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We derive rapidly convergent expressions for the Coulomb component of the pressure tensor of
single-charge, partial-charge molecular, and point-dipole lattices in the Ewald formulation for both bulk
and surface geometries. In the case of the pressure tensor, a general procedure for generating the series
expansions is described. Some of these expressions are simple enough to be suitable for incorporation in
molecular-dynamics and Monte Carlo molecular simulation computer programs covering a range of
specific polar condensed phases. The surface-geometry formulas are more complicated than the corre-
sponding bulk expressions because of the reduced symmetry.

I. INTRODUCTION

Condensed-phase polar solids and liquids are often
represented by unit cells periodically repeated in two and
three orthogonal directions for surface and bulk studies,
respectively. Each unit cell contains N charged species.
The charge distribution of ions is often represented by a
series of point charges, molecules by a multipole expan-
sion, or alternatively by a series of discrete "partial"
charges distributed at sites within the molecule. These
charge interactions decay slowly with distance so that a
rapidly converging resummation of the original series is
often required for efficient comparison. One of the most
important applications for lattice sums is in Monte Carlo
(MC) or molecular-dynamics (MD) computer simulation
of polar molecular species. We believe some of the ex-
pressions derived below could be useful in this area.
Some of them (particularly the surface formulas derived
below) are possibly a little analytically complicated to be
of much use in simulation because of the repetitive nature
of the technique. However, there are many nonsimula-
tion applications where the level of complexity of the ex-
pression is not such an important issue once they have
been coded into the computer because these summations
only have to be performed perhaps several times in an ap-
plication, so the complexity of the formulas is not a seri-
ous problem.

One solution to the slow convergence of the original
lattice sums is to recast the original slowly converging
real-space lattice sum using the Ewald method' into two
more rapidly converging series. This approach has the
advantage that the interaction tends to the original
Coulomb form in the thermodynamic limit (i.e., N ~ 00 ).
For a fully periodic three-dimensional lattice, Ewald re-
cast this summation as two series, one in real space and

the other in Fourier space (covering the reciprocal lat-
tice). ~ Both of these series can be adjusted to converge
rapidly by a suitable choice of an arbitrary inverse
distance-scale parameter, ~, which is present in both
series. An alternative approach is to curtail artificially
the original Coulomb interaction with distance using an
arbitrary short-range "switch-oF' function. As normally
implemented, with a fixed switch-off distance range, this
method does not tend to the original system in the ther-
modynamic limit. The switch-off method can lead to
structural artifacts which become manifest in the radial
distribution function at pair separations close to the trun-
cation distance. Therefore, the Ewald approach has
much to commend it in favor of switch-off functions.
The bulk Ewald formulas have been investigated
numerous times (see, for example, Refs. 1 and 3—6). The
author has derived a range of alternative summations of
the general Ewald form for bulk point-charge lattices,
concentrating on the potential energy and the forces.

In a polar surface, such as a solid or liquid film, the
slowly converging interactions cover a lattice of unit cells
repeated to infinity in two directions parallel to the sur-
face plane. The lattice is of finite extent in the remaining
direction perpendicular to the surface plane. In contrast
to the bulk potential, the surface potential and its deriva-
tives has been less well studied by the Ewald route.

Following on from Ewald, Parry adapted the Ewald
transformation to apply to laminar and semi-infinite sys-
tems. The author has developed these surface formulas
for point charges ' and point dipoles, ' concentrating
on the potential energy and the forces, from the perspec-
tive of molecular simulation. Subsequently, there have
been:other contributions to this subject. For example, re-
cently Lekner' derived a surface potential formula cast
entirely as a Fourier space series. This converges rapidly
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for charge separations whose components perpendicular
to the surface plane are of order or in excess of a typical
lattice spacing in a crystal. As the normal separation
tends to zero, this formula converges slowly. Hautrnan
and Klein' considered a novel expansion procedure, in
which the r interaction was decomposed into an in-
plane component [reformulated as a two-dimensional
(2D) Ewald expansion] and an out-of-plane component
retained in real space. A completely di6'erent method
suitable for large-X bulk simulations has been to use a
"reduced" multipole reformulation of the Ewald
method. ' In this method, the simulation cell is reduced
to an equivalent reduced number of charges with the
same lower multipoles as the simulation cell. Replica
unit cells are replaced by a unit cell of multipoles, treated
again by an Ewald expansion to improve convergence.

The situation for the potential energy and force for
point-charge and point-dipole lattices is now well docu-
mented and either the conventional Ewald, ' or its sur-
face adaptation, the Parry-Ewald formulas, are suitable
and can be generalized to arbitrary multipole distribu-
tions.

The purpose of this paper is to develop further the
above formulas to consider the pressure tensor P, which is
an important quantity in solid and liquid state statistical
mechanics, but has been neglected for a range of idealized
polar species lattices. One use for the pressure tensors is
in MD simulation of the liquid state. The time correla-
tion functions of the stress tensor using the Green-Kubo
expressions give predictions for the viscosity. Without
these formulas, Green-Kubo cannot be implemented
efBciently.

We extend the Ewald treatment to derive expressions
for the pressure tensor of bulk point-charge, partial-
charge molecular, and dipo1e lattices for both bulk and
surface geometries. For completeness we also give the
expressions for the system and single-species Coulomb
potential energy, and the derived forces (the latter being
used as a component of the pressure tensor). The formu-
las for the partial charge systems will be derived in detail,
and the point-charge lattice analogous of these expres-
sions will be quoted as special cases. The total energy,
force, and pressure tensor for any material will have a
number of short-range interaction contributions, but we
assume they are suSciently rapidly decaying with dis-
tance to be absolutely convergent and pose no problems
when using direct summation over the real lattice. We
first consider bulk geometries in the next section.

II. BULK

A. Partial-charge molecules

gq, =O.
a=1

(2)

The total Coulomb interaction energy of the system 4 is

N " N "j
2'P=X X q-X Xq,pX „i =1 a=1 jXi P=1 n' niaj P

where

niaJP ia JP (4)

and r, is the position of partial charge o, on molecule i,
q, . The prime on the n denotes the omission of the i =j
term when n=0. An alternative expression for the total
electrostatic potential energy is

where P; is the potential energy of molecule i Partia. l

charges a and p are positioned on molecules i and j, re-
spectively. Therefore we reserve Roman indices for the
charged units themselves and the Greek letters for the
charge site indices.

The Ewald expression for Eq. (5) involves a summation
over the real lattice vectors n and also reciprocal lattice
vectors h. The reciprocal lattice vector is defined by

h=2m. (ix/L„+jy/L +kz/L, ) .

Then,

The long-range nature of the Coulomb interaction
necessitates a formal sum over the entire 3D lattice of the
replicated simulation ("unit") cells. The vector n denot-
ing the position of the unit cell is given by

n=ixI.„+jyL +kzL, ,

where the unit vectors y are directed along the y direc-
tion, the corresponding cell sidelengths are L~, and the
integers i,j,k range over 0, +1,+2, . . . , +~ to span the
entire lattice. Consider N rnolecules of index i, with n,
charges q, , where a is the site index within the molecule.
Each molecule satisfies the electroneutrality condition

n,

N
24= g g q; g g q.&g erfc(ar„; &)/r„, &+ g h exp( —h /4x )~~g g q; exp(ih. r, )~~

i =1 a jXi p n' h&0

N N "i n.

g q,- 2m. ' a —g g q,. g q,grf(~r, ,&)/r, + . .
i =1 a=1 i =1 a=1 @&a

Therefore the original summation carried out in real space is transformed into two summations, one in real space (over
the same real-space lattice) and one in reciprocal space (over the reciprocal lattice). Additional Gaussian charge distri-
butions have been placed on each charge site. The adjustable parameter sc is an arbitrary inverse-length parameter, and
erf( ) and erfc( ) are the error and complementary error functions, respectively. The value of ~ determines the
relative emphasis given to the real- and reciprocal-space terms; the reciprocal-space series becomes increasingly more
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important as a. increases. The volume of the simulation cell equals V=~L„L XL, ~, where L =i+ . Usually, the
real- and reciprocal-space series are truncated spherically in each vector space. The last two terms in Eq. (7) specify the
self-energy of the molecules in the system. These two expressions correct for the inclusion in the reciprocal-space sum-
mation of the interaction energy for the Gaussian spread-out charges on sites a and P, respectively with the point
charge q; in the same molecule.

An alternative representation for 4 is to use the definition of Eq. (5) and calculate P; directly,

t1 ~ 5.

P, = gq, . g g qj&gerfc(ar„; .&)/r„, ~&+ . g h exp( —h /4a ) g q; Re[exp( —h.r,. ) g gq exp(ih r.&)]
a=1 j =1P=1 n' V hAO a=1 j =1P=1

n,,

—g q; 2' ' z g—q; g q;tterf(xr;, &)/r, ,&,
a=1 a= 1 PAa

where Re denotes the real part of a complex quantity. The force on partial charge on site a on molecule i, F; by all
charges in the system including those on the same molecule is given by

F; = —V;P;.
From the definition of P; in Eq. (28) we obtain for the electrostatic force on partial charge a,

(10)

The real-space series contribution to the force is given by F,- and the reciprocal-space series contribution to the force is

givenby F . behave
12 ~

F,'a=q; g g q,&g ~ ar„, &exp( ~r„,, &)+e—rfc(~r„,, &)
jWi p=1 n' PfIiaj p

and

F. =—II
ia

4 00 7l

g hh exp( —h /4a. )q; Im exp( ih r;—) g g q exp(ih r &)
h%0 j=lP=1

(12)

where Im denotes the imaginary part of a complex quan-
tity. It is important to note that the Coulomb force on
site a for species i, F, ', contains contributions from par-
tial charges within the molecule. Taking all sites in the
molecule into consideration, they do not introduce a net
force or torque on the molecule. In any implementation
of rigid-molecule dynamics constraint forces or any other
geometry-maintaining device (e.g. , quaternions) would
nullify these forces.

The pressure tensor of a Coulomb system can be writ-
ten in terms of the virial —r.Vr . In an atomic descrip-
tion, the pressure tensor is defined solely in terms of the
"site-site" pair forces, F;

straint forces (needed to maintain a rigid unit under
motion). In Eq. (13) the nearest-image pair separations
and forces are assumed. The forces on the sites that need
to be "constrained" come here from charges on other
molecules and also from those on the same molecule.

An alternative expression for P is to use the molecular
representation

N 1 N N
PV= g m;r;r;+ —g g r; F; (14)

i=1 i=1 jAi

where r;.=r; —r .. These can be rewritten in a more use-
ful form for computation,

PV=+mrr+ —g g g gr;&tiF,
i =1 i =1 a=1j &i P=1

n,- n,

X g g riaipFiaip &

2 i =1 a=1 PWa

(13)

where ri is the velocity of the center of mass of molecule
i (The cent. er of inass of molecule i is denoted by r,. ).
The pair force between site a on molecule i and site P on
molecule j is F; &. In Eq. (13), the first term is the kinet-
ic contribution to the pressure tensor coming from the
translational motion only. The second term is the in-
teraction between sites on different rno1ecules only. The
last term is the contribution from the intrarnolecular con-

PV= g m, .r,.r;+ —g g g g r;.F; Jti .
i =1 i =1 a=1j Wi P=1

In the Ewald summation the interactions are not
decomposable solely in terms of pairwise additive interac-
tions because of the reciprocal-space term. In fact, the
reciprocal-space term in the Ewald formula is as impor-
tant as the real-space term because the programs are opti-
mized to truncate the real-space interactions within half
the box-sidelength. This necessitates values of ~V'" & 7,
so a major component of the interaction comes from the
reciprocal-space term. Typically in a simulation it is
found convenient to truncate spherica11y in rea1 and re-
ciprocal space, where n & 1 and h ~h,„; for aV -7,
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then h,„—7. ' Therefore, Eq. (15) is only partially ap-

plicab1e (i.e., for the real-space part of the Ewald formu-

la). Our solution to this is to use Eq. (1S) for the real-

space component of the pressure tensor. For the

reciprocal-space component of the pressure tensor we use

the form in Eq. (13}directly from 4& which circumvents

the periodic boundary problem. A Taylor expression of
the interaction energy 4(e) in terms of the strain tensor e

leads to a definition of P,

B4(0)
ae

ae(0) [e(~)—e(0)]
B6

(17)

in the limit a~0 and carrying out a Taylor expansion in

e we have for the Coulombic component of the pressure

tensor,

In the case of the diagonal elements, L ~L (I+a) and

for the off-diagonal elements, a~sin(6), giving k

~k +uk and k ~cos(0)k . Using the approximation

N "i N nlj nl ajp
PV= —g g q; g g q &g —a.r„, &exp( sr„—, &)+erfc(vr„, &)

'=l a=1 j=l P=l n' niaj p

00 N i
n.

+ g B(h}h exp( —h /4s ) g gq; exp(ih r; )

h&0 i =1 a=1
+E, (18}

where for the co~ component of the tensor 8 we have

8,=5,—2h h, /h —h h, /2a (19)

N

E= —g gr, F,".
i =1 a=1

(21)

N

XXX
i i =1 a=1 P@a

which can also be written as

(20)

where 6, is the Kronecker delta. The last term in Eq.
(18) comes from the final intramolecular component of
Eq. (13),

To derive Eq. (18) from the expansion of 4, the tri-

gonometric terms remain the same because h r; is in-

variant under the e transformation. An equivalent ex-

pression for the pressure tensor has been derived by Nose
and Klein. '

The pressure tensor for the corresponding point-charge
system is given using the same derivation method,

N N
PV= —gq, gq g ar„,jexp( ar„,—)+erfc(arm, )

j Il

rn .rn
IJ V

3r nij

+ g B(h)h exp( —h /4a ) g q;exp(ih r;)~ h~o i=1

where there are X point charges of magnitude q,. in the
unit cell. Note the absence of any "self" component for
the pressure tensor in the point-charge system.

B. Point-dipole molecules

A point dipole superimposed on a short-range repul-
sive core is a convenient idealization of polar molecules
in certain situations (e.g., Stockmayer molecules).
Monte Carlo and molecular-dynamics simulations of
such dipolar periodic systems frequently use the Ewald-
Kornfeld resummation of this slowly decaying Coulomb
interaction, ' ' to improve the rate of convergence. Con-
sider X model molecules specified by an index i with
point dipoles, p,- charges, on them. These molecules are
positioned at r„, . In the case of the dipolar system, the

tota1 Coulomb interaction energy is obtained by replacing

q, by the operator p; V, ,

N
2+= —X X XI T., ~, ~

i=1 j=1 n'

where

(23)

I
nip 3

nij

3rnij rnij —I
2r nij

(24)

I is the unit dyadic, r„,,- = ~r„;, (
= ~r„, —r„, ~, and T;, is the

dipole interaction tensor. There is a null entry in Eq. (24)
for i =j when n=o. Using Eq. (5) we have, in the
Ewald-Kornfeld formulation of the dipole sum of Eq.
(24),
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24= g g g(p, Ijj, )B(r„,) (—Ij, r„, )(Ij,, r„,)C(r„,, )
i =1 j=1 n'

00 N
+ g h exp( —h 2/4~ ) g p; hexp(ih. r, )

h%0 i=1

4K p
i /2 (25)

The quantity a has the same significance as for Eq. (7),

B (r) =erfc(xr )r +2am ' exp( zr )—r

and

C(r) =3 erfc(vr)r +2air ' (2a +3r )exp( xr —)r

(26)

(27)

The last term in Eq. (25) subtracts out the self-energy of the dipoles in the system which have been included in the
reciprocal-space sum. The potential energy of the point dipole P, is

N

P,. = g g (Ij.,"p,. )B(r„,)
—(p,. r„,)(p, r„,)C(r„, )

j=1 n'

N 3 2

+ g Ii exp( —h /4a. )p, ; hRe exp( —ih r, )gp; hexp(ih r )
477 2 2 2 . . I i

hXO
l l J 3 1/2

The real-space F,' and reciprocal-space F,". contributions to the forces are determined using Eq. (9).

N

,
'= g g (r„jIj,;Ij, +p,;pj.r„."+Ij;j)u, r„")C(r„)—"

j=l n'

'
(p, ,'r„, )(y,, r„,)D (r„,, ),

nij
(29)

where

D(r)=15erfc(ar)r +18vir ' exp( ar )r +4s ir —' (2a +3r )exp( ar )r—
+4~m. ' (2a +3r )exp( ar )r—

and

00 N
F' = — g hh exp( —h /4x )p; hIm exp( ih r; —) g p 'hjexp(ih rj)

hAO j=1

(30)

(31)

Using the expansion of the Coulomb energy as a route to the pressure tensor [i.e., Eq. (16)] we have for the co~ element,

N N

&TV X X X cunij ("mij pi 'Ij'j +ij'i&j nij +Ijj'upi nij ) ("nij2 i=1 j=1 n

00 N

+ g ii exp( —h /4a ) Bi,(h) g p; hexp(ih. r;)
hWO i=1

D(r„j)
7lllj I l nlj I j nlj )

nij

+82„, (32)

where

and

Bi,=5, 2h h, /h ——h h, /2v (33)

B2,=2Re g iLi, , h, exp(ih. r,. ) g p hexp(i'h r, ) (34)

Having completed the derivation of the pressure tensor for the three model species, we now derive the corresponding
formulas for the surface lamina geometry. A semi-infinite lattice can be constructed one layer of unit cells at a time, po-
sitioned adjacent and parallel to each other.

III. SURFACES

A. Partial-charge molecules

The lattice is constructed from layers of unit cells in6nite in extent parallel to the surface xy plane. The 20 real-
space lattice vector n denoting the position of the unit cell from an origin is given by
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n=ixL +jyI.
and the reciprocal lattice vector is

h=2n(ix. /L +j$/L ) .

The Parry-Ewald reformulation of Eq. (23) is

oo N i N j
24= g gq; g gq &ger. fc(irr„, J&)lr„; &+—. g g gq; g g q &F(a,h, r„.&)Re[exp(ih r, .&)]

i=la=1 j=lP=l n' h i=la=1 j=lP=1
n. N

g q; 2m
' ~ g—g q; g q;prf(ar;, p)lr;.;p,

(36)

(37)
i =1 a=1 i =1 a= 1 PWa

where r„& is the z or "out-of-plane" component of r; &(th. e same for all n) Th. e in-plane area of the unit cell, A,
equals A = ~L„XL» ~. The terms in Eq. (37) are as follows:

F(ir, h, r, .&)
= [exp(hr„&)erfc(h /2@+r„p)+ex.p( —hr„. &~)erfc(h /2K r„,~) ]

—h (38)

for hAO and,

F(~,h =0,r„&)=—2t r„. jprf(r„~)+exp[ (r„@))—Ion'

n,. N n.
00 n.

P; = g q; g g q &g erfc(~r„; &)Ir„; &+—g g q; g g q &F(v, h, r„j&)Re[exp(ih r; &)]
a= 1 jAi P= 1 n' h a=1 j=l p

The existence of a distinct nonzero h =0 term is one of the features of the surface formula that distinguishes it from the
corresponding bulk Ewald expression, for which the comparable term is equal to zero for an overall charge neutral sys-
tem. The last term in Eq. (37) again subtracts out the self-energy of the Gaussian charge distributions in the system,
just as for the bulk case above.

The molecule P; from Eq. (5) is

n,. n, n,.

q, 2m
' ir.—g q; g qgrf(xr, ,&)Ir, ;& .

a=1 a= 1 PWa

(40)

We have for the x, y, and z components of F,', the expression given in Eq. (11),with the sum over n covering the two-

dimensional lattice in this case. For F' we have for the x and y components a distinct formula from the z component,

reflecting the inequivalence between in-plane and out-of-plane expressions,

00 n

FI =—g g q; g g q &F(x,h, r„;&)h Im[exp(i.h r;;&)] .

h a=1 jWi P= 1

(41)

For the z component of the force we have

00 nj

F,"=——g g q; g g q,&[exp(h „&)erfc(h/2a+r„@) —exp( hr„~)erfc(h/2a r„—p)—
h a=1 jWi P

+2 exp( —hr„. ~&)exp[ —(h /2x r„~)2]a/~'»2—h.
—2 exp(hr„. &)exp[ (h /2a. + r„~@)—]a/~' h ] Re[exp(ih r, &)] (42)

for h&0 and

(43)

for h =0. The surface pressure tensor is a more complicated expression than for the bulk Ewald system, because the
surface geometry breaks the formal equivalence between the three Cartesian directions. In the notation of this work,
the x and y directions are equivalent in the formal expressions, whereas the z direction is quite distinct in its analytic
behavior. For the Coulombic component of the stress tensor (including both real- and reciprocal-space series) we have
for the xx, xy, yx, and yy components,
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1I' V=-
67 2

N "i N

g q &g»r„j&exp( »—r„, &)+erfc(»r„, &)
j= 1 P=1 n'

I N "j
g q,. g g q &B. ,Re[exp(ih r; p).]+F. ,

rconij re aj p
3

~niaj p

For hAO, we have

a=1 j=lp=l

B =5„g(», h, r„jjj)+h h, h I (r„jij . h—')exp(hr„jj1)erfc(h /2»+ r„~)
(r„—p+h . ')exp( —hr„j&)erfc(h/2» r„—,~)

—exp(hr„~j&)exp[ —(h /2»+r„&ij») ]/.»m'

—exp( —hr„j&)exp[ —( j1 /2» r„,~)—]/»m'

and for h =0 there is

(45)

B„,=5 g(», h =O, r„~ j3) .

For the zz component of the stress tensor,

1l ~ ll ~

00

P„V=—g g q; g g q &g —»r„j&exp( »r„, &—}+erfc(»r„j&) r, ,j.
i =1 a= 1 j=1 P= 1 n' fniaj p

(46)

oo N ~i N j
q, g g q &I exp(hr„j&)erfc(h /2»+ r„ I~) exp( ——hr„nj&}erfc(h /2» —r„nj~)

hXOi =1 a= 1 j= 1 P= 1

+2exp( hr„—j&)exp. [ (i1 /2» r—„~j&„)—]»/n' h

—2exp(hr„j&)exp[ (i1/2»+r„—@) ]»/m'~ h]r„j&Re[exp(ih r; &))

+—g gq; g gq pr„,.jjerf(r„,~)+E„.
i=1 a j=l P

(47)

The last term in Eq. (47) comes from the h =0 component of the Fourier space term. For the xz( =zx) component of
the stress tensor (and yz, by index swap, x ~y) we have

"i
J',„V=—g

i =1 a=1

1l ~

q; g g q &g —»r„; &exp( »r„; &) +erf (cr»—n&)
j=lP=1 n' ~niaj p

oo N "i N "j
+ g h„g g q; g g q &r„&F(»,h, r„&)lm[exp(ih. r; p)] +E,„.

hAO i =1 a= 1 j=1 P= 1

(48)

The h =0 term for S„„(andS~, S»„and S,» ) is equal to zero. The corresponding point-charge expressions are obtained
by setting n, =1, for a11 i and E=O.

B. Point dipoles

If we replace q; by the operator p,. V, in the point-charge simplification of Eq. (37) then the Parry-Ewald reformula-
tion of Eq. (23) for a lamellar periodic lattice is

N N oo

2@= g g g(p, p,, )B(r„,, ) (p, r„,, )(iz, r„,, )C(rn, ,)—.
i =1 j=l n'

+—g g g [Re[exp(ih r; )][F(»,h, r„")(p; h)(pj h} p„y,, E(»,h, r—„j}]. -

h i=1 i=j
4' p;

+Im[exp(ih r;, )][@„(pjh)+p„(iz;.h)]H(», h, r„j)]—g
i =1 377

(49)

where the functions B and C are given by Eq. (26) and Eq. (27), respectively. The functions in the reciprocal series term
involve I', given by Eqs. (38) and (39). There are two new functions required, which are
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H = =exp(hr„. . )erfc(h /2a+ r„a) —exp( h—r„)e.rfc(h /2a r„—a)..ar
Br„

+2 exp( hr—„)ex"p[ (h—/2a r„—a) "]a/n' h —2 exp(hr„")exp[ (h—/2a+r„a") ]a/n'~ h

for hAO,

H = —2 erf(r„sc)

for hAO,

B) I'E =
2

=h exp(hr„i )erfc(h /2a. + r„Ja)+h exp( hr„)—erfc(h /2a r„rc)—"
Br„"

—4[exp(hr„i )exp[ (h /—2a+ r„a) ]+exp( —hr„)exp[ (h /2—a r„a—) ]].a/n'~

+4[exp(hr„. . )(h /2a+ r„a)ex"p[ —(h /2a+ r„a) ].
+exp( hr„)(—h /2a —r„a.)exp[ —(h /2a —r„a.) ) ]a ln' h

for h %0, and

E= —4exp[ —(r„.ja.) ]an

(5O)

(51)

(52)

(53)

We have for the x, y, and z components of F;, Eq (29)., with the sum over n covering the two-dimensional lattice in
this case. Again for F"

, the x, y, and z components are represented by analytically distinct expressions, reflecting the
inequivalence between in-plane and out-of-plane directions. For the in-plane (x,y) forces,

N

F,"=—g g h[lm[exp(ih r;J)][F(a,h, r„)(p; h)(pj h) p„p,JE(—lr, h, r„j)]
h j&i

Re[e—xp(ih r~)][@„(iz;h)+p,~(p, h)] H( a, hr„ i)I . (54)

For the z direction we have

N

F,"=——g g [Re[exp(ih r; )][H(a,h, r„)(p,, h)()u h") p,„p, G(a,—h, r„.)]..
h jXi

where

+Im[exp(ih r~/)][@„.(p h)+p, (p; h)]E(a, hr„")], (55)

G = = [h exp(hr„.j )erfc(h/2a+r„ja) 6h exp(hr„)—exp[ —(h/2a+r„a) ]an"
Br

+12h exp(hr„" )(h /2a+ r„ia)a exp[ —(h /2a+r„a) ]n
' "+4exp(hr„)a exp[ —(h /2a+r„a)]n. .

—8 e p(hxr„")(h/2 +ar„)aaexp"[ —(h /2a+r„a) ]n"
—h exp( hr„)erfc(h/2K r—; K)+"6h exp( hr„)exp[ (—h/2a "r„a) ]a—n— "

—12h exp( hr„~)(h—/2a —. r„a)a exp[ —("h /2a r„a)2)n. — ".
—4 exp( hr„)a exp[ —(h /—2a "r„a) ]n- ".
+Sexp( hr„)(h/2—a —r"„"a) a exp[ —(h/2a —r„a) ]n ' ]/h"

for h WQ, and

G =24r„aexp[ —(r„a) "]n '~ +16r„""aexp[ —(r„a) ]7r ' —16(r„+r„a)n"'~ a "e"xp[ —(r„a)]"(57)

for h =0.
For the Coulombic component of the stress tensor (including both real- and reciprocal-space series) we have for the

xx, xy, yx, and yy components,
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N N ~ D(r
Pro&V —

2 g g g rconij
' (rznijPi Pj +Pie@& r.n'ij +PjzPi rn'ij )C(rnij ) rani&(Pi rn'ij )(Pj rnij )

i =1 j=1 n' ~nij

oo N N
+ g g g 5,[Re[exp(ih r, )][F(a., h, r„)(p..;.h)(p. .h) p„—p, K. (n, h, r» )]

h' i =1 j=l
+Im[exp(ih r j)][p„(p~ .h)+p, j(p; h)]H(&, h, r„j)]

oo N N
+ g g g [Re[exp(ih. r; }](F(a,h, r»j)h, [p„;(pj'h)+(p; h)p j]2A

+(p;.h}(pj'h)F (a, h, rzj)h h, h p„p, —K (a, h, r„)h„h,h")
+ Im[exp(ih r

&
) ](h,(p„p +p,jp„; )H(a, h, r„j )

+[p„(p h)+.p,, (p, h)]H. E(a, h, r„. )h„h",h )] . (58)

For the zz component of the stress tensor,

D(r„,j)
znij ( znij pi Pj +PizPj nij +PjzPi rnij }C( nij } znij (Pi nij }(Pj nij }

i
'

n nijJ
oo N N

[Re[exp(ih r,"}][H(v,h, r„j )(p; h)(pj. h) —p„p,&G (&,h, r„j )]
h i =1 g=l

+Im[exp(ih r,")]r„"[p„(p'h)+p,j(p; h)]K(a, h, r„j )] . (59)

For the zx component of the stress tensor (and zy, by index swap, x ~y) we have

N

P~V= —g g
i=1 j=l

where

D(r„,j)g "znij ( xnij Pi 'Pj'+PixPj nij +PjxPi '
nij }C( nij } xnij (Pi nij }(P'j '

nij }
n' nij

N N

g h„r„"[1m[exp(ih r; )][F(a,h, r}(»p; h)(pj h) p„pz&K—(a, h, r» }]"
i =1 j=l

Re[ex—p(ih r, )][p„.(p", 'h)+p, (p, ; h)]H(», h, r„")}, (60)

F =
[ rh„ejxp( rh„)jerf (ch 2/a +r„j)aexp(h—r„j )m

' exp[ (h /2m+ r„—ja ) ]h /z
—hr„"exp( hr„}erfc(h—/2a "r„a) exp—( h"r„j—Hr

' exp[ —(h /2a r„a)—)h /a— "
—exp(hr„" )erfc(h /2a+ r„a)+exp( hr„)erfc"(h /2a r„—a) ] "lh .— " (61)

The quantity 0 is

HE=aE+aE,
1 2

where

Hi =h exp(hr„")erfc(h/2~+r„"z)+h r„"exp(hr„")erfc(h/2sc+r„z)"
—h exp(hr„")n. ' exp[ —(h/2a+r„"a) ]/n —2hr„"exp(hr„")m 'j exp[ —(h/2ii+r„a) ]a".
+2 exp(hr„. )m

' (h /2~+ r„~)h exp[ —(h /2K+ r„a)].
—h exp( hr„)[1+erf( —h /2a—+r„.a. )]+h r„exp( hr„")erf"c(h /2x r„—x)"—.

+h exp( hr„j)n ' exp—[ (h/2a —r„"a) ]/v ——2hr„"exp( hr„)m' ' exp—[—( "—h/a/2+r„ja) ]x

+2 exp( hr„& )m —' ( —.h /2x. +r„z)h exp[ —(h /a/2 —
r„&z) "]lb, .

(62)

(63)

H2 =(—[h exp(hr„j. )erfc(h/2m+ r„K) 2exp(hr„-)m. '~ e"xp[——(h/2a+r„x) j] 2n

—h exp( hr„j)erfc(h /2x rja)+ 2 exp( hr„}m—'~~e.—xp[ ——"(—h /2~+ r».~)2]~] }lh . (64)
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The quantity K is

K =K( +K2

where

(65)

K 2

The FE, H

[ 2h exp(hr„)er"fc(h /2tr+ r„Ir)+"h r„--exp(hr„)erfc(h /2tr+ r„tr)"
—h exp(hr„" )vr

' exp[ —(h 12tr+r„a) ]"Itr 2h e—xp(hr„" )rr ' exp[ —(h /2tr+r„tr) "]tr

—4h r„"exp( hr„)n ' exp[ (h—/2tr+r„ tr) ]tr

+4h exp(hr„. )n' . (h/2tc+r„ tr)exp[ —(h 12a+r„~tr) ]

+4hr„ex"p(hr„)n"' (h /2tr+r„tr )tr exp"[ —(h /2tc+r„jtr ) ]

—4exp(hr„)n ' (h 12tr+r„~tr) Ich exp[ —(h 12a+r„j~) ]

+ 2h exp( hr„)erf—c(h /2tr r„i—tr ) hr—„exp( hr„)erfc( h —/2tr r„i—a )

—h exp( hr„—i)rr ' exp[ —(h /2tr r„ tr)—]Itr 2h ex—p( hr„)tr—' exp[ —(h/2' —r„tr) ]tr"

+4h r„exp( hr„)n—' exp[ (h /2~ —r„,x)]—tr.
+4h exp( hr„)n —' (h"/2a —r„" tc)exp[ —(h12tr r„~t—r) ]

—4hr„"exp( hr„)r—r ' "(h /2tc —r„tr) tc"exp[ —(h 12tc —r„&ir) ]

—4exp( hr„)m—'
(. .h/2x. —r„ tr) trh exp[ —(h /2' ztr) ]]lh- ,

—[h exp(hr„)erfc(h12tr+r„ tr) 4h exp(hr„)—vr
'~ exp[ —(h 12tr+r„ tr) ]tr

+4exp(hr„l)vr ' (hl2tr+r„a)tr exp[ —(hl2~+r„ tr) )

+h exp( hr„j )erf—c(h/2K r qK) 4h exp( —hr„—)n ' e"xp[ —(h/2tr r„tr) ]K- "

+4exp( hr„)rr ' —(h /2"1r r„jtc)tc e—xp[ —(h /2a —r„jlc) ]]Ih .

, and E are zero for h =0.

(66)

(67)

IV. CONCLUSIONS

In this paper we have filled in a number of gaps in the formulas for the electrostatic potential, force, and pressure ten-
sor for partial-charge molecule and point-dipole lattices. The geometries we have considered are both bulk and surface.
Clearly, the formulas become more complicated in the case for the surface geometry. Also the complexity increases on

going from potential through force to pressure tensor. All the formulas were confirmed numerically on lattices contain-
ing randomly filled unit cells.
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