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Excitons con6ned by split-gate potentials
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Quasi-one-dimensional excitons in a GaAs-Al Gai As quantum well are studied; they are pro-
duced by an applied twin-split-gate potential which confines the particles laterally and allows free
motion in one dimension. A variational approach is used to calculate the binding energies E,„and
oscillator strength f,„

fo these excitonic transitions as functions of the applied voltage and width of
the induced potential wells. In the limit of high electrostatic confinement the excitons are strongly
polarized and the system resembles a type II structure where electron and hole are spatially sepa-
rated. The resulting E,„andf,„shwoa strong dependence on applied voltage and structure width
Strong oscillations are found, which should be observed experimentally, as a consequence of subtle
competition between confinement and Coulomb attraction.

The study of elementary excitations in solid state
systems has been an interesting subject for many
years. Particular attention has been paid lately to the
case of confined excitonic transitions in semiconductor
heterostructures. i Theoretical studies of the oscillator
strength f,„adnthe binding energies E,„ofthe ex-
citonic transitions in single quantum wells, 2 4 coupled
quant»m wells, s quantum boxes, and dots have
shown that both f,„and E,„exhibit strong enhance-
ment as confinement increases. EfFects of applied exter-
nal electrics and magnetic fields on the confined exci-
tons also have been investigated. Photoluminescence ex-
periments have demonstrated that excitonic transitions
indeed show these effects in singlei2 and coupled quan-
tum wells, quantnm boxes, and dots. Indeed, con-
finement efFects together with applied fields may allow
for easily modulated and well-defined excitonic transi-
tions even at room temperatures. The interest in study-
ing these systems is driven in great part by the intrinsic
fundamental processes in quantum structures but also by
their possible applications in electro-optical devices.

In this paper, we report binding energies and oscil-
lator strengths of the quasi-one-dimensional (1D) exci-
tonic transitions produced by applied split-gate poten-
tials which confine 2D excitons laterally. Split gates
have been used successfully in the study of transport
and optical properties of con6ned electron- or hole-doped
systems, 5 but little has been done with intrinsic systems.
We anticipate, however, that it is now possible to realize
systems where con6nement of excitons is "easily" varied
by a split gate potential. In particular, one can imagine
being able to produce a penodic electnc-field modulation
by a set of finger or grating gates, and vary the photo-
l»mlnescent response of the system accordingly. In this
work, we explore perhaps the simplest, and yet nontriv-
ial, of such systems. An otherwise 2D-exciton region is
modulated by a twin set of split gates, producing local-
ization of the exciton to a quasi-1D geometry, in addition
to a strong Stark-like polarization. Indeed, recent work
by the LMU-M»~ich group shows that this type of struc-

tures is within experimental reach alread. y and for rather
small period modulation ( 250 nm). s

We investigate the effects of this electrostatic confine-
ment on the optical properties of these systems by fol-
lowing a familiar variational approach similar to that of
Dignam and Sipe and others. ' The variational wave
function of the exciton is written as the product of a func-
tion depending on the relative coordinates of the system,
and the single-particle wave functions of the individual
electron and hole appropriate for the speci6c geometry
of interest. In the limit of strong electrostatic con6ne-
ment, the situation studied here resembles the excitons
in type II quantum-wells, ~~ where the electron and hole
are confined in spatially separated wells. We obtain, cor-
respondingly, that the applied potential and. the lateral
confinement significantly afFect E,„andf,„scaompared
to the free and 2D exciton cases. In fact, we find in-
teresting oscillations in these quantities with changes of
the various parameters describing the system. These os-
cillations are due to a subtle interplay between particle
con6nement and the Coulomb interaction defining the
exciton.

To focus ideas, we model a quantum-well structure of
GaAs-Al Gai As with a corresponding twin split-gate
configuration, as depicted in Fig. 1. The excitons are
confined in the z direction by a quanta' well of width
as (structural confinement) and in the z direction by the
gate potential (electrostatic confinement), while they are
&ee to move along the y direction. Our main interest is
to investigate the efFects of the electrostatic confinement
on the binding energies E „and oscillator strength f,„

of the excitonic transitions. We proceed by writing the
Schrodinger equation in the efFective mass approxima-
tion and neglect any band nonparabolicity, as we deal
with typically small excitonic energies. The Hamilto-
nian of the excitons in the potential configuration un-
der study can be written as H = Ho + V' + V", where
Ho ——T e /er, T is the kine—tic energy operator for both
electron and hole, e is the static dielectric constant, r is
the relative electron-hole coordinate, and
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FIG. 1. Schematic cross-sectional view of structure. Bot-
tom traces sketch effective poteritiala for electrons and holes
in the GaAs region (rather than baud-edge profiles). Dashed
square profile of Eq. {1)used in the calculations is uniform
along the y direction.
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(2)

g;(r. , rg) = @(p., ph. )f,'(z.)f"(xi, ),
r~ = (z~, pi), j = e, h, and r = Ir, —ri, I. In this equation,
f and f" are the wave functions of the electron and hole
for the isolated wells, respectively. The expressions we
use are (for each well centered at the origin)

Ae ', x,. & —d,./2
f' = t Bcos(k,'z, ), Ix, I

& d~/2 (4)

The corresponding efFective potential for holes (up to a
constant) is V"(z~) = —V'(x, -+ zi, ), as the source of
the modulation is electrostatic and only the charge sign
is different for both carriers. Notice that we approxi-
mate the most-likely rounded smooth potential function
V'(z, ) by a sequence of square profiles. We anticipate
this to have no qualitative consequences in our conclu-
sions below. (Note that Fig. 1 shows the effective poten
teals seen by the electron and hole, rather than the band
edge profiles. )

To calculate E,„and f,„with the above Hamiltonian
we follow a procedure similar to that used by Dignam
and Sipe for coupled quantum wells in 2D.5 We write the
Hamiltonian of a single well potential V for the electrons
(either the left or right well), and the shifted central po-
tential well for the holes V", as H; = Hp+ V + V". The
corresponding variational solution is then written as

where d~. is the potential well width, k~ = 2m~E~/h
is the particle wave vector in the isolated well, and
@(p„ph,, ) = Dcos(q, z, ) cos(q, azg)e*{~& " +~~"""l Here,
A is the only free variational parameter, as k~ is deter-
mined from the solution of the finite quantum well in
the x direction, q = vr/as is the wave vector in the z
direction, and the constants o. and v, as well as A to
D, are calculated using the boundary and the normaliza-
tion conditions of the wave function for the single-well
problem. Full confinement in the z direction has been
assumed for simplicity, and can be relaxed for a detailed
comparison with experiments, but introduces no quali-
tative changes in our results that deal with the lateral
confinement effects.

Using the single-well Hamiltonian H, , we can write the
full Hamiltonian as H = H, +4;, where the only nonzero
values of 4, are 4i ———Vi', for db/2 & z, & db/2+ d
and A2 ———Vi', for —(d + db/2) & x, & —ds/2. This
clever procedure allows one to deal with a single varia-
tional parameter but with an overall wave function which
is adapted well to the physical problem at hand. The full
variational solution is now written as the linear combina-
tion, 4 = P,. 6;iII, , where @; is given by Eq. (2) for each
one of the two wells. The energy is then the expectation
value of the Hamiltonian, so that (4IHI4) = E(4I4),
and since we are working with a nonorthogonal basis, we
solve a 2 x 2 generalized eigenvalue problem. Finally,
the binding energies are obtained using the expression
E,„=E„;—E, where E„;is the energy eigenvalue of the
noninteracting but still confined electron-hole system.

Similarly, the oscillator strength intensity of the exci-
tonic transitions is estimated from

2P2 4(r„r,) dr,
mpE

as obtained in the envelope function approximation. '

In this expression mp is the bare electron mass and P is
the momentum matrix element between conduction and
valence band states.

The parameters used for the actual calculations cor-
respond to a GaAs-Al Gai As heterostructure, so that
we take P /mo ——1 eV, m, = 0.067mo, e = 12.2, Es ——

1.52 eV, and for the heavy hole mass m&
——0.377mp.

The results for the light-hole exciton will be reported else-
where, as well as the possible mixing of light and heavy
holes under these conditions, as these points do not add
qualitative features to our discussion. Notice also that we

ignore here possible finite trapping lifetime effects for the
hole, especially important for the light hole, as it could
more easily tunnel out of the electrostatically defined well
in Fig. l. In other words, we assume that the exciton life-
time is shorter than the escaping or tunneling-out time.

As the gate potentials are varied, one can efFectively
change several structural parameters of the model such
as the width of the potential wells (d for electrons and
db for holes), the width ds of the potential barrier for the
electrons, and the asymptotic height Vi' of the applied
potential. Moreover, the z width of the quantum well a3
is also readily changed by difFerent sample GaAs thick-
nesses. To examine the efFects of electrostatic confine-
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ment, we calculate the binding energies E,„andthe oscil-
lator strength f,„ofthe excitonic transitions as functions
of the electronic well width d, for different values of dg

and the barrier height. For simplicity, we ass»me further
that V~ = Vp. The energies are given in terms of the ex-
citon effective Rydberg [= pe /2h e = Ry' = 5.2 meV;

p = (m, +mP )
~ = 0.057mo], and all the lengths in

terms of the exciton Bohr radius (= ao ——eh /pez = 110

We discuss the effects of electrostatic confinement on
E,„andf,„,considering two regimes. In the first case, we
take Vo to be a constant (= 10 Ry'), as we vary d . This
would correspond approximately to changing the voltage
on the side gates while keeping the central one constant.
We consider different values of d~. In the second case, we
keep ds constant (= 2ao) and allow Vo to have different
values. For simplicity, we maintain a3 ——0.45ap 50
A. constant in the figures below.

Figure 2 shows typical results for E,„and f,„versus
electron well width d (see Fig. 1). Generally stronger
binding occurs for a system with smaller d& (= as), as the
electron and hole are allowed to coexist in the same region
[the barrier (well) region for the electron (hole)]. The
binding is generally smaller for larger dp, as this forces the
electron out of the barrier. Correspondingly, the oscilla-
tor strength —which depends strongly on the electron-
hole overlap —decreases rapidly for weaker binding (by
as much as an order of magnitude for only a factor of
two drop in E,„).The variational parameter A is also
generally smaller for weaker binding; see the inset. No-
tice that A characterizes the effective size of the exciton,
as seen in Eq. (2), and one can easily verify numerically
that (r) = A (not shown). [Incidentally, although the
trial wave function is not explicitly symmetric in x and

y, the resulting ground state exhibits this symmetry to
first order, in that ((x)) = ((y~), making for a nearly "cir-
cular" exciton (with ()z~) 0).]

We see also in Fig. 2 that for all three values of the
hole well width dg shown, the binding energy oscillates
strongly with d . These oscillations cease for systems
with dp & Gap, approximately. The oscillations are some-
what surprising, as one would expect that a smaller d
would confine the exciton further and increase E,„rather
monotonically. This is indeed what happens as a 3D exci-
ton is confined to 2D, ~z or a 2D to 1D.s Notice, however,
that this behavior occurs for a "direct" exciton, where
electron and hole coexist spatially. This is not the case
here, at least for large ds and/or Vo values, as the exci-
ton is polarized and the electron and hole are forced into
different wells. This is further corroborated by careful in-
spection of Fig. 2: For ds/ao ——1, the most nearly-direct
exciton shown here, A increases as E,„decreases vs d
and vice versa. This is in agreement with the intuitive
idea that as the exciton becomes larger, the binding de-
creases. However, for the other two cases shown with
larger dg, although smaller than ds 5co, A is in phase
with E,„,increasing or decreasing simultaneously. This
behavior is understood if one considers that the binding
energy measures not only the effect of the Coulomb inter-
action (which is the origin of the "out-of-phase" behavior
of A vs E,

„

for ds = ao) but also the change in kinetic
energy incurred as the electron and hole "pull on each
other" and deform the noninteracting wave functions to
be closer to the barrier. Correspondingly, the negative
curvature component of this bound state coming from
the barrier region for the electron is larger than that of
the noninteracting case, overtaking the size increase in
Coulomb energy. Notice that this behavior is the result
of a rather subtle cancellation since as the electron-hole
overlap increases due to the Coulomb attraction, so does
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FIG. 2. Binding energy E and oscillator strength f „

versus well-width d, for various dq values as shown (in units
of as). Inset in (h) shows the resulting exciton size A for each
case. Vo ——10 Ry in all traces.
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FIG. 3. Same as Fig. 2 but with dg ——2ao fixed, for various
Vo values.
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the weight of the electron on the barrier and the cor-
responding potential energy cost. This latter increase
eventually dominates and the binding energy decreases.
This competition between the various terms can be seen
explicitly in plots of the kinetic energy and Coulomb
energy changes vs d (plots not shown here). Since

V«„io~b (1/r) (which follows closely (r) —A ),
this term varies out of phase with A. The kinetic energy
term variations can be seen. to compensate this change,
giving rise to the binding energy curves in Figs. 2 and 3.

Next we explore the effects of different applied poten-
tials on A, E,„,and f,„We. take ds = 2ao and, as such,
Fig. 3 shows small binding energies (= 1 Ry') for three
values of Vo. The curves have similar behavior, with a
shift to higher values as the applied potential decreases.
Since the barrier is rather wide, and the electron-hole
overlap is small, the sensitivity to Vo is not significant.
In all cases too, the variational parameter A varies in

phase with E,„,indicating further that the exciton is

basically spatially indirect (see inset). Similarly, the os-

cillator strength shows oscillations on an overall decaying
tail as d increases. Notice that f,„decreases rapidly as

Vp increases because of its exponential dependence on the
electron-hole overlap.

In conclusion, we have presented a study of the quasi-

1D excitonic transitions in quantum wells in the pres-

ence of lateral electrostatic confinement. We have used
a variational approach to calculate the binding energies,
oscillator strength, and the effective exciton size. For
the case of strong confinement but small or thin middle
barrier, we find that the energies E,„and the oscillator
strength are greatly enhanced with respect to those of
the &ee excitons, as the resulting potential yields nearly
spatially direct excitons. As the middle barrier increases
its width or size the exciton polarizes, electron and hole
separate, and E,„andf,„decrease significantly. We also
find strong oscillations in these quantities as the well-
width is varied, which appear as the result of interesting
cancellations between Coulomb attraction and particle
confinement. Given the strong signatures associated with
these effects, we expect that all of these features should
be observable in experiments where such a split-gate ge-
ometry is implemented.
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