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Identities and approximations are developed for the first and second moments of the spectral density
of center-of-mass oscillations of a commensurate quantum monolayer solid. This corresponds to the
one-phonon approximation for inelastic scattering at a reciprocal lattice vector. The results are applied
with parameters for monolayers of helium/graphite and hydrogen/graphite. Estimates of the zone-
center gap with averages in an optimized Jastrow trial function are internally consistent to better than
10%. There is a marginal level of agreement between the zone-center gap for helium/graphite observed
with inelastic neutron scattering and the gap calculated with the Fourier component of the
helium/graphite potential derived from atom-surface scattering. The application for hydrogen/graphite
amounts to a reanalysis of previous calculations and is in good agreement with them.

I. INTRODUCTION

There is only a small body' of empirical data for the
leading Fourier component, or corrugation amplitude, in
the adatom-substrate potential energy; thus, an instance
with two fairly direct measures of the amplitude merits
further examination of the consistency of the results. For
the helium/graphite system the corrugation amplitude at
the potential minimum was derived from band-
structure splittings of selective adsorption resonances in
atom-surface scattering. Recently, the frequency gap '

at the Brillouin zone center of the commensurate
helium/graphite monolayer was observed with inelastic
neutron scattering for a wave-vector transfer equal to a
reciprocal lattice vector. An improved method of relat-
ing the zone-center gap to the corrugation amplitude is
informative for the energy topography of an adsorbing
surface and for analysis on the relative stability of com-
mensurate and incommensurate monolayer solids.

Here, identities and approximations are developed for
the frequency moments and spectral density ' at the Bril-
louin zone center of a quantum monolayer solid. At the
zone center of a lattice with one atom per unit cell, the
adatom motions are in phase and the collective coordi-
nate is the center-of-mass displacement vector, enabling a
more complete account of the response than at a general
point in the Brillouin zone. The spectral density of
center-of-mass oscillations is also the response function
corresponding to the one-phonon approximation for in-
elastic scattering at a reciprocal lattice vector.

The response is estimated three ways: (i) with an ap-
proximation introduced by Feynman' for the spectrum
of density oscillations in three-dimensional superfiuid
He, (ii) with an approximation" for the restoring force

constant similar to the Born-Oppenheimer approxima-
tion, and (iii) from the first and second moments of the
spectral density. ' The estimates are formulated first as
averages in the ground state of the quantum solid, which
may be accessible with developments of nominally exact
solutions. ' Then approximate relations among these
quantities are derived by evaluating the averages with op-

timized Jastrow variational trial functions for a planar
monolayer. Numerical illustrations are given for models
used ' ' for helium/graphite and hydrogen/graphite.

The organization of this paper is as follows: Section II
contains the derivation of identities and approximations
for the frequency moments and the excitation energy at
the Brillouin zone center. Section III contains results of
applications to monolayer quantum solids and a discus-
sion of the consistency of helium-graphite scattering data
and inelastic neutron-scattering data. Section IV con-
tains concluding remarks.

II. FORMULATION

Let the average lattice positions be specified by R and
the actual position by r, where the index j enumerates
the atom (1 to N) and the index a denotes the Cartesian
component. The center-of-mass vector g is defined in
terms of displacements from the average lattice positions
by

N

ri =(1/N) g (r~ RJ ) . —
j=1

(2.1)

The zeroth, first, and second moments of the spectral
function S are given by'

Components cz=x and a =y refer to displacements in the
plane of the monolayer, and the y axis is taken to be
parallel to a primitive reciprocal lattice vector of the
commensurate monolayer.

The spectral function of center-of-mass motions is
defined ' by an average in the ground state

S (co)=(l/2m) I (ri (t)r] (0))e' 'dt, (2.2)

where the time dependence is governed by a Hamiltonian
with pair-potential interactions among the adatoms and a
spatially periodic external potential from the substrate

H =g (p /2m )+ g P( ) r r, ~ ) +g v,„,(r ) . (2.3)—
J i(j J

A. Identities
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(2.4)

(2.5}

Sa cO CO= 'ga 0

iiico =f iiicoS (co)dco f S (co)dco=fi /(2mN(rl~)),

B. Relations based on the Jastrow trial function

The Jastrow function VJ$ is a variational approxima-
tion to the ground-state wave function %'0, as used here
it is

)Ilis =exp( —S/2) (2.13a)

()m, =((( i ))(m)(u), X()(,u,„,(rr)} (r), ) .
1

The virial theorem is derived' by evaluating the
ground-state expectation value of the commutator of the
center-of-mass virial operator and the Hamiltonian

(2.7)

where P, denotes the a component of the total (center-
of-mass) momentum. Thus, the center-of-mass kinetic
energy and the virial of the total force acting on the
center of mass are related by

(p„lmN) =(r), X (),u,u(rr)) .
J

(2.8)

An approximate excited state wave function, orthogo-
nal to the exact ground state %0, is g %0. As in a similar
construction by Feynman, ' it leads to an upper bound
for the excitation energy

E,„,&fi /(2mN(i)~) )=fico

If the center-of-mass motion is a harmonic oscillation,
the inequality becomes an equality and the excitation en-
ergy is equal to the first frequency moment of S .

The uncertainty principle gives an inequality

(il') &'/(4(P,' ) ) . (2.10)

When combined with Eq. (2.6) for the second moment
and the virial theorem, Eq. (2.8), it leads to the result

co ~(co ) (2.11}

Of course, this is also a direct consequence of the
definitions of the moments.

The Born-Oppenheimer approximation to the zone-
center frequency is derived from the force constant for la-
teral displacements of the adlayer and is"

(('muuu(, =((('lm))r)(XB,',u„,(r,. )) . (2.12)
J

A similar construction has been used' for a classical
molecular monolayer with a potential energy which was
optimized with respect to eight of the ten molecular coor-
dinates in the unit cell. There, within the context of the
quasiharmonic approximation, it can be shown that the
lowest frequency of the Born-Oppenheimer approxima-
tion is an upper bound to the lowest frequency (the
"gap") of the fu11 lattice dynamics theory.

The ground-state expectation values are accessible in
nominally exact solutions, such as with the Green's-
function Monte Carlo Method. ' Explicit reductions of
the expectation values occur when approximate forms for
the ground-state function are used; then Eqs. (2.8) and
(2.11) give measures of the internal consistency of the ap-
proximation.

with

S=g(b/r, )+ A"g(r —RJ) (2.13b)

where b and A are parameters selected to minimize the
trial ground-state energy. The center of mass is localized
for +J$, a feature which is a nuisance in the nuclear
many-body problem, ' but which is a physical aspect of
the commensurate monolayer. In this section, the vec-
tors r and R are in a two-dimensional (x-y) plane and
there is an implicit factorization' of the average over
motions perpendicular to the plane. This trial function
incorporates the small-mass effects of a quantum solid,
but it does not include exchange terms.

Identities for expectation values (. . . )z with respect
to %Js are derived from derivatives of the generating
function

F(g)=( p( P', /&-)F p( gP, /A))

using the relation

exp(i', /R)exp[ S(r&, . . . —, r„)l2]

(2.14)

=exp[ S(r, +gn, . .—. , rN+ g'n, ) /2], (2.15)

where n denotes a unit vector along the a-Cartesian axis
and g is a parameter. The fact that the center-of-mass
displacement has a Gaussian distribution is proved by ex-
amining the moments obtained by evaluating the deriva-
tive dF(g)/d g at /=0 for F=rI, with k = 1,2, 3, . . . .

Components of the mean-square displacement thus are
related to the parameter A in the trial function by

(i) ) =1/(2NA) .

Similarly, the choice

(2.16)

(2.17)

leads to a relation between the virial and the force con-
stant in the Born-Oppenheimer approximation for the
frequency

(2.18}

2 I = 2
~BO]Ja ~Ja ' (2.19)

Equation (2.9) is a bound for the excitation energy rela-
tive to the (unknown) exact ground-state energy. A lead-
ing approximation, used in Sec. III is to evaluate an ener-
gy fico (J)=A' A /m for the optimized Jastrow trial func-
tion by using Eq. (2.16) in Eq. (2.5). Another estimate for

Thus, the Born-Oppenheimer frequency is identical to the
root-mean-square frequency, for the Jastrow trial func-
tion
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the excitation energy is the difference of the expectation
value of the Hamiltonian H in the optimized states VJs
and g O'Js.

E,„,(JS)=fico (J)+be'(JS)

with

(2.20)

(2.22)

An explicit form of Eq. (2.22) for v,„, which is simply
periodic is given in Eq. (3.3).

Direct evaluation yields the mean-square total momen-
tum in terms of the mean-square displacement

(P, ) =(NAiri) (i) ) (2.23)

Combining Eqs. (2.16), (2.22), and (2.23) with Eq. (2.6)
yields

[R coj (Acoj ) ]/—(ficoJ ) =be(JS)/((P, )J/Nm) .

(2.24)

Thus, the dispersion of the Jastrow approximation to the
spectral function S (co) is proportional to the remainder
b,e(JS) in the generalized virial theorem, Eq. (2.22). As
noted in Sec. III, the remainder is sometimes negative,
and then Eq. (2.11) is violated for the moments evaluated
with the Jastrow trial function. That is, if the expecta-
tion value in Eq. (2.2} is taken in a Jastrow state, the re-
sulting spectral function may become negative.

III. APPLICATIONS

The formalism of Sec. II is applied to the calculation of
the Brillouin zone-center frequency gap of the commens-
urate (+3Xv'3) R30' lattice of quantum monolayer
solids adsorbed on the basal plane surface of graphite.
For H2 and D2 the application amounts to a reanalysis of
previous calculations' ' with the Silvera-Goldman inter-
molecular potential. For He and He, recent work with
the Aziz-McLachlan effective interaction is extended and
the consistency of two measures ' of the corrugation am-
plitude is discussed.

The monolayer motions are assumed' to be in a plane
determined by the laterally averaged adatom/graphite
potential. The external potential of Eq. (2.3),

v,„,(r& ) =g Vgexp(ig r, ), (3.1)

has a sum over the (six) shortest reciprocal lattice vectors
of the graphite surface. The amplitude V is the result of
an average over perpendicular (out-of-plane) motions of
the adatom; this separation of out-of-plane motions is
also present in Novaco's treatment' of the dynamics of

Ae( JS )= [ ( i)~ )~
—(8 )I ( rl )I ]/( il )~ . (2.21)

A further relation involving Ae(JS) arises in the gen-
eralization' of the virial theorem, Eqs. (2.7) and (2.8), to
the Jastrow trial states. The form valid for variational
calculations with optimized length scales does not apply
but calculus with the virial operator for the center of
mass leads to

monolayers of molecular hydrogen. The averaging over
perpendicular motions is different for a single atom under
the conditions of the selective adsorption resonances and
for an adatom in a commensurate monolayer. In calcula-
tions for adsorbed molecular hydrogen that effect leads'
to a significant increase in the magnitude of the effective
amplitude for the commensurate lattice.

The results for H2 and D2 in Sec. IIIB are for the
choice' V = —6.4 K, which is based on an isotropic
atom-atom model for the hydrogen/graphite interaction.
Novaco' has a similar interaction model, but with com-
mensurate lattice effective amplitudes of —7.7 and —8. 1

K for H2 and D2, respectively. For helium, the value
V = —3.25 K has been used as the best estimate, based
on helium-graphite scattering data. For He/graphite,
the enhancement in the commensurate lattice is estimat-
ed to be 5 —10%, using matrix elements and energy levels
from the scattering data for the adatom/graphite poten-
tial. The tests in Sec. III A explore trends for values in
the range —1.5 to —3.8 K.

A. Tests

A consequence of Eqs. (2.16) and (2.18) is that the first
and second frequency moments for the Jastrow function
can be evaluated with information collected ' in varia-
tional calculations of the ground-state energy, namely,
the optimal value of the parameter A and the expectation
value of v„,. These results of operator calculus on the
generating function, Eq. (2.14), are tested by Monte Carlo
evaluations of the averages for both x and y components
of the center-of-mass displacement. The equalities in

Eqs. (2.16) and (2.18) are verified to within 3% from
Monte Carlo averages over 2X10 configurations of a
periodically repeated cell of 100 atoms for the helium
case. Moments of S„(co)and S (co) on the hexagonal lat-
tice should be equal for the Jastrow function, Eq. (2.1-3);

the equality is verified to 5% in the computations.
The magnitude and sign of the remainder in the gen-

eralized virial theorem, Eq. (2.22), are examined by
Monte Carlo evaluation of the terms in the ratio

Va Qa ~jaUext j ca J ™(3.2)

he(JS)= —(AA /2m) (g /4NA) g —v,„,(r&) (3.3)

which is derived from Eq. (2.22) by using Eqs. (2.18}and

for the helium/graphite model. The ratio increases from
0.9 to 1.2 for He as the parameters A and b are opti-
mized for Vg decreasing from —1.5 to —3.8 K. The cor-
responding variation of TV for He is from 0.7 to 1.1.
The Auctuations in TV for averages over 2 X 10 to
4X10 Monte Carlo configurations of 100 particles are
on the scale of 0.1.

Attempts to calculate b,E(JS) directly from the covari-
ance, Eq. (2.21), were unsuccessful, due to large fluctua-
tions in the averages and sensitivity to the range of
configurations selected in a simulation of up to 4X10
Monte Carlo configurations. Much more stable answers
were obtained from the expression
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TABLE II. Zone-center gap for helium/graphite. [Zone-
center gap, in K, for the commensurate v 3 monolayer of
'He/graphite and He/graphite. The experimental values, from
inelastic neutron scattering (Ref. 6) are 11 K for both isotopes.
The energy estimates are defined in Sec. III B of the text.]

(2.23) and (3.1) for the external potential.
The interpolation and smoothing procedures for the

Monte Carlo expectation values are also a source of un-

certainty. In the helium case, a grid of approximately
100 (A, b) pairs is available; the optimal value of A ap-
pears to be determined to within 2—4%, depending on
the isotope and the value of V .

fico(J) E,„,(JS) fico, , t)e(JS)/((Pi )J/Nm)Model'

He Aziz 16.2
13.1
10.0
7.9

16.4
13.3
10.4
16.0
13.1
10.4
8.5

16.4
13.4
10.7

16.2
13.1
10.0
7.9

16.4
13.3
10.4
16.0
13.1
10.5
8.6

16.4
13.4
10.7

—3.25
—2.6
—2.0
—1.5
—3.25
—2.6
—2.0
—3.25
—2.6
—2.0
—1.5
—3.25
—2.6
—2.0

15.2
12.4
9.7
8.4

15.5
12.9
10.1
15.4
13.1
11.4
10.2
16.0
13.5
11.7

+0.13
0.12
0.06

—0.11
+0.12

0.07
0.05
0.08
0.004

—0.16
—0.32
+0.08
—0.02
—0.17

B. Zone-center frequency gap

Results for the zone-center frequency gap are shown in
Tables I and II for models of hydrogen/graphite and
helium/graphite, respectively. The energy i)r'co( J) is
A' A/m. The root-mean-square energy, from Eqs. (2.19}
and (3.1), is

Aziz+McL

'He Aziz

fico, = )/ (fi co~ }

( Ag /2—Nm) g v,„, (3.4) Aziz+ McL

The energy E,„,(JS} is the Jastrow excitation energy, Eq.
(2.20}, and the scaled energy he(JS) gives the departure
from unity of the virial test ratio Eq. (3.2).

The results in Table I are based on previous Monte
Carlo calculations'" for monolayer solids of the molecu-
lar hydrogen isotopes. The entry for co~s had been re-
ported" as the Born-Oppenheimer approximation to the
zone-center frequency, Eq. (2.19). The results illustrate
the discussion of Eq. (2.24): the ratio TV, Eq. (3.2), may
be either larger or smaller than 1 and Eq. (2.11) may be
violated for the Jastrow expectation values. There is a re-
rnarkable internal consistency of the estimates for a given
case. In particular, the values E,„, (JS) are scarcely dis-

tinguishable from the rms energy values; this is a surprise
in the light of conventional caution about forming an ex-
citation energy from the energy difference between an ap-
proxirnate excited state and approximate ground state.

The inelastic neutron-scattering results for the zone-
center gap are 47 K for H2/graphite and 40 K for
Dz/graphite. Specific-heat data' for commensurate
H2/graphite are fit to an Einstein oscillator excitation of
ca. 55 K. The values in Table I are rather far from these.
Novaco's initial values' with Vg

= —6 K are close to the

'Corrugation amplitude Vg of Eq. (3.1) and effective pair poten-
tial among the adatoms as in Ref. 7. The Aziz model is a good
approximation to the interaction of a pair of isolated helium

atoms; the Aziz+McL (McLachlan) model includes substrate-
mediated van der Waals forces between adsorbed helium atoms.

TABLE I. Zone-center gap for hydrogen/graphite. [The
zone-center gap, in K, for the commensurate &3 monolayer of
hydrogen/graphite and of deuterium/graphite. The experimen-
tal values from inelastic neutron scattering (Ref. 5) are 47 and
40 K, respectively. The energy estimates are defined in Sec.
III B of the text. ]

b,e(JS)/((P, )g/Nm)Case' Am( J) E,„,(JS)

H, (a)
H2(b)
D,(a)
D (b)

39.0
39.8
31.4
31.7

39.2
40.8
28.0
29.0

39.0
39.8
31.2
31.6

—0.007
—0.049
+0.24
+0.19

'The interaction models are based on the Silvera-Goldman in-
termolecular potential, as in Ref. 14, and cases (a) and (b) have
values 12.14 and 9.94 a.u. , respectively, for the coeKcient C6.
The corrugation amplitude is Vg

= —6.4 K.

values in Table I, but his final values, with an effective
V, are 47 and 37 K, respectively. The agreement among
the values E,„,(JS), co, „and the self-consistent phonon
result' indicates that the zone-center frequency gap for
the commensurate hydrogen monolayers may be evalu-
ated to 5% for a given model. However, the input value
for the corrugation amplitude remains uncertain' be-
cause of the lack of relevant molecule-graphite scatter-
ing data.

Table II contains results for the zone-center gap of
commensurate monolayers of helium/graphite for two in-
teraction models and for a range of values for the corru-
gation amplitude. The Aziz model is used in many calcu-
lations of 3D gaseous and condensed helium. The second
model incorporates the McLachlan substrate-mediated
dispersion energy, as in a recent calculation of the rela-
tive stability of the two-dimensional (2D) liquid and
commensurate monolayer solid phases of He/graphite.
The values for co, , for the Aziz model and V = —3.25
K had been reported" as the results of a Born-
Oppenheimer approximation. As in Table I, the entries
for E,„,(JS) and co, , are in good agreement; most of the
entries for co(J) deviate from these by less than 10%%uo.

There are experimental data for both the leading
Fourier amplitude (corrugation amplitude) in the ground
state of the helium/graphite potential, from atom-surface
scattering resonances, ' and for the zone-center gap,
from inelastic neutron scattering. For He/graphite
Boato et al. find V = —0.28+0.01 meV ( —3.25+0. 1

K), while Derry et al. find V = —0.25+0.03 rneV
( —2.9+0.3 K}. Lauter, Godfrin, and Leiderer report
the value of the zone-center gap for both commensurate
He/graphite and He/graphite to be 11 K; an earlier
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value for He/graphite, without a correction for instru-
mental resolution, was 13 K. Greywall analyzes his
specific-heat data for commensurate He/graphite as in-
cluding an Einstein oscillator excitation of 10.5 K.

The calculations for the zone-center gap of
helium/graphite appear to be reliable to about 10%. If
so, the effective value for the corrugation amplitude
necessary to fit the gap derived from the neutron-
scattering data is —2 to —2.6 K, 20 —40% below the
value based on the Boato et al. experiment; the
enhancement' of the amplitude in the commensurate lat-
tice is estimated to be 5 —10%. The deviation from the
value reported by Derry et al. is somewhat smaller.
Thus, there is only a marginal consistency between the
neutron data for the zone-center gap and the values cal-
culated from the atom-scattering corrugation ampli-
tude. The parameters of the Jastrow trial function are
optimized for the total energy, so it is possible that the
center-of-mass motion is given badly in the estimates in
Table II. An evaluation of the frequency moments of
Sec. IIA using a nominally exact ground state' could
resolve this question.

Thus, calculations with parameters considered plausi-
ble in other contexts lead to zone-center gap significantly
larger than the neutron-scattering value for
helium/graphite. It is difficult at this stage to identify de-
fects in the experiments. If the corrugation amplitude for
He/graphite is indeed in the range —2 to —2.6 K, a ten-

tative conclusion ' that the ground state of the mono-
layer is a 2D liquid is strengthened. However, the agree-
ment between calculated and measured band-structure
effects in the low coverage specific heat of
helium/graphite is somewhat degraded then.

ed gap was significantly smaller than the neutron-
scattering value until an additional mechanism for corru-
gation was identified. ' For hydrogen/graphite, the cal-
culated values' are close to the data for a model which
does not include dielectric anisotropy of the graphite.
For helium/graphite the calculated values are
significantly larger than the data, for a corrugation am-
plitude believed to have a good basis from atomic-
scattering data. This trend does not appear to follow
from difficulty in calculating the zone-center gap for a
quantum solid: the results in Tables I and II indicate
that the gap can be evaluated to within 10% for a given
model. There remains a possibility that the discrepancy
is indeed a problem of the quantum solid arising from the
use of the Jastrow trial function to evaluate the frequency
moments. That may be tested by using the formalism of
Sec. II A in a nominally exact solution' for the ground
state of the quantum solid; the formalism may also be
generalized to finite-temperature averages.

There is an artifact of 4Js which so far has not given
difficulty. The trial function incorporates a broken sym-
metry, with a localized center of mass. ' The parameter
A is nonzero even in calculations for an uncorrugated
surface ( Vg =0), although translational invariance for the
center of mass then implies a vanishing zone-center gap.
That is, the approximation ro(J) for the zone-center gap
must fail for sufficiently small corrugation. There are in-

dications of this in Table II for the smaller magnitudes of
Vg, where the entries violate Eq. (2.11) and the calculated
mean-square displacement of the center of mass ap-
parently is nonphysically small. The root-mean-square
energy co, , calculated with +Js maintains a qualitatively
correct trend for small corrugation.
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