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An anisotropic body-centered solid-on-solid (BCSOS) model Hamiltonian of the fcc(110) surface is

reexamined and studied for the description of phase transitions on nonreconstructed noble- and near-

noble-metal surfaces. The limit case corresponding to the isotropic BCSOS model is examined and some

results are obtained for the staggered order-parameter susceptibility. With parameters roughly ap-

propriate for a nonreconstructed surface such as Ag(110), a preroughening-type phase transition associ-

ated with the in-plane degrees of freedom is detected. It takes place somewhat below the roughening

transition temperature and presents critical exponents which difFer significantly from the two-

dimensional Ising values. The analysis of the model is carried out through standard Monte Carlo simu-

lation techniques. Scattering intensities are also evaluated, both to give a deeper insight into the disor-

dered flat phase lying between the two transitions and to suggest a possible experimental verification of
the proposed phase structure for the nonreconstructed two-sublattice surfaces.

I. INTRODUCl lON

The topmost layer of the (110)surface of fcc crystal has
an anisotropic structure which can be described in terms
of atomic rows a distance a apart in the [001]direction (a
being the fcc lattice parameter) and with the atoms
separated by the close-packing distance a/~2 in the
[110] direction (Fig. 1}. This structure allows for the
partitioning of the surface atoms into two separate, albeit
equivalent, species ("black" B and "white" W), each asso-
ciated with a distinct sublattice in the (110)plane, belong-
ing to two distinct layers a distance a, =a /2~2 apart (in
the absence of relaxation). The two-sublattice structure
introduces new possibilities for the thermal disordering of
the atomic arrangement within the surface plane as well
as outside this plane.

The fcc structure is, in particular, characteristic of the
noble (Cu, Ag, and Au) and near-noble (Ni, Rh, Pd, Ir,
and Pt} metals. The surface of the heavier fcc metals
(e.g., Au and Pt) tends to increase its atomic density by
means of the formation of (111) microfacets and the re-
sulting structure is a more closely packed surface with
lower surface energy. The lowest-order possibility of
such microfaceting is the 2X1 missing-row reconstruc-
tion, where every second row is removed and the unit cell
is doubled in the [001] direction. ' On the other hand,
most other fcc(110) metal surfaces (Ag, Cu, Ni, etc.) do

not reconstruct, retaining at low temperature the original
1X1 structural symmetry. This work deals with the
equilibrium structure of these nonreconstructed surfaces
at temperatures T &0.

As temperature is increased, a number of disordering
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FIG. 1. The fcc lattice, cut so as to show the (110) surface,
with the surface reference system x-y-z, the atomic spacings,
and the two sublattices (black and white) in which the surface
sites can be partitioned.
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phenomena occur among the surface atoms. On the one
hand, minor relaxation efFects take place such as small la-
teral atomic displacements and inward relaxation of the
top layers. More significantly, disordering collective
phase changes occur at specific temperatures, involving
either in-plane' or off-plane order degrees of freedom,
or both. Recently, there has been considerable interest in
the structural phase transitions occurring on these
fcc(110) metal surfaces, both from the experimental
and the theoretical' points of view. Much effort has
been devoted to understanding the case of 2 X 1 recon-
structing surfaces [Au(110) and Pt(110)], while less em-
phasis has so far been given to nonreconstructed ones
[e.g., Ag(110), Cu(110), Ni(110), and, in another category,
Pb(110)]. For reconstructing surfaces, an Ising-like in-

plane disordering transition (deconstruction) has been
detected ' ' and the occurrence of roughening at a
slightly higher temperature has also been demonstrat-
d 10, 11

Roughening is characterized by a proliferation of
steps due to the vanishing of the step free energy. Rom-
melse and den Nijs' have introduced the general concept
of preroughening for low Miller index surfaces, where a
disordered fiat (DOF) phase, also characterized by a finite
density of steps, occurs before out-of-plane roughening.
In this paper we extend some of these ideas to the case of
the fcc(110) surface and discuss the results of the Monte
Carlo simulation of a model appropriate for a two-
sublattice nonreconstructed structure such as Ag(110).
This model was first proposed by our group for the study
of reconstructed Au(110).

We find that our model allows for two separate transi-
tions to occur also for the nonreconstructed 1X1 sur-
faces. Only in a limit case, corresponding to the well-
known body-centered solid-on-solid (BCSOS) model, we
find that the two transitions coincide. The lower-
temperature transition, associated with the in-plane de-
grees of freedom, can always be ascribed to the recovery
of full sublattice symmetry in the occupancy by atoms of
the two species (8 and W) of the topmost surface layer.
Within our approach, we believe that this transition man-
ifests itself in terms of the two-dimensional Ising decon-
struction in the case of the 2X 1 reconstructed surfaces,
while it takes the form of variable exponents preroughen-
ing for the nonreconstructed 1 X 1 case. In either case the
higher-temperature transition involves the off-plane de-
grees of freedom (local interfacial heights) and takes the
form of a standard Kosterlitz-Thouless-type roughening,
irrespective of the two-sublattice underlying surface
structure.

It is notable that a11 these transitions can be described
by one and the same model, which therefore accounts for
the complete interplay between in-plane ordering and
roughening in fcc(110) surfaces. Indeed, the very same
monoatomic surface steps that account for the roughen-
ing of these surfaces are also responsible, when bound by
energy or entropy constraints, for the destruction of the
in-plane ordering. A parallel description, due to den
Nijs, ' of this interplay already exists in the literature,
where a related model is proposed for the reconstructing
fcc(110) surfaces. It is therefore worth presenting in this

paper the details of the calculations carried out on our
model for the nonreconstructed fcc(110) surfaces. Beside
the information on phase transitions, our work also
affords some knowledge on the nature of the intermediate
DOF phase through the evaluation of scattering correla-
tion functions. We stress that the model's parameters
chosen to represent the case of Ag(110) have been taken
so as to agree roughly with first-principle many-body cal-
culations for these systems. Therefore our study also
allows for the important comparison with experimental
data for the conclusions drawn from our analysis.

The remainder of the paper is organized as follows. In
Sec. II we repropose our model and discuss the low-
temperature surface structures it can describe. General
ground-state considerations are given and the relevant
physical quantities suitable for simulation and experimen-
tal analysis are introduced. Particular attention is paid to
the order parameters accounting for the phase transitions
to be described and to the presentation of the scattering
functions. In Sec. III a limit case of our Hamiltonian,
corresponding to the BCSOS model, is considered to test
our Monte Carlo simulation procedure, both in reproduc-
ing exact known properties and in predicting the
behavior of relevant physical quantities such as the stag-
gered, or sublattice, order parameter and its susceptibili-
ty. In Sec. IV the simulation is carried out for the
Ag(110) system, with the prediction of a sublattice disor-
dering (or preroughening) phase transition and with its
characterization in terms of critical exponents. Finally,
Sec. V contains our conclusions. Preliminary accounts
for some of the results presented below have been
presented elsewhere.

II. THE MODEL
AND THE RELEVANT PHYSICAL QUANTITIES

Collective surface disordering phenomena are often
studied within solid-on-solid (SOS) models, particularly
inasmuch as the off-plane degrees of freedom and
roughening are concerned. Relaxation effects do take
place in the first few atomic layers of the surface; howev-
er, it is generally believed that a description in terms of
atomic columns still holds good for the study of the
roughening and other lower-temperature transitions.
Our model for the fcc(110) metal surfaces makes use of
an anisotropic SOS Hamiltonian defined on a lattice

0

0

FIG. 2. A schematic representation of the B and W sublat-
tices on which our SOS model is defined. Also indicated are the
heights corresponding to the nonreconstructed ground state.
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K2 g—[h(r, ) —h(r, +x)]

+ —,'K3 g [h(r, ) —h(r;+ —', x+ —,'y)]

+g[h(r, ) —h(r;+ —,'x —
—,'y)] (2.1)

Here x and y are the single rectangular sublattice unit
vectors in the [001] and [110]directions. J measures the
atomic cohesion energy and K2J and K3J are second-
neighbor and third-neighbor couplings simulating the
effect of long-ranged interaction potentials. Each of the
terms contained in the Hamiltonian assigns an energy
cost (or gain) to neighboring pairs of sites that are found
at height differences greater than 0 (same sublattice) or 1

(different sublattices). The first term thus encourages the
formation of long atomic rows in the y direction. The E2
term serves the same purpose in the x direction, if nega-
tive; when E2 )0, it encourages the surface profile to des-
cend or rise and attain a (111)facet configuration. In or-
der to recover a 2 X 1 reconstructed configuration the E3
term has to be included in the Hamiltonian, with K3 &0.
This last term would seem not so important for a non-
reconstructed ground state. However, the tendency to
reconstruct is dormant in all these surfaces and an energy
term which mimics the long-range many-body interac-
tions of the real surfaces has nonetheless to be used in or-
der to reproduce the correct physics. It is now easy to
see, by evaluating the energies of specific surface
configurations (see below), that the relevant interaction
parameter at T=O is a=K2/K3, in terms of which the
ground-state phase diagram is as follows:

O

O
K3 /2

O

K, O 0

made up of two (B and W) interpenetrating rectangular
sublattices on which sites the column height integer vari-
ables h, are assigned for each configuration. We choose
to assign even integers to the B sites and odd ones to the
$V sites. Neighboring columns height jumps are restrict-
ed to be +1 in our (restricted SOS) model. Figure 2
shows the 8 and 8'sublattices, with explicit indication of
the heights corresponding to the 1X1 ground state.
With reference to Fig. 3, the Hamiltonian reads

&/J =g [h(r, ) —h(r, +y)]2

a. & 0 [1X 1 nonreconstructed (110)],
0 &z &4 [2X 1 reconstructed (110)],
v & 4 [(111) faceting] .

(2.2)

E„„i/JJV=—4 K2+ K3 (n =2,3, . . . , Oo),
7l Pl

Eioo/JA'=4+ K3, (2.3)

apart from a constant contribution Eo, and where we
have also displayed the expression for the energy of the
(100) face.

Fitting these expressions to the results of Ref. 27 has
already allowed for the simulation of the Au(110) system.
For Ag, which is taken in this work as the representative
element of the group of nonreconstructed noble and
near-noble metals (ignoring, however, specific complica-
tions that Ag itself may present ), we extract the model
parameters from the data obtained by Chen and Voter
through the embedded atom method. Actually, the avail-
able embedded-atom method results yield values for the
energies of several surface configurations. The set of data
is therefore overcomplete; however, by a reasonable inter-
polation of these data we extract the following parame-
ters:

Thus, for ~ & 4 the surface facets into a macroscopic (111)
surface: this effect, however, is not observed in any
known metal. We remark that this model is equivalent to
one of the models (model I) proposed by Levi and
Touzani.

It is important also to notice that in the limit z~ —00,
i.e., E3~0 with E2 &0, the above Hamiltonian becomes
the same as that appropriate for the anisotropic version
of the BCSOS model. ' Since this model affords some
rigorous exact results for its thermodynamics, it will be
used below as a limit case in order to test our simulation
procedure, as well as to understand the statistical proper-
ties of the full model.

In order to fix the parameters J, E2, and E3 so as to
describe a specific fcc(110) metal surface, it is appropriate
to compare the expressions we obtain from Hamiltonian
(2.1) for the energies of certain surface configurations to
the values available from either embedded-atom or
glue-model calculations. Experimental values of the
surface energies cannot be used for this purpose, as they
refer either to average values over surfaces of polycrystal-
line samples or, in most favorable cases, to room-
temperature surface free energies, where entropy effects
cannot be ignored. The general expressions for the T=O
energies of the (110) surface and for its n X 1 reconstruc-
tions are, from Eq. (2.1),

Ei xi /JÃ=K3

O

O

K3 /2
O

O

O

O

O

O

Eo —-350 meV, J=34 meV=400 K,
K2 ———0. 1, K3 ——0.025,

(2.4)

FIG. 3. The structure of the couplings bet@seen sites in our
model. The parameters are expressed in units ofJ.

with which x=K2/K3 is negative, ~= —4.0, in agree-
ment with the nonreconstructed nature of Ag(110).

Many continuous phase transitions are characterized
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by the vanishing of a suitable order parameter. We con-
sider in this work the order parameters characterizing
preroughening and sublattice disordering. According to
Rommelse and den Nijs, ' within a restricted solid-on-
solid model of the sc(100) face the column parity variable
o;=exp[inh(r;)]=+I defines a local quantity which
changes sign every time an up or down step occurs in a
given configuration. This variable averages out to zero
when a finite density of steps develops on the surface,
even though the surface remains Hat; for a Hat surface in
the absence of steps, however, (cr, ) =pAO denotes a
phase with a broken symmetry in the parity. An order
parameter for the preroughening transition can still be
conveniently defined for an fcc(110) surface, provided the
following modifications are introduced. The local step-
sensitive variable, e.g., for a site r; belonging to the B
sublattice, will be defined as

o; =
—,
' g [h(r;) —h(r, +5)], (2.5)

where the sum is over the four neighboring 8' sublattice
sites. This variable takes five possible values: +1, + —,',
0, —

—,', and —1, although below roughening the predom-
inant values will be just +1 and —1 if cr; is coarsened
over a few lattice spacings. At T=0 the average

the analogous definition holds for Pw with a sum running
over all odd heights. The above definition is general, but
particularly useful for the BCSOS model for which exact
expressions for p(h), the probability of finding a surface
atom at height h, and b(h), the probability of stepping
down from an atom at height h, can be derived (see Sec.
III). Alternatively, P~ can be viewed as the statistical
average of a local probability

Ptt =(pa (r;)),
p~ (r;)= —,

' 1+h(r;) —
—,
' g h(r, +5)

5

(2.8)

PB —PW
PB/w p —+p (2.9)

which clearly takes the value +1 (or —1) in the ground
state and 0 in the sublattice disordered phase. Since for
the BCSOS topology we also have PB +Pw= —,', we ob-
tain

taking the values —,', —,', 4, —,', and 0 for the five distinct
configurations of the four 8'neighbors of a B atom. The
analogous definition holds for pe+ (r; ) and leads to
p& (r;)+p~+(r;) =-,'. We then define the order parameter
as

p=(o;) (2.6)
PB)W —4PB 1 . (2.10)

PB
eVen h= —oo

p(h)b(h), (2.7)

where the sum extends over all even 8 site heights h and

equals +1 or, equivalently, —1, while as steps and ter-
races develop on the surface at T & 0 the absolute value
of p decreases until it vanishes at the preroughening tem-
perature Trtt where an up-down ordered (but randomly
spaced) structure of steps develops on the surface.
Indeed, e; changes sign every time a monoatomic step
occurs in any given direction. p is therefore the
preroughening order parameter appropriate for a two-
sublattice surface structure such as fcc(110).

Alternatively, we could introduce another crucial
physical quantity, which we may call the sublattice order
parameter, which takes the value +1 (or —1) at T=0
when either the B or W sublattice atoms describe the top
surface layer and the value 0 above a characteristic tem-
perature Ttt&tr when no sublattice type prevails in the top
layer. This second order parameter is thus sensitive to
the symmetry between the given sublattices in describing
the surface profile, a symmetry which gets spontaneously
broken at low temperatures in respect of the degeneracy
between the ground states. The symmetry is recovered
above TB&w, we point out that we expect TB&w& Tz
since sublattice disordering is still concerned with in-
plane degrees of freedom. A natural definition for the
sublattice order parameter of an fcc(110) [or bcc(100)]
two-sublattice surface is as follows. Define the compos-
ite probabilities of choosing, say, a 8 site atom and step-
ping up from it, PB+, and that of stepping down, PB, to
one of its four W nearest neighbors (P~++P~ =

—,
'

)

through

For a finite system, we average both over all
configurations and lattice sites to get

prrw= (X br —
Xhw)

B W

(2.11)

X X [h(r, ) —h(r, . +5(])
s iEB

PB/W ~ (2.12)

so that the sublattice disordering transition is just the
same as preroughening. A similar conclusion can be
reached for 2X1 reconstructed systems (see the Appen-
dix).

In order to investigate the thermodynamic properties
of our fcc(110) surface, a standard Monte Carlo tech-
nique is applied to a lattice of JV=2XN„XN sites, with

Nx Ny 12, 16, 20, 24, 28, and 32, and with period-
ic boundary conditions. We have evaluated the order pa-

where the limit A'~DO is understood for a proper
definition of the order parameter (A is the combined to-
tal number of B and W sites). Ttt&~ is therefore the sub-
lattice disordering temperature above which the B and 8'
site atoms populate the surface topmost positions with
equal probability. Although for the two-sublattice sur-
faces at hand the in-plane phase transition can be more
appropriately termed sublattice disordering, it is not
diScult to show that the order parameters p and PB&w
are one and the same quantity. Indeed, a global represen-
tation of p takes the form

=2 8
JV
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T[&+azw& & Byw& ] ~

B
(2.13)

which ought to diverge critically at TB&~. In order to
monitor the fluctuations in energy at a transition we
evaluate the specific heat

C,=,[& @2)—(C)2],
kB T2

(2.14)

where kB = 1, T is measured in units of J, and ( 8 ) is the
total average configurational energy.

Thermal roughening of the surface is detected through
the behavior of the local height fluctuations

(Sh2& = y & [h(., )-h]'), (2.15)

rameter PB&w defined through Eq. (2.11),where the abso-
lute value is taken before statistical averaging in order to
ensure a meaningful procedure. Fluctuations in the order
Parameter PB&w = (PB&w ) have been investigated
through the related susceptibility

where Q and q, are the surface parallel and perpendicular
momentum transfers, respectively, r, runs over the sur-
face atom positions, and a(r, ) is a shadowing factor, in-
cluded because atoms surrounding a lower (higher} one
make it less (more) visible to the probing atomic beam. A
reasonable approximation is ' ' a(r; )=2—

—,'n(R), where
n(R) is the number of near neighbors of the atom at site
R located at a level higher than the atom itself. It can be
demonstrated at this point that Eq. (2.19) with

q, = (2I + 1 }~/a, (known as antiphase condition,
I =0,+1,+2, . . .} yields the general relation between
scattering intensities, order parameters, and their fluctua-
tions:

" Biw@Q)+ XB/w(Q)
'lr 2 B T

a,

where gB&w(Q) is the Fourier component of the local
order-parameter susceptibility. The two contributions to
the scattering intensity appearing in the above expression
are known in the literature as the coherent and in-
coherent term, respectively.

where h =g, h (r, )/JV (not necessarily an integer number)
is the nominal surface height for a given configuration
and the sum is carried out over the lattice sites. This
quantity is directly related to the height-height correla-
tion function

III. A LIMIT CASE: THE BCSOS MODEL

The simplest surface model which is of the SOS type,
but does embody the presence of two sublattices, is van
Beijeren's well-known BCSOS model. It is mapped
onto the F version of the six-vertex model, for which
many properties are known exactly. It is therefore of in-
terest to enquire about sublattice disordering within the
BCSOS model, also to test our Monte Carlo simulation
technique against exact results. We shall see that the
study of this limit case of our model also leads to useful
insight on the properties of the rough phase of a surface.

In what follows we verify that PB&w (defined in Sec. II)
coincides with the Legendre conjugate to Baxter's stag-
gered field in the F model. * We find that I'B&~ van-
ishes continuously at TB, so that sublattice disordering
and roughening coincide in the BCSOS model. For other
relevant quantities, such as the sublattice susceptibility,
there is no exact expression and we therefore perform a
Monte Carlo finite-size scaling study, similar to what will
be needed for more realistic systems. The results are very
instructive, both for the BCSOS model, where an early
conjecture by Baxter is checked, and in establishing a vi-
able method for qualifying separately sublattice disorder-
ing and roughening phenomena.

For the F model we define, in the notation of Lieb and
WU

G(r)= & [h(r) —h(0)]'& (2.16)

thus saturating to a constant value for temperatures
below TB (smooth phase), while logarithmically diverging
with the system's linear size 1.=¹ for T) T„,the
roughening transition temperature. In order to locate
this temperature, we search for the characteristic
Kosterlitz-Thouless behavior of K( T) (Ref. 3)

1
~R

(2.18)K(T)= '

+C( T TB )', T—+ TB+, —

where C is a nonuniversal constant, while the value
K(TB ) and the power —,

' are universal features.
In order to relate the order parameter and its Auctua-

tions to measurable quantities, we also evaluate the total
atom scattering intensity from our surface structures
within the kinematic approximation. This is given by

a2+b2 c2
b, = —cosh', =

2ab
(3.1)

with a =b =exp( e/kB T) an—d c = 1 the Boltzmann
weights associated with the vertices of the F model.
Then the probabilities p(h ) and b(h) are known to bei(Q, q, ) =& wQ, q, ) &

2

( Ze 'e * 'a(e, ) ),
p(h) =const exp[ —A,(h —

—,
'

) ] (3.2)
(2.19)

and

(where r = ~r ~, and the angular brackets denote an ensem-
ble average in the SOS system), which gives a measure of
the delocalization of the interface due to Quctuations in
height between difFerent regions of the surface. Similarly
to G(r), the height fluctuations behave as

K( T)ln(g/a ), T(TB

K(T)l (L/ ), T T (2.17)
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Psygr A exp( 7T l4A, ) (3.8)
( —1)"exp[—An(n+2h —1)] for h )0

b(h)= 'n=o

1 b—( —h+1) for h ~0. (3.3)
one arrives at

exp(m. /2A, ), (3.9)

Ps&s, is then defined through Eq. (2.9) when Eqs. (3.2)
and (3.3) are used.

An alternative definition of order parameter was given
by Baxter for the Fmodel. ' In the notation of Baxter,
after partitioning the vertex lattice (dual of the site lat-
tice) in two sublattices A and 8, an energy —s (+s ) is as-
sociated to every horizontal (vertical) arrow pointing
from an A vertex to a 8 vertex and +s ( —s) if it points
from B to A. In correspondence with the B and 8' top
layer degeneracy of the site lattice, the vertex ground
state is twofold degenerate in the following way: in one
configuration all five vertices belong to the 3 sublattice
and all six vertices to the B sublattice; in the other
configuration the converse is true. In this way s has the
character of a staggered external field and is the
equivalent of the magnetic field of the Ising model as is
able to lift the degeneracy of the ground state. Thus the
order parameter which corresponds to this field is simply

P, = —(Bf/Bs)r, (3.4)

It can be shown at this point that the series expansions
for P~&~ and P, are identical, so that the two order pa-
rameters are taken to be one and the same Pz&~. The
special feature of this quantity is that it vanishes with all
its temperature derivatives at the roughening tempera-
ture Tz given by

where f is the free energy per vertex. With the introduc-
tion of the field, the F model becomes unsolvable, except
for T=2T+. However, the order parameter P, in zero
field is known exactly at all temperatures and is given
b 33

2

P, (s~0+)= g tanh(nA, )
n=1

2

1+2 g (
—1)"exp( 2n A,

—) . (3.5)
n=1

which implies a very strong divergence at Tz, since, near
T„A,-(T„—T)'".

We now examine the general temperature behavior of
both P~&~ and yz&~ by means of Monte Carlo simula-
tion of the BCSOS model. In a finite-size lattice, the
operative definition of Eqs. (2.11) and (2.13) is used. In
Figs. 4 and 5 we report our Monte Carlo results for the
temperature dependence of the specific heat Cz and its
first temperature derivative dCv/dT [evaluated using Eq.
(4.2) below] for different linear lattice sizes N = 10, 16, 20,
24, 28, and 32. We stress the total lack of size depen-
dence in both quantities, to be compared with the critical
behavior of dC&/dT for finite v (Sec. IV). In Fig. 6 the
height fluctuations are plotted as a function of tempera-
ture and size; the procedure we adopt for determining Tz
is the study of the interfacial width divergence at and
above roughening within finite-size scaling. The prefac-
tor E(T) is extracted from the fitting of (5h ) as a func-
tion of the logarithm of the size; in turn, the quantity
[I(.(T) 1/m. ] d—efines Ts as its linearly extrapolated
zero, as indicated by Eq. (2.17). As clearly shown by our
Monte Carlo data this procedure yields a reasonable esti-
mate of Ta =5.66+0. 11, to be compared with Eq. (3.6).

The order parameter Pz&~ for different lattice sizes is
reported in Fig. 7. The infinite system behavior (also re-
ported for convenience) is approached slowly, like

lnN at Tz, as finite-size scaling would suggest.
Indeed, from the asymptotic behavior of Ps&ig„Eq.(3.8),
and of g-exp(n. l2A, ) for the infinite system correlation
length, the saturation of g-Xa in the critical region for a
finite but large system implies A, -(ir /2)/in% and there-
fore P&y pr N lnN.

Having checked the method against exact results, the
main purpose of this section consists in reporting novel
data for the staggered field susceptibility gz&~, as shown
in Fig. 8. In the infinite system, gz&~ diverges at Tz
remaining infinite above. For a finite lattice, we find a
divergence with size typical of infinite-order transitions of

kz T& =4J/ln2=5. 771J, (3.6)
I I I I I I I I I I I I I I I I I

with J=e /4 the BCSOS coupling constant. This
behavior characterizes the sublattice order parameter of
the infinite-order roughening transition.

No information is available, however, on the behavior
of the staggered field susceptibility, X= —(d f /Bs ) z. , ex-
cept again at T=2Tz and s —+0+, where it diverges as
1ns. Nevertheless, Baxter has proposed that for s =0
and in the neighborhood of T~ this susceptibility should
obey the scaling ansatz (responsible for the ordinary scal-
ing relation a+ 2@+y =2):

4—

i& I &i& I it ilia i li»T
2 4 6 8 10 12

2
XBlw PBIwlfsing (3.7)

where f„„isthe singular part of the .free energy. If one
considers that f„„-exp(—m IA, ) and that.

FIG. 4. Specific heat (arbitrary units) vs temperature in the
BCSOS model for six system sizes. The arrow indicates the po-
sition of the roughening temperature.



49 ROUGHENING AND PREROUGHENING IN NONRECONSTRUCTED. . . 7631

.4

—.2

—4

I I I I I

o N=28
o N=24
~ N=20
* N=16

2 4

5

0

I I I I I I I I I I I I I I I

TR
N=32
N=28 ~

N=24 -+
g:.l

N=20 ~: ".:F.':.

QA

N= 16 ~ ' m„i':.,
N=10

I

I I I I I I I I I I I I I I I I

2 4 6 8 10

PTR—

I

L

12
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FIG. 8. Staggered field susceptibility (arbitrary units) in the
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FIG. 6. Finite-size behavior of the average square interfacial
width in the BCSOS model. In the inset, the behavior of
[E(T) 1/e ]~ is repo—rted in order to determine Tz from extra-

polation of the linear temperature dependence (see text).

the form

atw(N, T)-N ' ' (3.10)

co(T+)=1 . (3.11)

This follows from the asymptotic form for the correlation
length in a finite system near Tz. Our data are compati-
ble with ~=1; we can exploit our knowledge of the
infinite system Ta in order to get co(Ta )=0.98+0.06 as
obtained from fitting our data for the largest size systems.
Furthermore we observe that the peak in ps'+(N, T)
(which might be taken as a measure of Ta) shifts very
slowly towards T„,like (lnN) to be precise. This fol-
lows from A, -QT~, i,

—Ta —1/lnN. In turn, this whole
procedure may represent a way of determining the
roughening temperature in models of the BCSOS type
where the transition point is unknown. Indeed, yszn, is
the only sensible diverging quantity in an otherwise
smooth phase transition.

We now present for the BCSOS system an exact
analysis for the temperature behavior of the new ex-
ponent co( T) for T & TR. Considering the planar six ver-
tex lattice associated, in van Beijeren's mapping, with
the lattice of column heights, if the lattice sites are la-
beled by R = (n, m ), the arrow-arrow correlation function
G„„(R)is defined as the thermal average of the product
of two arrows separated by a distance R = ~R~. Its evalu-
ation in full is diScult; however, when the parameter 6,
Eq. (3.1), vanishes ("free fermion" condition, equivalent
to T= 2' in the F model), its exact evaluation is possi-
ble and yields for large R

with a temperature-dependent new exponent co. Exactly
at T„,Baxter's ansatz, Eq. (3.7), would imply (barring
logarithmic corrections)

0 —-----—-------.---—--
I I I I I I I I

0 2 4
I I I I I I I I I I

6 8 10 12

FIG. 7. Sublattice order parameter in the BCSOS model.
The solid line represents the infinite system exact behavior.

2 m —nG„„(R) = cosn(n —m )+
R R

(3.12)

In particular, for two arrows belonging to the same row
(i.e., m =0, notice, however, that the square arrow lattice
is rotated by m/4 with respect to the atomic lattice) Eq.
(3.12) simplifies to
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0 if n even

4
2 2

ifn odd,
m. n

(3.13)

1.5
I I I I I I I I I

where it is evident that this arrow-arrow correlation
function oscillates from odd to even sites and it decays
like R at T=2Tz. As noted by Youngblood, Axe, and

McCoy, the rapidly oscillating contributions decay
more slowly than R for T &2', becoming increasing-

ly important as Tz is approached from above. Ultimate-

ly, at T= Tz, where the transition to a state of antifer-
roelectric long-range order of arrows takes place, the
discreteness of the lattice becomes essential. For TA2T~
the asymptotic behavior of G„„(R)is known from a cal-
culation employing the quantum inverse scattering
method by Bogoliubov, Izergin, and Korepin, which
leads to the following generalization of Eq. (3.13):

ZTR

0

6 8 10 12

FIG. 9. The exponent co as a function of temperature. The
asterisks are extracted from a Stting of the staggered suscepti-

bility, the triangles are an expression of the formula

co( T) =2 nK ( T—) [with K( T) from Fig. 5], and the dashed line

is obtained from the exact behavior of K ( T) [Eq. (3.20)].

G (R ) = K( T) +( —1)„K'(T)
AA 2 g(y)n n

(3.14)

8( T) =HK ( T), (3.15)

thus confirming the predictions of Youngblood, Axe, and
McCoy if the behavior of K( T) from, e.g., Fig. 6, is con-
sidered. The staggered susceptibility y~zw is related to
the arrow-arrow correlation function through the usual
fluctuation-dissipation formula

X./-= (3.16)

Here a is the lattice spacing acting as a small distance
cutofF, Na is the system's linear size, and a factor (

—1)"is

included to give the right staggered character to y~&~.
G„,ss(n ) =( —1)"G„„(n).The equivalent formula valid

for the discrete lattice is

N
( 1)n N

azw- K(T) X —+K'(T) X
n=j n=1 " (3.17)

and while the first series converges to A ( T), the second
behaves as 8(T)/Ns' ' for N))1, with A and 8 con-
stants. Therefore we have

valid in the absence of ferroelectric long-range order. It
is important to note that the coefficient K(T) is exactly
the same as in Eqs. (2.17) and (2.18}. The crucial result of
Bogoliubov, Izergin, and Korepin is then the following
relation between the exponent 8 and K ( T):

K(T)= 1

m arccosb, (T)
(3.20)

with b defined by Eq. (3.1). We stress that the value
K(T„)=1/nconfir.ms Baxter's ansatz for co(Tx)=1.
K(2' ) =2/n. implies a logarithmically weak size

dependence of pshaw at 2'. This follows from the van-

ishing of co(T) at 2' or from the usual fluctuation-
dissipation formula (3.17) with the form (3.13) for the

Gzz(n). Finally, the fact that 2/n &K(T) &3/m. for
T)2' indicates that pshaw is no more divergent in this

temperature range. This feature is connected to the tem-

perature T=2T& being known as the "disorder point"
for the F model, that is, where the dominant correlations
change from an oscillatory to a monotonic behavior. We
therefore point out that the divergent behavior of the

yz&~ for a finite system is characteristic only of the tem-

perature interval [Tx,2' j.
We have shown in this section that sublattice disorder-

ing and roughening occur together at T= TR, and with

the same Kosterlitz-Thouless behavior, in this model.
Our definition of sublattice order parameter and suscepti-
bility, as well as the Monte Carlo finite-size scaling
method which allows for a separate study of sublattice
disordering and of roughening, can now be taken over to
more realistic values of the parameters E2 and E3.

ys(wN~T) A(T)+8(T)N

where

(3.18} IV. THE CASE OF A REAL
NONRECONSTRUCTED SURFACE

co(T)=2—8(T)=2 mK(T), T~ T„—. . (3.19)

This formula could also be derived from an argument in-

volving scattering functions. The Monte Carlo simula-
tion data are in reasonable agreement with Eq. (3.19); the
exponent cu extracted from the raw data for y~&~ is plot-
ted in Fig. 9, where it is also compared with the quantity
2 —n K(T) extracted from the data for the height fluc-
tuations (Bh ) of Fig. 6 and with the same quantity ob-
tained from the exact solution of the BCSOS model,

We now turn our interest to the study of surfaces
where roughening and sublattice disordering may take
place at different temperatures. We will focus on the pa-
rameters J, K2, and K3 of Eq. (2.4) with which Hamil-

tonian (2.1) provides a plausible description of the
Ag(110) surface. We stress, however, that we expect that
similar features will apply to the structural properties of,
e.g., Pb(110), Ni(110), and also Cu(110). As will be shown

below, the most important of these features is the oc-
currence of a non-Ising sublattice disordering phase tran-
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FIG. 10. Temperature and finite-size behavior of the height

fluctuations for the Ag(110) Hamiltonian.
FIG. 12. E(T) plotted as a function of temperature for

Ag(110). The dashed line indicates the value 1/e .

sition on the Bat 1X1 surface before roughening takes
place.

We begin by providing evidence for the occurrence of
roughening on this model surface. Tz is determined
through the usual study of the height fluctuations as
function of temperature and system's size. This is
presented in Figs. 10—13 and extrapolation of the
behavior (2.18) leads to the value

.03

.02—

I
I

I I I
I

I I

T~ =2.25+0.07 . (4.1)
01

This would correspond to a roughening temperature of
-900 K for a cohesion energy parameter J=400 K, in
reasonable agreement with the recent measurement of
910+15 K. The linearity of the data for T & Tz in Fig.
13 is remarkable, providing strong evidence for the
Kosterlitz-Thouless character of the transition.

We now turn to the search for the in-plane phase tran-
sition. As shown in Fig. 14 the peak of the specific heat
does not diverge with size N, signaling either an infinite-
order transition or a second-order transition with a nega-
tive exponent a. Figures 15(a) and 15(b) display the size
behavior of dC~/dT near the peak in C&, where we have
evaluated dC~/dT from the higher-order combination of
the energy cumulants:

0
II

FIG. 13. Plot of the quantity [E(T) I/6] in ord—er to
identify Tz by making us&, of condition (2.18).
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FIG. 11. Size dependence of the height fluctuations plotted
in order to extract SC( T) for Ag(110). The dependence on lnN is
linear in principle only for T ~ T&.

FIG. 14. Speciflc heat (arbitrary units) vs temperature and
the system's size for Ag(110). Notice the absence of a divergent
behavior for increasing N.
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dCy

dT ~ k~T'
—2(& @'&—

& 6 &')

+—(& @'&—3(@&( @'&+2&@&')
T

4

I I I I

& N=32
o N=28
o N=24
~ N=20
& N=16

N=12

(4.2) .2—

Tayw =1.81+0.03, (4.3)

corresponding to a value of -750 K, which shows that
two distinct phase transitions do occur on this fcc(110)
surface, separated by about 20% in temperature. In Fig.
17 we report the behavior of yz&~, which is now seen to
diverge with an exponent ylv) 1. Plotting d Ci,ldT,

I I I I I

5—

N=32
N=28
N=24
N=20
N=16
N=12

—5

4

I I I I I

N=32

A further temperature derivative of this quantity ought
to diverge sharply with an exponent (a+2) lv as N ~ ~
for a second-order transition. The behavior of dCi, ldT
is markedly different from that of the same quantity for
the BCSOS model, Fig. 5, and indicates the presence of
an ordinary critical point at Tz&~. This temperature
must be extracted from the peak of a sharply divergent
quantity such as the sublattice susceptibility. The related
order parameter P~&~, Eq. (2.11), is presented in Fig. 16.
For an infinite system, this parameter should vanish
around the disordering temperature (extracted from

~BIW)'

I I I I I I I I

FIG. 16. The sublattice order parameter P~~~ for Ag(110).

Fig. 18(a), obtained by numerical differentiation of Eq.
(4.2), and the peak of yiizii, Fig. 18(b), at T~&s, versus
lnN, we deduce the values

= l. 58&0. 19, += 1.56+0.02
V V

from which the exponents

a = —0.23+0.12, P=0.25+0.08,

y = 1.74+0. 10 v= 1.12+0.06

(4.4)

(4.5)

are estimated, making also use of the scaling relations
a+2P+y=2 and 2—a=dv (d=2). Within the error
bars, the exponents a and P satisfy the extended scaling
relation, characterizing preroughening according to den
Nijs 7

1 —a=4P. It should be pointed out that the
specific-heat behavior is very different from that of the
BCSOS limit case, for which we have no divergence in all
temperature derivatives of the free energy. The behavior
in the critical region is also very different from that of the
Au(110) surface, which fits the exponents of the two di-
mensional Ising model. ' ' In particular, the exponent
P appears to be twice the value characterizing recon-
structed surfaces, ' ' a fact with obviously important
experimental implications.

We stress that this is the first time, to the authors'
knowledge, that a prerougheninglike transition is predict-

1
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I I I I I I I
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N=32
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N=28
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20— N=24

10 —::i'~~:
IIII .,:

2 4
FIG. 15. (a) The first derivative of the specific heat vs tem-

perature for Ag(110). (b) Same as in (a), with an enlarged scale
in the critical region, showing the presence of a single critical
point.

FIG. 17. The sublattice susceptibility y&~~ (arbitrary units)

for Ag(110).
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ed with some accuracy in the expected exponents for a
particular metal surface, though most of the qualitative
features of this study were anticipated by den Nijs. ' We
explicitly confirm the presence of a phase transition on
Ag(110), and similar nonreconstructed surfaces, with
strongly non-Ising exponents. For all other finite values
of ir=K2/E3 &0 we expect two distinct transitions for
these fcc(110) surfaces together with variable critical ex-
ponents for the sublattice disordering transition. ' ' '

In order to reveal the nature of the structural phases
on our model surface, we turn to the study of the surface
scattering intensities, typically considered as a key exper-
imental tool for the investigation of surfaces. One could,
in particular, look at the atom scattering intensity given
by Eqs. (2.19) and (2.20) through which information on
the order parameter and its susceptibility can be ob-
tained. We stress that the antiphase condition is particu-
larly adapted to detect disordering phenomena involving
the sublattices of the first two surface layers. From Eq.
(2.20) we expect that the height of the antiphase Bragg
peak should vanish with a new exponent 2P= 0.5 for non-
reconstructed surfaces such as Ag(110). Our simulation
for the integer peak scattering intensity is in qualitative
agreement with the above picture, with the coherent peak
height behaving like Pz&~. Figure 19 shows the in-
coherent atom scattering pattern calculated for the larg-
est system available (X=32), for Q~ =0, q, =n/a„an.d

Q„in the whole range of investigation, for T= 1.875, in-

termediate between T~&~ and Tz. The total scattering

.06—

.04—

.02—

0
—1

.8—

I I I I I I I

(a)
ITot.

*gCoh

4—

FIG. 19. Incoherent atom scattering pattern (arbitrary units)
for the specular peak in antiphase, fitted with a Lorentzian func-
tion, for Ag(110). The coherent part at Q„=Ois not reported
since it is out of scale. Here and in the following figures N =32.
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FIG. 18. (a) Scaling of d Cz/dT (proportional to the second
derivative of the specific heat) at Tz/~ for Ag(110). (b) Scaling
of the susceptibility peak height.
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FIG. 20. Temperature dependence of (a) the total and the

coherent part of the specular peak in antiphase (0,0,m/a, ), (b)
the incoherent contribution, and (c) the incoherent peak width
for Ag(110). The vertical axis in (b) and (c) is marked in units of
2m. /1%a =0.048 A
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intensity, Eq. (2.20), has been evaluated for all tempera-
tures. A fitting of the incoherent part with a Lorentzian
function is performed on the data in order to obtain the
incoherent peak intensity in antiphase as a function of
temperature. Also the coherent peak intensity is ob-
tained by subtraction from the total intensity; all these
are reported in Figs. 20(a} and 20(b}, together with the in-

coherent peak width, given in Fig. 20(c). While these in-

tensities give a measure of P~&~ and yz~~, the peak
width is a measure of the inverse of the in-plane correla-
tion length g. This width shows a drastic increase above

T~]~, signaling the appearance of steplike defects on the
surface. Notice that there is a minimum value for the
peak width, expected to vanish at T~&~, owing to the
usual finite-size restrictions. Finally, contrary to the case
of reconstructed Au(110}, there is no shift in the in-

coherent peak position above the in-plane disordering
temperature.

V. DISCUSSION AND CONCLUSIONS

The situation studied in Sec. IV, that of the two-stage
disordering of a nonreconstructed surface, corresponds to
a relatively simple surface disordering scenario. Figure
21 presents snapshots of typical surface configurations as

fBPFR'P

generated by our Monte Carlo simulation of Hamiltonian
(2.1) [with (2.4)] for temperatures characterizing the three
di6'erent structural phases: (a) ordered flat, (b) disordered
flat, and (c) rough phases. As an educated inspection of
the configurations of Fig. 21 would suggest, steps are the
source of both in-plane and off-plane disordering. For
T & T~&~ only isolated local defects are found on an oth-
erwise flat (110) surface. Their density increases as a
function of temperature and compact domain walls
(bound pairs of up and down steps) start to appear. None
of these cause preroughening, which is instead driven by
steps with a long range up-down order. Figure 21(b)
might represent such situation on a small scale. This
structure is stabilized (as shown by den Nijs' ) by the pos-
itive value of the next-near-neighbor coupling E3, which

acts as an effective hard-core repulsion between two up-

up or down-down monoatomic steps. The appearance of
these steps is also an explanation for the absence of the
shift in the specular peak position, Fig. 19. Two such
steps are in fact suScient to cause the vanishing of P~z~
on a finite system, but of course this is not enough to in-

duce a shift which is instead driven by a global increase
of the lattice spacing in the x direction. This would arise
from the proliferation of, e.g., 2X1 compact domain
walls, but this is clearly not the case in a model of
Ag(110) displaying the DOF phase. By a further rise in

the temperature, the DOF structure evolves into the usu-

al rough phase with a delocalized interface, Fig. 21(c).
The case of a reconstructing fcc(110) surface, such as

rill

L'
I ~ . . . . . . . . . , I

I Li il ii ii ii iI ii ii ii ii ii ii ii ii ii ii ii ii

pal lrlrl fh yr&l

I; . . . , . . : '- ~

aMsNig i g

m ai W~~~~ +

1

I

Z~™M U M U

~el
~e

r r r
r [ ~

' [ K l

. );],3 H
UUU Jv UUV

I E ~

~ ~ I

1

~ I I

~ I ~
I I l I

i ~ ~ , h

E I I

r
t ~ ~

t ~ I I I I ~ i ~ ~ I 1
1 ~ I ~ I 1 1 ' ~ I

' 1jh. ~, ', "
~ l

~ l l

I

I

~ 1

J
I

L' ~
C

~ I ~

t' U~~'~
n

&'A %h

~ c.k. v

~ 1 p ~ l, + g
J ' g f [ ' r ~ ~

~ ~ I ~
' r ' ' ' ~ H HI 1

~ ~ ~

~ R

~ ~ ~ I

;. I. ;. ;. C 4 I". i. (: &, Q [3'-''-'-'~ J
FIG. 21. Snapshots of the surface configuration of Ag(110) as

generated by our model and Monte Carlo simulation. (a)

T=1.75 (below Tzz~, ordered flat phase), (b) T=2.00 (between

T&~~ and T~, DOF phase), and (c) T=6.00 (above T&, rough

phase) ~ Black and white circles refer to Ag atoms belonging to
the two distinct sublattices of the fcc(110) structure. The figure

refers to the largest system size (%=32); atoms are added below

the surface to help visualization of the configuration, though

our simulation generates only the surface layer.

I

Ll

r
L
I
~

'

I

~
(
le f'

r
fl 1R

eC

(c) ji;=.=
Phl~-

IK

~ ~ ~ l I' ' ~

'
l l ~ ' ~

.J ' 9 L'

P+

] 3 0 )

I ~

C4C l C'4t

'I

~+I

I ' 1

L

~ '

,

-:0$g(
L

~ ' I

[.EgJJgJJJF
FIG. 22. Snapshots of the surface configuration of Au(110) as

generated by our model and Monte Carlo simulation. (a)

T=2.812 (below TD, 2X1 reconstructed phase), (b) T=2.937
(between TD and T&, DOF phase), and (c) T=8.000 (above T&,

rough phase).



49 ROUGHENING AND PREROUGHENING IN NONRECONSTRUCTED. . . 7637

Au(110), is potentially richer in its disordering scenario,
although the intermediate phase temperature window is
too narrow to afford a deeper investigation of the disor-
dering processes. In Fig. 22 we present the analogous se-
quence of snapshots of the Monte Carlo simulation of
Au(110) for model (2.1) with the appropriate parame-
ters. The discussion on order parameters presented in
Sec. II can be repeated for the reconstructed ground-state
surfaces. However, {i) there is a further order parameter

Pz&&, on these systems (see Ref. 22) which distinguishes
the 2X1 ordered phase of Fig. 22(a) from the decon-
structed phase of Fig. 22(b) and (ii) there is in principle
no reason why this order parameter should vanish at
Tz&~. Indeed, as remarked by Bernasconi and Tosatti,
the P2X& order parameter may vanish before PB&+ owing
to the proliferation of tightly bound 3 X 1 up-down pairs
of steps which do not lead to a sublattice disordered
phase. The resulting structure, which would exist (if at
all) between Tn and Tttz&, would consist of large terraces
characterized by reconstructed 2 X 1 order and the
predominance of a specific sublattice in the topmost lay-
er. Above TB&~, but still below Tz, PB&~ would vanish
initially into the DOF phase of den Nijs. With the avail-
able data within our simulation we must conclude that
TD and Tz&& coincide in our model (2.1) for Au(110). It
is not excluded, however, that for some fcc(110) surface
the disordering process may consist of three, rather than
two, distinct stages. Finally, we point out that for the
reconstructed surfaces we are also able to define a
preroughening order parameter as the average of a local
variable sensitive to a monoatomic step which can also be
shown to coincide with the sublattice disordering param-
eter defined in Ref. 22 (see the Appendix). Therefore,
also for reconstructed fcc(110} surfaces we have

TB/w TPR ~

In conclusion, we have simulated the statistical
mechanics of a model of nonreconstructed fcc(110) sur-
faces. Two separate transitions are found: a sublattice
disordering (preroughening) and a standard roughening
transition, well separated in temperature and with strong-
ly non-Ising exponents for the specifically studied case of
Ag(110}. We have described the interesting properties of
the intermediate DOF phase and shown that this will

disappear, with TB&~ and Tz coinciding, in the BCSOS
limit when long-range interactions are absent. The DOF
phase is generated by the presence of further-neighbor
couplings, such as K3J, on top of the interactions of the
BCSOS Hamiltonian. We thus believe that for all finite
values of sc the phase diagram will consist of two separate
transitions.

As for the experimental situation, we point out that ex-
isting experimental data on Ag(110) (Ref. 7) as well as on
Ni{110}(Ref. 41) present the common feature of a "knee"
in the temperature dependence of the antiphase peak in-
tensity around a temperature that, for Ag(110), is of the
same order as our estimated TB&~. Further studies are
clearly needed to clarify the situation. Indirect evidence
for preroughening of Pb(110) at 360 K is provided by

high-resolution electron-energy-loss spectroscopy data of
Yang et al. ' There is a smooth drop of the antiphase
peak intensity, well below the roughening transition in-

dependently placed at 415+10 K. Such a smooth drop is
compatible with a large value of the exponent P, as found
in this work. However, this evidence is also not definitive
because of an apparent anisotropy of antiphase scatter-
ing, which is thus far unexplained. In summary, hitherto
no clear experiment has yet revealed the transition at
Ttt&& and we hope that our work may stimulate further
experimental research on nonreconstructed fcc(110) or
other crystal surfaces with a two-sublattice structure.

APPENDIX

We sketch the demonstration that, for 2 X 1 recon-
structed fcc(110) surfaces, the appropriate sublattice or-
der parameter is identical to a suitably defined
preroughening order parameter sensitive to the oc-
currence of monoatomic steps on the fiat surface. The
proof proceeds along the lines of that given in Sec. II for
the nonreconstructed case.

Define the local spin variable, for, e.g., a B site atom

S, =—,
' g [h(r, ) —h(r;+5)] (A 1)

taking values +1, 0, and —1 ( —,
' and —

—,', always present,

get coarsened away) according to whether the B atom is
on top, in the middle of the (111) microfacet, or at the
bottom of the 2X1 groove. The analogous quantity S;
is defined for a 8'atom at site r;. Then, the sublattice or-
der parameter is

~sew= (A2)

which, as it should, takes values +1 ( —1) when all 8'
(B}atoms occupy the topmost layer and 0 when the sym-
metry between the 8'and B sublattices is restored.

Now, consider the following local preroughening vari-
ables:

(A3)

is the appropriate preroughening order parameter. We
can express it in a global representation through

(A5}

so that again it coincides with the sublattice order param-
eter.

This takes values +1 (when coarsened), changing sign
every time a step is encountered on a 2 X 1 flat terrace, in-
dependently of the sublattice type. Hence

(A4)
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