgoing
radial wavefunction to the n (n76)-membered ring. The
amplitude of the oscillation in the region E > T is larger
than that in the region E < —T. This is due to the frus-
tration.

Figure 7(b) shows the LDOS at the C atom in the n =
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FIG. 8. The LDOS’s at sites around the disclination center of
the 5 system. The LDOS’s of sites 1, 4, and 7 are shown by real
lines, those of sites 2, 5, and 8 by dotted lines, those of the sites
3, 6, and 9 by dashed lines, and that of site 10 by a dot-dashed
line, respectively. The labels of sites are shown in Fig. 2(b). (a)
The first and the second rings. (b) The third ring. (c) The
fourth ring.
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four-, and eight-membered rings in n systems, compared
with that of the perfect lattice. Since an n system with
even n has a sublattice structure, the LDOS has a sym-
metric shape with respect to Er. A remarkable feature
for these cases is that the LDOS takes a finite value at
Ep, and the sharp V-shaped valley feature disappears.
This is quite different from the LDOS for odd n systems
or for the perfect 2D graphite lattice. The states contrib-
uting to the finite LDOS around Ej is localized in space,
which can be confirmed by inspection of LDOS’s for vari-
ous C sites around the disclination center. Figures 10
and 11 show examples of 4 and 8 systems, respectively.
By going to outer carbon-atom rings, the LDOS around
Ej is reduced, and, for the fourth rings from the disclina-
tion, almost the same V-shaped spectrum of the perfect
lattice is recovered, though a finite value of the LDOS
remains at E. The recovery of the sharp peak of the log-
arithmic singularity is attained already in the second car-
bon ring as in the case of the 5 and 7 systems.

The ripple shape of the spectra in the deeper energy re-
gion (E <Ep—T, E>Ep+T) is smaller for the case of
the saddle point-disclination center (an n system, n > 6)
than for the case of the conical point disclination center
(an n system, n <6).
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FIG. 9. The LDOS’s at the sites around the disclination
center of the 7 system. The correspondence between the types
of lines and labels of sites is the same as in Fig. 8. (a) The first
and second rings. (b) The third ring. (c) The fourth ring.
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C. Fused disclinations and disclination pair; n-m system

Proximity of two disclinations, especially fused dis-
clinations, causes a more drastic change of electronic
states as compared to a single n (n76)-membered ring of
an n system. Here fused disclinations of n- and m-
membered rings creates an n-m system whose
configuration is (1,0), following the definition in Sec. II.
Such fused disclinations might be generated in the pro-
cess of the growth of the carbon nanostructure.” We
have calculated electronic states for various combinations
of fused n(n#6)-membered rings. Figure 12 shows
LDOS’s at various sites for fused disclinations of five- and
seven-membered rings, i.e., the 5-7 system. The label at-
tached to each spectrum corresponds to the site shown in
Fig. 4(a).

Sites 1-6 belong to fused five- and seven-membered
rings. The spectra on these sites are remarkably changed
from those of the perfect 2D lattice. In particular, the
spectra for sites 1, 3, and 6 show no trace of a peak at
E=T. However, with the increase of the distance from
the defect center, a rapid recovery of the spectra to the
perfect one can be observed.

Of special interest in the electronic state of this system
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FIG. 10. The LDOS’s at the sites around the disclination
center of the 4 system. The correspondence between the types
of lines and labels of sites is the same as in Fig. 8. (a) The first
and the second rings. (b) The third ring. (c) The fourth ring.
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05 E_‘ ('a')l T l:LTa ! I—é is the emergence of two sharp resonant states near the
. E } 5 3 Fermi level. That is to say, a clear peak structure ap-
g 04 ll‘ B — pears for sites 1 and 3 at an energy slightly higher than
Z o3 B oo g - 2 3 Ep, i.e., at about 0.27T, and another peak appears at site 5
3 02 E B AR 3 slightly below Ef (~—0.2T). The former peak is caused
9 %< E e 3 by the seven-membered ring, and the latter by the five-
0.1 E— 7 — membered ring. Although site 2 is nearer to the seven-
00 Eriu | PRI 2SN membered ring than site 1, and site 4 is nearer to the
-2 0 2 five-membered ring than site 5, these peaks do not appear
ENERGY (T) at sites 2 and 4. The LDOS’s at sites 7 and 8 and at site 6
e —— are approximately the same as those at sites 3 and 2 of
0.5 E— (b)l ! l l — the 5 system, and that at site 1 of the 7 system, respec-

£ o4 E i 6 3 tively. But a small shoulder appears near E. for site 8.
> E The fused disclinations of four- and seven-membered
; 03 £ — rings, i.e., the 4-7 system, entails a much sharper peak at
8 02 - an energy position very close to Eg, as seen in Fig. 13.
= 01 E 3 The labels for the spectra correspond to the carbon sites
E | \ /7 | E shown in Fig. 4(b). The strongest intensity of the reso-
0.0 L ‘_ 24 ——t o B 2 EE— nant peak is found at site 2. But the intensity is partially
ENERGY (T) shared by sites 1, 4, 6, and 8, and so on. Figure 14 shows
this peak’s height, and Fig. 15 shows the energy of the
DI EMELR IR I peak’s center for various nmax. The attached numbers
05 [ (¢) : ; s indicate locations of the sites shown in Fig. 4(b). The
E 0.4 ;_ ! f 9.1 0‘; square root of the peak’s he_ight corresponds to the abso-
= E 3 lute value of the wave function, i.e., the absolute value of
w %3 7 3 the coefficients a; in Eq. (15). The sign of a; can be found
% 0.2 — by matrix diagonalization. It can be seen from the sign
01 —3 that the wave function is antisymmetric with respect to
VA 3 the symmetry line. Therefore the LDOS at site 5, which
0.0 o 0 > is located on the symmetry line, does not have this peak,
ENERGY (T) and the value of the LDOS vanishes at Ey. As nmax in-
creases, the peak’s height increases, the width becomes
FIG. 11. The LDOS’s at the sites around the disclination  narrower, and the peak’s center approaches the origin of

center of the 8 system. The correspondence between the types
of lines and labels of sites is the same as in Fig. 8. (a) The first
and the second rings. (b) The third ring. (c) The fourth ring.

the energy. The increase of the peak height indicates that
the state is a localized state, and its wave function decays
upon leaving from the disclination pair, i.e., the four- and

04 rf ‘ V_E ;7!b|) I 1 T 7T ] T T T T ’ T 1T E
o3 4 5% F E
= ¢ 1502 B ]
202 [ =8 02 ] FIG. 12. The LDOS’s of the 5-7 system
= £ 37 o4 - j with configuration (1,0). The LDOS’s of sites
o1 F ] ' F ] 1, 4, 8, and 9 are shown by real lines, those of
oo baaal N N A 00 Lo = sites 2, 5, 7, and 10 by dotted lines, those of
-2 0 2 —-2 0 2 sites 3, 6, and 11 by dashed lines, and that of
ENERGY (T) ENERGY (T) site 12 by a dot-dashed line, respectively. The
0.5 EETUTTTTTTT TS RPN R I T attached labels of sites are shown in Fig. 4(a).
0.4 3 0.4 = (a) The five-membered ring. (b) The seven-
@\\ 0 E 3 Eos ;_ membered ring. (c) and (d) The second ring.
g oz = 8% b
=) E 9 A F
= 01 [ -4 =01
E g £ 7
0.0 T l [T [ \ 11y 3 0.0 | l JUREUS BN T S | 1 Ly
-2 o 2 -2 0 2
ENERGY (T) ENERGY (T)
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FIG. 13. The LDOS’s of 4-7 system with configuration (1.0).
The LDOS’s of sites 1, 3, and 6 are shown by real lines, those of
sites 2, 4, and 7 by dotted lines, those of sites 5 and 8 by dashed
lines, and that of site 9 by a dot-dashed line. The attached la-
bels of sites are shown in Fig. 4(b). (a) The four-membered ring.
(b) The seven-membered ring. (c) The second ring.
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FIG. 14. The height of the sharp peak around the Fermi lev-
el in the LDOS of a 4-7 system with configuration (1,0) vs nmax.
The attached labels for the sites are shown in Fig. 4(b).
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FIG. 15. The energy of the sharp peak around the Fermi lev-

el in the LDOS of a 4-7 system with configuration (1,0) vs nmax.
The attached labels for the sites are shown in Fig. 4(b).

the seven-membered rings. Information about the degree
of the spatial localization of this state can be derived by
the analysis of the nmax dependence of the peak. We
discuss details about this in a forthcoming paper. We
also calculate the LDOS of the fused disclinations in n-m
systems so far as n is 4~12 and m is 5~12. Then the
sharp peak near E —O0 similar to that of the 4-7 system
appears in other n-m systems if n is a multiple of 4, i.e.,
n=4, 8, or 12, and m is an odd number, i.e., m =5, 7, 9,
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FIG. 16. The LDOS’s of a 5-5 system with configuration
(1,0). The LDOS’s of sites 1 and 5 are shown by real lines, those
of sites 2 and 6 by dotted lines, those of sites 3 and 7 by dashed
lines, and those of sites 4 and 8 by dot-dashed lines. The at-
tached labels of sites are shown in Fig. 5(a). (a) Sites 1, 2, 3, and
4. (b) Sites 5, 6, 7, and 8.
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or 11. But the peak’s height becomes smaller as n and m
increase.

Figure 16 shows the LDOS of a 5-5 system with
configuration (1,0). The label attached to each spectrum
corresponds to the location of sites indicated in Fig. 5(a).
The value of the LDOS vanishes at Ey as in the case of §
system. The sharp peak structure at E = — T disappears
for sites 1, 3, and 8. In particular, the LDOS at site 3 is
nearly constant between E=—T and —0.47. But the
value of the derivative for these sites changes discontinu-
ously from nearly zero to a large positive one when E ap-
proaches — T from the lower energy. A clear peak struc-
ture appears at slightly below E for sites 4, 5, and 8. It
corresponds to the shoulder structure in the 5 system.

So far we have discussed the electronic states of the
fused disclinations. What then happens when the two
disclination centers are gradually separated to the infinite
distance? Figure 17 shows LDOS’s near E for the 4-7
and 5-5 systems for various configurations. The attached
pair of integers (i,j) represents the configuration of two
disclination centers (see Fig. 3). The site for the LDOS is
indicated by the circle in Fig. 3. For the 4-7 system, the
location of the four-membered ring is taken as (0,0).
When i —j is not a multiple of 3, the feature of the LDOS
near the Fermi energy resembles that of the fused dis-
clinations; the peak structure appears at E=E for the
4-7 system, while the values of the LDOS vanishes there
for the 5-5 system. As the two disclinations separate
from one another, the shapes of the LDOS’s of the dis-
clination pair approach those of the single disclination,
e.g., the sharp peak of the 4-7 system becomes lower.

But when i —j is a multiple of 3, the feature is drasti-
cally changed; the peak structure vanishes at E=E for
the 4-7 system and the LDOS takes a finite value for the
5-5 system. For 4-7 system, two dull peaks, instead of a
sharp peak, appear below and above E;. As the two dis-
clinations separate from each other, centers of the two
dull peaks of the 4-7 system approach E, with their

width becoming narrower, while the finite value at Ep of
a 5-5 system decreases. Thus the shapes of the LDOS’s
also approach those of the single disclination, but the
method of approach is different from those for the case of
i —J, not being a multiple of 3. Such a relation between
the peak at E; and the configuration of the disclination
pair is also observed in other n-m systems which have a
peak similar to that of 4-7 system, i.e., n =4, 8, and 12,
and m =5, 7,9, and 11. Though the double disclination
system, i.e., an n-m system, does not have any transla-
tional symmetry, this condition on i—j resembles the
condition about the screw axis of a carbon nanotube
which determines whether the nanotube is a metal or a
semiconductor.’

IV. CHARGE AND STABILITY

We have seen that sites distant from disclination(s)
have the same LDOS as that of the 2D graphite. There-
fore, in an infinite system there are infinite sites which
have the same LDOS as that of the graphite. As the total
DOS is the average of LDOS’s of every site, the total
DOS agrees with that of the graphite. So the Fermi level
coincides with that of graphite, i.e., zero.

The charge of a site is given by

0
—szSdE{NO(E)—N(E)] . 17

Here Ny(E) is the LDOS of the site, and N (E) is that of
the graphite. The unit of charge is the absolute value of
an electron’s charge. Because N (E) is an even function
of the energy, we confirm that [ ,dE N(E)=

The stability energy of a site compared to the perfect
graphite site is represented by

—2fi)3dEE[N0(E)—N(E)} . (18)

If a site has a large negative stability energy, we will say
that the site is unstable compared to the graphite. Factor
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TABLE I. The charge and stability energy calculated by the
LDOS at each site in the 5-7 system with the configuration (1,0).
The labels of the sites are shown in Fig. 4(a). The unit of the
charge is the absolute value of an electron charge, and that of
the stability energy is the absolute value of the transfer-matrix
element, i.e., T. The charge and stability energy of the sites
whose labels do not appear in Table I are so small that they can-
not be determined clearly.

Site 1 2 3 4 3 6 7
charge —0.05 —0.08 —0.04 0.06 0.02 0.04 0.02
stability —0.02 —0.01 —0.04 —0.02 —0.02 — 0.02 0.00

2 in Egs. (17) and (18) represents spin multiplicity. For
the case of an n system which has a single disclination,
the charge and stability energy are almost the same as
those of the perfect 2D graphite except at the n-
membered ring and at site 3 in the 4 system. The charges
at the five- and seven-membered rings is —0.07 and
+0.04 respectively. The charges of n systems with even
n are zero because of the symmetric shape of their LDOS.
The stability energies at the four-, five-, seven-, and
eight-membered rings are —0.117, —0.027, —0.027,
and —0.027, while that at site 3 in the 4 system is
+0.02T.

From the analysis of the charge, it seems that the five-
membered ring behaves attractively, and the seven-
membered ring behaves repulsively to the electrons. As
for the stability energy, the four-membered ring is espe-
cially unstable.

The charge and the stability energy for the 5-7, 4-7,
and 5-5 systems are listed in Tables I, II, and III, respec-
tively. They are compared with those of n-membered
rings in a single disclination, which will be called simply
n-membered rings in what follows. The sites between two
disclinations become the most unstable. For the 5-7 sys-
tem, sites 2 and 6 have almost the same charge as the
five-membered ring and the seven-membered ring, respec-
tively. Sites 1 and 3 are less negative than the five-
membered ring because of the resonant state above Fj.
Compared to the seven-membered ring, site 5 is less posi-
tive on account of the resonant peak below Ej, and site 4
is more positive. For the 4-7 system, sites 2, 3, 4, and 5
are less positive than the seven-membered ring. For the
5-5 system, sites 1 and 3 are more negative, and site 2 is
less negative than the five-membered ring.

We should comment that these calculations do not in-
clude the effect of mixing between the o and 7 bands, and

TABLE II. The charge and the stability energy calculated by
the LDOS of each site in the 4-7 system with the configuration
(1,0). The labels of the sites are shown in Fig. 4(b). The unit of
the charge and that of the stability energy are the same as those
of Table I. The charge and stability energy of the sites whose
labels do not appear in Table II are so small that they cannot be
determined clearly.

Site 1 2 3 4 5 6 8

charge —0.02 0.00 0.02 0.01 002 0.00 0.00
stability —0.11 —0.14 0.00 —0.04 —0.02 —0.01 —0.02
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TABLE III. The charge and stability energy calculated by
the LDOS of each site in the 5-5 system with the configuration
(1,0). The labels of the sites are shown in Fig. 5(a). The unit of
the charge and that of the stability energy are the same as those
of Table I. The charge and stability energy of the sites whose
labels do not appear in Table III are so small that they cannot
be determined clearly.

Site 1 2 3 5 7 8
charge —0.15 —0.05 -—0.10 —0.02 0.00 —0.02
stability —0.04 0.00 —0.02 0.00 +0.02 0.00

the interaction between electrons, which are needed for a
quantitative discussion of realistic systems.

V. CONCLUSION AND DISCUSSION

In the present paper, the electronic structure of the dis-
clination center, i.e., the n (¥6)-membered ring, inserted
in the otherwise perfect 2D graphite lattice is obtained by
the recursion method. In the present treatment only the
7 band is treated with the tight-binding model, only with
nearest-neighbor hopping interaction. It was found that
the LDOS is drastically distorted on the n(#6)-
membered ring, but is quickly recovered to the normal
LDOS with the increase of the distance from the disclina-
tion center(s). This result is natural since a distant defect
affects only the higher moment in the LDOS curve. At
the Fermi energy, the LDOS of an n-membered ring in an
n system with n =5 and 7 is zero, and that with n =4 and
8 remains a finite value. The drastic change of the local
electronic structure of the n(76)-membered ring entails
a special electronic property of these sites, for instance,
the distortion of the structure, chemical reactivity, or the
electron emission capability. The microscopic shape of
the curved graphite surface around the disclination
center, e.g., the bending angle of the bond connecting the
n (¥6)-membered ring to the remaining bulk part, could
only be discussed by arguments taking into account the o
bond. The necessity of this is also made clear by the
breakdown of the pure sp? hybridization scheme. The
theoretical calculation of the structure optimization by
the first-principles local-density approximation (LDA) is
worthwhile, and is our next project to be undertaken.

In the present work various strange resonant states
were found. The sharp peak near E =0 of the 4-7 system
and so on will be particularly interesting for the applica-
tion to the coherent electron emission source, when used
as a field emitter. The reason is that the contribution
from this peak is dominant, so that almost an ideal mono-
cromaticity of emitted electrons will be realized. Such a
sharp peak state is also important for an ambiguous
quantitative analysis of scanning tunneling microscopy
(STM) and spectroscopy (STS). This is because tunneling
current is contributed by the electronic states in the ener-
gy region of the Fermi level offset between the tip and the
surface. Thus, for a quantitative analysis of the STS,
deconvolution of the surface and tip electronic structure
is inevitable, which obscures the results obtained. How-
ever, if the electron tunneling takes place via a single en-
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ergy level of the tip, the deconvolution is trivial, and the
differential tunnel conductance solely reflects the surface
electronic states of the corresponding energy position.
Various interesting phenomena such as local negative
tunnel conductance are easily realized. Realization that
the above-mentioned portion of the carbon nanostructure
is the tip of the STM or field emitter is highly interesting.

The various configuration of a disclination pair other
than the fused case is also investigated for the 4-7 and 5-5
systems. When the configuration satisfies a certain sim-
ple condition, the feature is drastically changed com-
pared to the case of the fused disclinations, i.e., at
E =Ep, the peak structure vanishes for the 4-7 system,
and a finite value of the LDOS remains for the 5-5 sys-
tem. This condition is expected to have some relation to
that of a screw axis of carbon nanotube, which deter-
mines whether the nanotube is a metal or a semiconduc-
tor.” As for the charge calculated from the LDOS of a
single disclination center, the five-membered ring has a

negative charge, the seven-membered ring has a positive
one, and even-membered rings are neutral. That is to
say, the five-membered ring is attractive and the seven-
membered ring is repulsive to electrons. This tendency is
kept approximately for the fused disclinations. The dis-
clination centers of the five-membered and seven-
membered rings are certainly realized in fullerenes and
nanotubes. Though no experimental evidences have been
reported so far for fused disclinations, such a type of de-
fect may exist for the growth process.”® Therefore the
study of the chemical properties of such defects seems to
be important.
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FIG. 6. The correspondence between the closed path of 5
system and that of perfect graphite lattice. The 5 system is
shown on the left and the perfect lattice is shown on the right.
The shaded area in the left represents the removed sector. The
configuration for C and O is the same as that for C' and O’ in
(b) and that for C"" and O" in (c) if the sector is rotated by 7/3
clockwise or counterclockwise, respectively. The paths in one
system have the same local geometry as those in another system.



