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Optical absorption in a two-dimensional quantum point contact

Anna Grincwajg, M. Jonson, and R. I. Shekhter
Department of Applied Physics, Chalmers University of Technology and University of Goteborg, S pig-98 Goteborg, Sweden

(Received 21 September 1993)

Vfe calculate the optical absorption of a quantum point contact. VVe find that the absorption
in the very center of the microconstriction is clearly separated in frequency from the absorption in
the wide contact regions. Therefore optical point contact spectroscopy is possible and can be very
useful in characterizing the shape of the laterally confining potential. We show how two diferent
types of potentials produce entirely different spectra. Further, optical point contact spectroscopy is
found to be sample independent since the microconstriction geometry has practically no in8uence
on the absorption, as long as we consider adiabatic geometries.

I. INTRODUCTION

Ballistic transport in two-dimensional electron systems
has attracted a lot of attention during recent years. The
possibility of fabricating structures of dimensions com-
parable to the Fermi wavelength and smaller than the
mean &ee path naturally opens up exciting possibilities
for both experimentalists and theoreticians. Among all
kinds of structures produced so far, the quantum point
contact (QPC) exhibits in a most pure and clear way the
principal phenomena in ballistic transport.

The QPC is created by putting a split gate on top of a
GaAs heterostructure, thereby causing a depletion layer
in the two-dimensional electron gas (2DEG). Two almost
separate regions of 2DEG are formed, joined by a "point
contact" whose width is controlled by the gate voltage.
Since the electrons move through the point contact with-
out sufFering any collisions, their motion is analogous to
the propagation of an electromagnetic field through a
waveguide. The width of the "waveguide" is of the same
order as the Fermi wavelength and governs the number
of propagating modes.

Several features of the quantum point contact, like
quantized conductance and the performance in a mag-
netic field, have been thoroughly investigated both
experimentally and theoretically. ' The optical prop-
erties, however, have to our knowledge not been the sub-
ject of investigations. In this work we calculate the opti-
cal absorption spectrum of a QPC. We show that optical
point contact spectroscopy (OPCS) certainly is possible
and that it can be very useful in characterizing the shape
of the laterally confining potential. The shape of this po-
tential is still an open question.

The absorption of a high-&equency field in a quantum
point contact is due to electron transitions between dif-
ferent modes, or, in other words, transverse energy states
in the system. The transition &equency cu between the
modes n and n + 1 is related to the di8'erence in trans-
verse energy and for a laterally confining potential of the
"hard wall" type we have

h ~'(2n+1)
2m. d2(z)

corresponding to transitions in the very center of the mi-
croconstriction. Qualitatively it can be explained as fol-
lows. Consider the interval [z, z + b,z] connected to ab-
sorption in the frequency range [u, u + b,u]. The region
Lz can, by expanding u around z, be expressed as
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where l is the effective length of the microconstriction
(see below). As z ~ 0 the absorption region b,z in-
creases, to reach its saturation value at x = 0 correspond-
ing to ~ = ur . Therefore the absorption spectrum will
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FIG. 1. Geometry of the quantum point contact. The
width is denoted by d(z) and the effective length (see text) is
denoted by l.

where m' is the electron effective mass and d(z) is the
width of the microconstriction (see Fig. 1). Since the
transition &equency ~ is x dependent, it is not at first
sight obvious that the spectrum contains any distinct
features. Contributions from transitions in all parts of
the microconstriction, including the wide contact regions,
must be added, seemingly resulting in a continuous ab-
sorption spectrum. However, as we will show, the states
in the center of the point contact cause very distinct
high-&equency peaks, while the bulk states give a low-
&equency contribution to the spectrum. This clear &e-
quency separation is due to a drastic increase of absorp-
tion as the &equency reaches its maximum value

~'(2n+ 1)
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which is independent of n, since the energy levels are
equidistant. Therefore all transitions between the prop-
agating modes n and n+ 1 are peaked at the same fre-
quency (only nearest-mode transitions are allowed in this
case) and the spectrum contains only one high-&equency
peak. Thus we find a characteristic difference between
these two spectra, which opens up possibilities of distin-
guishing experimentally between different types of poten-
tials.

We have also investigated the inHuence of different mi-

croconstriction geometries on the absorption. The sensi-
tivity to geometry was found to be very small, and there-
fore we conclude that optical point contact spectroscopy
is sample independent.

In Sec. II we give a detailed formulation of the problem
and derive the basic expressions needed to calculate the
optical absorption. In Sec. III we calculate the absorption
for different laterally confining potentials and microcon-
striction geometries. Finally, our results are presented
and discussed in Sec. IV, where we also estimate the pos-
sibility of experimental realization of OPCS.

II. FORMULATION OF THE PROBLEM

One possible realization of an experiment measuring
the optical absorption is to place the QPC in a microwave
resonator of size I. In this case the absorption in the
QPC will result in a special &equency dependence of the
quality factor (Q factor) of the system. Absorption re-
sults in dissipation of the electromagnetic field and its
strength can be characterized by an absorption coeficient

1 dR'

TV d~
(5)

Here R' is the energy of the electromagnetic field in the
resonator. We can treat the field as N coherent photons
occupying the single photonic state characterized by the

have a peak at u = ~ . We stress that it is the trans-
port electrons, i.e. , the propagating modes, that are re-
sponsible for the high-&equency peaks, since they are the
only ones able to reach the center of the microconstric-
tion. Thus it is the mechanism of frequency separation
between bulk and transport electrons that makes optical
point contact spectroscopy possible and higly effective.

One interesting application of OPCS is characteriza-
tion of the laterally confining potential. Because of the
transverse energy quantization, different potentials pro-
duce different spectra. We compare two types; the square
("hard wall" ) potential and the parabolic ("soft wall" )
potential. For a square potential the maximum &e-

quency u „is given by Eq. (2) (taking into account only
nearest-mode transitions). The resulting high-&equency
spectrum is then consequently a series of equally spaced
peaks, each peak corresponding to a propagating mode.
In the case of a parabolic potential the maximum &e-

quency is

h 2

2m' d2(0)
'

polarization i and frequency u:

W = Nhcu, N = (ata). (6)

The operators at and a are creation and annihilation op-
erators in this photonic state.

Our aim is to calculate the absorption coeKcient p,
which according to (5) and (6) can be expressed as

([ata, Hj).

Here the brackets imply quantum mechanical as well as
thermodynamic averaging over all electronic and pho-
tonic degrees of &eedom.

We consider the Hamiltonian of our system to be a
sum of three parts:

Htot —+electron + Hphoton + +int&

H,i=) E ctc,

H h
——grata.

(8)

(9)

(i0)

H;„, =) (A pctcp+H c )(a.+. a'),
~p

with the matrix element A p of the form

where p is the electron momentum operator.
Taking the electromagnetic field in the quasiclassical

approximation (N &) 1) we can easily get the absorp-
tion coefIicient in second-order perturbation theory in the
electron-photon coupling as

p = —„) h(E —Ep + Ru) id p i'(np —n ).
ap

(is)

Here n and np denote the number of electrons in state
n and P respectively. In the following section we will

explicitly calculate the matrix element A p and the ab-
sorption coefIicient p for different laterally confining po-
tentials and microconstriction geometries.

III. CALCULATION OF THE ABSORPTION

The electronic state ~a) can be characterized by three

quantum numbers as follows

~ ) =~, E, ), =i, 2, s..., (i4)

Here n is the mode number, E is the total energy of
the electron, and o specifies whether the electron moves
in the positive or negative x direction. In the case of an
adiabatic geometry, the electron wave function of mode n

Here ct and c are creation and annihilation operators
for electrons in state e. Keeping only the dipole term of
the electron-photon interaction we have
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can be separated into one longitudinal and one transverse
part:5

=--(* y) = @'-(z)@-,-(y) .

The variable x then appears as a parameter in the trans-
verse wave function ck„(y).

We will consider the case when the electromagnetic
field is polarized in the y direction. In this case the matrix
element in Eq. (12) can be expressed as

L/2

(a~p„~P) = —ih dz@„'(z)% (z)
—L/2

OO

x dy4„' (y) —O {y).

The transverse wave function depends on the shape
of the laterally confining potential. In order to investi-
gate the role of the confining potential forming the /PC,
we will consider two difFerent model potentials; a square
("hard wall" ) potential and a parabolic ("soft wall" ) po-
tential.

For a square potential, the Schrodinger equation for
4'-, -(y)

where II„(() is the Hermite polynomial of order n and
A„ is a normalization constant. The resulting transverse
energy

h' 2n+1
2m' d'(x) ' (24)

1 (g~+ W,„+,—~~~,„,) . (25)
2d(z)

Now we can evaluate the z integral in the matrix el-
ement. Since the z dependence of the two expressions
(21) and (25) is identical, the x integral will be the same
for both potentials. The expression for the longitudinal
wave function 4„(z) depends on whether the mode n is
propagating or not:

t ~exp[in f dz'k„(z')] if E —E„(0)) 0,
@„(z)=

sin[f dz'k„(x')] if E —E„(0)( 0 .

has the well-known harmonic oscillator dependence. The
y integral in the matrix element is evaluated as

OO d
dyC'-, -(y) —„@'-,-(y)

d
-2 .d„,~-,-(y) = E-o-.-(y)

Ck„/y=+
/

=0,( d(x) )

has the solution

(17) (26)

The Grst expression is for propagating modes; the nor-
malization length L is the length of the resonator, k„(x)
is the longitudinal wave vector of mode n, and x„ is the
turning point for the nonpropagating mode. Assuming
that n and m are transport modes we have

2 . nm ( d(z) i
d(*) d(*) 2

which gives the transverse energy

A2 n2+2

2m' d'(x)'

(19)

(20) where

d( )
@:(z)@ (z) =

L d( )

x exp[—ioa„(z) + io'n (x)],
(27)

The y integral in the matrix element can now be evalu-
ated:

d(a)/2 d 4
dy@-,-(y) —@-,-(y) =. . .b-+-.-«.

dy
'

d~zj n —m

(21)

For a parabolic potential, the Schrodinger equation
for 4„(y),

a„(z) = f k„(z')dx',

n„(z) = f k„(T')dz'. (29)

Since we are dealing with an adiabatic geometry the
phase p{x) = oa (x) —o'a (x) in the above integral
depends almost linearly on x. Let us therefore expand
y(z) around the point x* where the first derivative is
zero, which is possible only if cr = o':

Q2 d2 y2
-,-(y) = -, (y)

has the following solution, expressed in terms of the di-
mensionless variable ( = y/d(x):

e„.{g) = ~„a„(().-~'/',
1/4

(hard' x p

O' 0!~ X —O.'~ X ~ 0 0!~ X —A~ X

+-', (*—x')' [a".{x')—a" (x*)]k.
{30)

The requirement that the first derivative shall be zero at
x = x' implies that

k„(x') = k (x').

We can now evaluate the integral using the fact that



7560 ANNA GRINCWAJG, M. JONSON, AND R. I. SHEKHTER 49

d(z) varies slowly compared to the rapidly oscillating ex-
ponential function. Making the approximation d(z) =
d(x*) and using the above expansion we get

and for the parabolic potential

, [E —tud(n+ —,')]. (4o)
L/2

L,(2 d(z) " Ld(x*) g~k (x ) —k' (x )~

~:(*)~-(*)=

(32)

The energy conservation law Ep = E + fuu [see Eq. (13)]
implies that the longitudinal wave vectors can be ex-
pressed in terms of the total energy E of the initial state
and the frequency ~ as

We are now ready to write down the expression for the
absorption coefficient. Because of the energy conserva-
tion law only one integration over energy is needed. We
include a factor of 2 for spin, put the temperature to zero,
and introduce the dimensionless variables e = E/Ep,
ey' = EF /Ep 0 = Ajd/Ep, and D = d(0) /d(L/2) for,
respectively, energy, Fermi energy, &equency, and con-
striction width. The energies are normalized to

k„(2;) = )I, [E —E (z)] (33)
vr'

QQ 2m' d'(0) ' (41)

k (x) = )/, ]E+M —8 (z)].

Here the transverse energies for the two different poten-
tials are given by Eqs. (20) and (24). From this we get

2m* d'(z*)(*) k (z )I= yak ( ) d(

x [E (z') —E„(x')]. (35)

The expression k„(z*) = k (x') can with the use of the
energy conservation law be rewritten as

hu = E (z') —E„(z*) (36)

This formula represents the picture of local intermode
transitions presented in the introduction. The require-
ment is that there exists a point x' that satisfies the
above equation which can be expressed as the inequality

the lowest transvere energy in a square "hard wall" con-
fining potential of width d(0). Our result in the case of
the square potential is

c d(0) 128 n2m2
fsq =

L L2 2 ) n+m, odd 2 2)3
A jm

x, 0[m' —n' —0] —X,q(e), (42)

where n = e2/hc is the fine-structure constant, c is the
velocity of light, and

e[e —n2D2]O[e + 0 —m2D2]
&~(e) =

v e —n2D2/e + 0 —m2D2

x ge —nn'/(m' —n2)

xO[e —On /(m —n )]O[ey' —t]O[e+ 0 —Ey'] .

(43)

Ru (E (0) —E„(0) .
In the case of the parabolic potential we have

37

k„'(x ) & O. (38)

So far we have assumed that both n and m are propa-
gating modes. However it can easily be shown also that
if one or both of them are nonpropagating, the above
results will be the same. In the case of one propagating
and one nonpropagating mode there will be a difFerence of
a factor 1/2 from the wave-funct'on normalization. But
since there will be no restriction b in this case this fac-
tor of 1/2 will be canceled by the additional summation
over 0. In the case where both modes are nonpropagat-
ing the condition h will be imposed trivially. However,
the difference in wave-function normalization turns out
to be canceled by other factors in the wave function.

The existence of turning points imposes the condition
that the point x* must be in the region allowed for the
wave function, or equivalently

c d(0) . d(z')
p o, =n, 2x ) (n y 1)

xO[2 —x 0] —Pp, (vr e),
d6

(44)

where

O[e —(2n+ 1)D2]O[e+ ~ 0 —(2n+ 3)D ]
&par(~) =

Qe —(2n + 1)D2/e + m20 —(2n+ 3)D

x ge —vr A(n + 1/2)8[a —m B(n+ 1/2)]
xO[~ e~ —e]O[e+ m. (0 —e~)] . (45)

The absorption coefficient p depends on the microcon-
striction geometry d(x) through the factor ~d(x*)/d'(x') ~.

To determine its importance we have calculated p for two
different geometries, one for which the constriction width
has an exponential dependence on the x coordinate

E —her 2J' (39)

Using Eq. (36) we can express k (x*) for the square
potential as d(*) = d(o) * '"

and one for which this dependence is quadratic,

d(*) = d(0)/[1+ *'/l']-

(46)



49 OPTICAL ABSORPTION IN A TWO-DIMENSIONAL QUANTUM. . . 7561

In both cases the length scale of the microconstriction
is determined by the parameter l; for the exponential
geometry we get

d(x') l

d'(x') Qln pz

and for the quadratic geometry

d(x') LP „
d'(~') 2'- —1'

where

E (o) —& (o)

(48)

(49)

(50)

Before we end this section we note that the absorption
coefficients p, ~ and p~ [see Eqs. (42), (44) and (48),(49)j
are proportional to the 6ne-structure constant a which
characterizes the strength of the coupling between light
and matter, to the factor c/L which is the inverse time it
takes an electromagnetic wave to propagate through the
resonator, and to the factor Ld( 0)/L which is the ratio
of the effective point-contact absorption area to the total
resonator area.

IV. RESULTS AND DISCUSSION

In this section we will analyze various absorption spec-
tra resulting from our calculations using the following
values of parameters entering our expressions: the Fermi
wavelength A~ = 400 A. , the length scale of the micro-
constriction l = 1@m, and the length of the resonator
L=1mm.
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FIG. 2. Frequency dependence of the absorption coefBcient
of a quantum point contact in the case of a square-type lat-
erally confining potential. In this case there are ive trans-
port modes in the channel, resulting in 6ve narrow absorp-
tion peaks. The dashed line shows the separate contribu-
tion from the Sfth transport mod e, which is seen to dom-
inate the contribution to the Sfth peak. The wide max-
imum at low frequencies is a result of absorption in the
contact regions (bulk absorption). The energy is normal-
ized to Es = h s /2rn*d (0) and in this case we have used
d(0) = 1100 A.

Figure 2 shows the absorption coefFicient p as a func-
tion of &equency for the square potential case. The
channel has five propagating modes and consequently we

6nd 6ve absorption peaks, positioned at the &equencies
~ = (2n+ 1)Eo/h, . Because of the matrix element the
absorption peaks resulting &om nearest-mode transitions
are considerably larger than those resulting from other
transitions. There is therefore no appreciable absorption
at frequencies higher than those included in the figures.
The microconstriction geometry in this 6gure is of the
exponential type.

It is also seen that the bulk absorption, which is re-
sponsible for the wide maximum at low frequencies in

Fig. 2, is very well separated &om the narrow peaks due
to absorption in the center part of the constriction. The
bulk absorption results &om transitions between non-

propagating modes, i.e., modes whose wave functions
have a turning point. Since the nonpropagating modes
do not reach the center of the microconstriction, they do
not develop any resonant absorption peaks. The dashed
line in Fig. 2 shows the contribution &om mode n = 5
and it is clearly seen that the fifth peak consists entirely
of this contribution. We therefore stress again that the
bulk absorption does not afFect the absorption in the cen-
ter of the point contact.

It can be seen in the equations that the absorption co-
efficient p depends on d(L/2). A natural choice would
at first sight be to let d(L/2) + oo, but this is not pos-
sible since our adiabatic model is not valid on length
scales exceeding the impurity scattering length. There-
fore we have introduced a maximum width of the channel,d, which is not allowed to exceed the inelastic scatter-
ing length. In our numerical calculations we have used
d = 10d(0), but the value of d does not have any
signi6cant infiuence on the resonant absorption peaks.
However it strongly afFects the bulk absorption, a matter
we dicuss below.

The magnitude of the bulk absorption grows with in-

creasing d, since it is proportional to the number of
modes in the wide regions. It is found that the bulk
absorption grows as d „where g is a positive number
smaller than unity. Hence the absorption density goes to
zero as d „~oo, in agreement with the well-known re-
sult for bulk materials. Since we are dealing with a finite
d „in our calculations, a threshold value of the transi-
tion frequency u enters, below which no absorption can
take place. This is seen in Fig. 2, where we also note that
the sawtooth structure in the bulk absorption is due to
new modes being switched on as the &equency increases.

For transitions at the very center of the microconstric-
tion, x = 0, the denominator d'(x') is zero and hence
the absorption coefBcient p becomes in6nite in our sim-
ple model. To avoid this divergence we have added a
small number b to the denominator.

The dependence of the absorption on microconstric-
tion geometry is found to be very weak, a fact which
indicates that OPCS should be sample independent. Fig-
ure 3 shows a comparison of the absorption coeKcients
for two dMerent geometries. The solid line represents the
exponential geometry and the dashed line represents the
quadratic case. The laterally confining potential is of the
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FIG. 3. Absorption coefBcient as a function of frequency
for two different microconstriction geometries. The solid line
corresponds to the exponential geometry and the dashed line
corresponds to the quadratic geometry (see text). It is seen
that the difference between them is very small, a fact indicat-
ing that optical point contact spectroscopy should be sample
independent. There is one transport mode in the system and
the laterally confining potential is of the square type for both
geometries. The energy is normalized to Eo = 5 z /2m'd (0)
and in this case we have d(0) = 300 A..

FIG. 4. Frequency dependence of the absorption coefB-
cient in the case of a parabolic-type laterally confining po-
tential. There are twelve transport modes in the channel,
together resulting in a single absorption peak. The wide max-
imun at low frequencies is a result of absorption in the con-
tact regions (bulk absorption). The energy is normalized to
Eo ——h z /2m'd (0) and in this case we have d(0) = 320 A.

square type, and we have one propagating mode in the
system. The difference between the two types of geome-
try is seen to be very small, and the same result is found
for the parabolic potential.

Now let us turn our attention to the case of the
parabolic potential. Since the energy levels are equidis-
tant in a parabolic potential, all transitions between the
propagating modes n and n+ 1 are peaked at the same
frequency. (For this type of poto. ntial only nearest-mode
transitions are allowed, i.e. , m = n + 1.) Figure 4 shows
the absorption coefBcient p as a function of &equency for
a channel with twelve propagating modes. We see that
there is only one absorption peak, positioned at the &e-
quency u = 27r2Eo/h. The bulk absorption, which also
here is very well separated &om the absorption peak, has
the same properties as in the case of the square potential
discussed above.

We will now estimate the possibilities of an experimen-
tal realization of optical point contact spectroscopy. We
imagine that the point contact device should be put into
an electromagnetic resonator, which can be characterized
by a quality factor qp defined as

qp= )
$p

where pp is the absorption coefficient of the resonator.
In analogy we can define a quality factor of the point
contact as

qpC =
+pc

where ppc is the absorption coeKcient of the point con-
tact. The entire system when the point contact is put
inside the resonator can then be characterized by the to-
tal quality factor

qp

1+ qo/qpc

We assume that the ratio qe/qpc must be at least as
large as 1/10, to make the point contact absorption mea-
surable. The quality factor for the resonator is taken
to be qp = 10 . The smallest qpc values are found
for the parabolic potential case. For a point contact
with five propagating modes we get qPC = 8 x 10 and
for twelve propagating modes we get qpc 0.5 x 10 .
This gives us qo/qpc = 1/8 and qo/qpc = 2, respec-
tively. In the square potential case we get for five prop-
agating modes qpc 2 x 10 and for ten propagating
modes qpc = 2 x 10 . This gives qo/qpc

——1/20 and

qo/qpc = 1/2, respectively. Our crude estimate indi-

cates that point contact absorption can be measured if
the number of propagating modes is large. Especially if
the laterally confining potential is of the parabolic type,
the conditions for an experimental realization seem to be
good.

In conclusion we have calculated the optical absorp-
tion of a quantum point contact. We have found that
the absorption in the very center of the microconstriction
is clearly separated in &equency from the absorption in
the wide contact regions. Therefore optical point contact
spectroscopy is possible and can be very useful in char-
acterizing the shape of the laterally confining potential.
We have shown how two different types of potentials pro-
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duce entirely different spectra. Further, OPCS is found
to be sample independent since the microconstriction ge-
ometry has practically no influence on the absorption, as
long as we consider adiabatic geometries. We have also
made an estimation of the experimental possibilities of
measuring point contact absorption.
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