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Recent studies of the magnetothermopower of a two-dimensional electron gas have concentrated on
measurements in either the low-field weak localization regime or the high-field Landau quantization
regime. In this paper we emphasize that for magnetic fields between these two limits there is
an interesting intermediate regime in which the total thermopower is dominated by semiclassical
e6'ects. Detailed expressions are derived for both the diH'usion and phonon-drag contributions to the
thermopower and a number of important observations are made that should be directly amenable
to experimental verification.

I. INTRODUCTION

The physical effect of a perpendicular magnetic field
on the thermoelectric transport properties of a two-
dimensional electron gas (2DEG) at low temperatures
depends upon the strength of the applied field. Weak
localization effects are important below a cut-off field

Bwi, (4pkyl), where y, is the mobility, kf is the
Fermi wave vector and / is the mean free path. Recent
experiments on highly disordered Si-on-sapphire metal-
oxide-semiconductor field-efFect transitors (MOSFET's)
(p 500 cm V s i, kyl 3) have clearly demon-
strated the importance of weak localization effects up
to fields 1 T (in these samples Bwz, 1.5 T).2 Of
course, in higher-mobility samples localization effects are
much less important and B~p is correspondingly a lot
smaller. Here, much attention has been given to the
behavior in the Landau quantization regime, which
may be defined as occurring for fields B ) p, iv, /r„
where 7q is the transport relaxation time and w, is the
single-particle (state) relaxation time sWha. t has been
largely ignored, however, both experimentally and the-
oretically, is the intermediate regime which lies between
the weak localization regime and the Landau quantiza-
tion regime, in which the transport behavior is dominated
by scattering processes which can be treated semic1assi-
cally. For a typical Si MOSFET one might have p,

1 m V s, kit 10, and rt/r, 1 (since short-range
potential fluctuations dominate the scattering), in which
case this intermediate regime extends &om 25 mT to

1 T. In modulation-doped GaAs/Al Gai As hetero-
junctions one might have p 30 m V s, kf l ~ 100,
and rt/T, 10 (since long-range potential fluctuations
dominate the scattering), whereupon the intermediate
regime extends &om 0.083 m T to 300 m T. In this
paper, a Boltzmann equation approach is used to cal-
culate the relevant magnetothermopower tensor of an
isotropic 2DEG in this semiclassical intermediate regime.
Detailed consideration is given not only to the diffusion
thermopower, but also to the less well understood contri-
bution arising &om phonoa-drag. A number of important
observations are made which should be directly amenable
to experimental verification.

The paper is set out as follows. The Boltzmann equa-

tion and its formal solutions are given in the following
section. In Sec. III these solutions are used to derive
the thermopower tensor. Detailed results are presented
in Sec. IV for typical "higher mobility" samples such as
those discussed above. Finally, in Sec. V, conclusions are
given.

II. THE BOLTZMANN EQUATION

=v & f+& &kf,
(Of it

i Ot ),
where v is the velocity of the electrons in the x-y plane.

The left-hand side of Eq. (1) is the rate of change
of f due to collisions. The contributions due to static
imperfections, ionized impurities, and phonon emission
and absorption are taken into account in what follows.

The applied electric fields and temperature gradients
are assumed small and therefore we assume that they
cause a small linear perturbation to both the electron
distribution f and the phonon distribution function Ng,
denoted as fi and N&i, respectively. A relaxation time

r(s) is associated with the electron scattering by ionized
impurities and imperfections and another, r~(q), with
the phonon-phonon and phonon-boundary interaction.
For weak electron-phonon interaction it can be shown by
examining the coupled electron and phonon Boltzmann
equations that '

1

C

where

k'g
(3)

The motion of the electrons can be described statis-
tically by the electron distribution function f(k, r, t),
where k and r are the 2D electron wave and position vec-
tors respectively, and we suppose that only the ground
subband is occupied. The steady-state Boltzmann equa-
tion for the electrons is
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and

F=- dNq

dh(uq i„(Q)
'

I'i, i, = fi, (1 —f„)P„„(Q) (5)

is the average rate of absorption of phonons with three-
dimensional (3D) wave vector Q = (q, q, ) resulting in
electron transitions from k to k when the whole system is
in thermal equilibrium. In accordance with the standard
methods for solving the linearized Boltzmann equation,
use has been made of the detailed balance relationship to
simplify the formulas by expressing the phonon emission
term in terms of the phonon absorption term. ~ 8 Ng is
the nonequilibrium phonon distribution obtained from
the phonon Boltzmann equations ii and f and N& are
respectively the distributions of electrons and phonons in
thermal equilibrium.

An explicit expression for the rate at which the electron
will transfer from k to k' by absorbing one phonon with
wave vector Q is obtained from the golden rule:io

2= b6
l~»l —

(5, +,), (6b)

The form factor ~Zii~ accounts for the finite extent of the
2DEG in the confinement direction; 6 is the variational
parameter in the Fang and Howard wave function. io

p
is the density of the material and it is 2.39 g/cm for Si
and 5.3 g/cms for GaAs. V is the volume of the material
and E~ is a spherically symmetric acoustic-phonon de-
formation potential. Finally, s(q, T) is the temperature-
dependent dielectric function, which is calculated in the
single-subband, random-phase approximation. Since
we are restricting ourselves to the regime where Ian-
dau quantization is unimportant, we assume that the
electron states themselves are not afFected by the field.
Consequently, both s(q, T) and P„„, are independent of
magnetic Geld.

To maintain simplicity of notation, the above expres-
sions (and those that follow) have been written down
only for the simplest possible single-branch phonon pro-
cess. It is implicitly understood throughout the pa-
per that difFerent phonon processes must be summed
over according to the following rules. At low temper-
atures we need consider only long-wavelength acoustic
phonons whose dispersion is characterized by an appro-
priate velocity v. In GaAs only longitudinal phonons
(v = 5140 ms ) contribute to the deformation poten-
tial interaction and E'g ———ll eV. In Si, in order to
account for both longitudinal (LA) and transverse (TA)
acoustic phonon modes (with velocities v = 8831 ms
and v = 5281 ms respectively), Ei is replaced in the
calculations by =„(q2/Q +D) and:- qq /Q for LA and
TA phonon modes respectively. ' ' =~ is the deforma-
tion potential for pure shear strain and D =:-~/:-„,with
:-g denoting the deformation potential for pure dilation.

orEi Q2Nq
Pk7 = 2, T)

l~»l b(s„—si —h(ug)6i, „~~)kk pV~&&2 ~q T

(6a)

The values used in the calculations for Si are =„=9.0 eV
and:"g ———6.0 eV. In GaAs the piezoelectric scattering
interaction should also be added to the deformation po-
tential interaction and so the function (ehi4) A/Q has
to be added to Ei2 in Eq. (6a) for LA phonons and re-
places Ei2 for TA phonons (v = 3040 ms i). The param-
eter hi4 is equal to 1.2 x 10~ V/cm, and A is 9q4q2/2Qs
for LA phonons and (8q q4+ qs)/4Q for TA phonons.

In response to an in-plane electromotive force E, an
in-plane temperature gradient VT, and a perpendicular
magnetic field 8, the linearized Boltzmann equation for
the electrons can be written

f' e—v V' f ——E Vi f7.(s)
'

h

2%

f (k) = G(8, 8*)U(k, 8') .
0

(10)

Here, ~ is the cyclotron &equency, vf is the zero-
magnetic-field (scattering) relaxation time at the Fermi
level, A is defined in the Appendix, and finally G(8, 8')
is a Green's function also defined in the Appendix.

III. CALCULATION OF THE THERMOPOWER
AND THE NERNST-ETTINGSHAUSEN

COEFFICIENT

The total 2D current density is

JzD = —) vf'(r, k) = 0E+ IV,T,
A

where A is the area of the 2DEG. The transport tensors,
o and I, are deduced by comparing the second part with
the third (phenomenological) part of Eq. (11). Equa-
tion (8) shows that the current (and consequently the
transport coefficients) arise from two distinct processes:
electron difFusion and electron drag by phonons. The
phonon-drag contribution to a is usually negligible but
phonon-drag plays an important role in thermoelectric
transport. The thermoelectric tensor obtained &om the
two processes is considered below.

A. Diffusion

A straightforward modification of the standard 3D the-
ory (see, e.g. , Ref. 15) gives for the 2D transport coeffi-

——(v x B) 7'i,f„y U(k) = 0 (7)
h

where the charge on the electron is denoted by e, which
is negative. Equation (7) is solved in the Appendix. For
weak electron-phonon interactions the external fields and
the electron-phonon interaction contribute independently
to the perturbation of the electron distribution and the
solution of (7) can be formally written as:

f' = fa+fs (8)

where the difFusion and phonon-drag terms respectively
are given by the following equations:

fi(k)df vA —&cry(vxA)
(9)

dG l. + &2&2f
and
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cients

aIld

o~

1+a2V2f
(12)

The components of L are therefore given by

kg) T2A )
k

x ) ~„(q)h~~(r„„.—r„.„)U„.
k, Q

(22)

vr2k g do.gL = Lyy
—— kgyT

3(ef ds

~'B, d(«&)
y+ y 3 g B

(14)

The application of a magnetic field perpendicular to
the electron gas does not affect the uniformity of the
electron-phonon interaction in the z-y plane. For given
electron and phonon energies this interaction depends
only on the angle between the phonon and the electron
wave vectors. This fact simpliGes the analytical expres-
sions obtained for I. The two independent coefficients
are given by

L = Lyy ——— dqdq, CUI'

(2m' 2ix
~

~& —q' ~I«o. L —cr yLyXX— 2 2cr +0. „
(16)

(2m*
~@+0

I ~oiI
0. Ly +~ yL

xy 2 2~zz + ~my
(17)

aIld

where tr = e afar, /m* is the zero-magnetic-field con-
ductivity, m is the effective mass, and N, is the area
density of electrons. The thermopower may be expressed
in terms of L and o".

(23)

We easily find from Eqs. (12)—(17) that

S.".= -C„
1+td 7rf )

Ly ———L y
——— dqdq, CgI'

(2m*
x

I ~g —q' ~lio

and

d (d7fS „=@CD1+& 7f
where

(2m*„~g+q' ll» (24)

with

vr2k~ k~T
e

(20)

and

~ e ~ LEE,'g„(2m') ~

32vr h, kgyT p

where the energy dependence of w is expressed through
the quantity p: p = sy(dine/ds) ~,

The equations for S" show that all the magnetic Geld
dependence in the thermoelectric power tensor is pro-
portional to p. We see that, for a strongly degenerate
electron gas, the changes in L in a magnetic Geld result
in zero magnetotherinopower b, S = [S (B)—S ) and
Nernst-Ettingshausen coeKcient S» when p = 0.

q~Z [2 1 e —s g/A:~T
F(Q) =

& (q, T) sinh (h(ug/2kiiT)

with

duO„(u' + p + mh(ug )f(u' + p)

x[1 —f(u + p+ h(ug)j.

(26)

(27)
B. Phonon-drag

The contribution to the current due to electron-phonon
drag can be obtained by combining Eqs. (3), (10), and
(»):

Here

~n~n+10„= 1+(d 7
(28)

x ) r„(q)h~~(r„„.—r„.„)v„V,T,

s(k) = u

where

(h~g —h q2/2m')

4(h q2/2m')
(30)

where Ic* = (k, e') and v„denotes the phonon velocity. In Eq. (25), g„ is the valley degeneracy and it is 2
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for Si and 1 for the GaAs/Al GaI As heterojunction,
and the in-plane efFective masses m' are 0.19m, and
0.067m, respectively, with m, being the &ee electron
mass. We retain |~ within the integral as a reminder
that for different phonon processes Ez is, in general, re-
placed by a wave-vector-dependent function according to
the rules prescribed earlier. These processes are then
summed over. It is assumed that, at low temperatures,
boundary scattering dominates the phonon-phonon in-
teraction. If v, is a phonon velocity and 7„(q) is the
corresponding phonon relaxation time, then the phonon
mean free path l~ = v, T„(q) is determined by the di-
mensions of the sample and is assumed to be indepen-
dent of phonon mode and wave vector. The values of
lz used in the calculations were determined experimen-
tally. They are 1.08 mm at 1.5 K and 0.92 mm at 7 K
for a Si MOSFET (Ref. 16) and 0.41 rnm at 3 K for the
GaAs/Al GI As heterojunction. s The occupancy fac-
tor f(u + p)[1 —f(u2+ 7+ h~cI)] in Eq. (27) is, for
kBT (Q 8f nonzero only in a restricted region around
the Fermi level. Moreover the relaxation time does not
change rapidly near ef. Consequently we can approxi-
mate using Grst-order expansions at ef or ef + h~g de-
pending on which integral I„ is involved. By proceeding
in this way and using Eqs. (16) and (17) we find that:

(O7f
Sy ——p 1+(d 'Tf

with

(39)

It can be seen from Eqs. (20), (25), and (34) that C is
independent of the magnetic Geld B.

IV. DISCUSSION

The magnetothermopower tensor dependence upon B
is predicted by Eqs. (37) and (38). Interestingly, the
structural simplicity of the diffusion terms is maintained
when drag processes are taken into account. Since AS
is proportional to u Tf /(I +u2Tf2), the rate of increase of
~b,S

~

increases below uTf = I/v 3 and decreases above
it with the sign of AS being determined by the sign of
p. 8 „is proportional to sn f/(I+llJ 'Tf ) ~ Hence (cPTf —1
is predicted as a stationary point with the extreme value
being Cp/2. 8 „ is maximum at ~Tf = 1 when p )
0 (GaAs/Al GaI As heterojunction) 'I and minimum
when p ( 0 (Si MOSFET).

Both the magnitude and the sign of the derivative of 7.

with respect to the energy in the neighborhood of cf are
important in determining the behavior of the elements
of the magnetothermopower tensor. Their sign is deter-
mined by the sign of p, as can be seen in Eqs. (37) and
(38). In Fig. 1, 8" and S~„are plotted against mTf for
general values ofp. The difFusive case has been chosen for
qualitative discussion. The magnitude of p is particularly
important for the sign of the difFusion thermopower, as is
predicted by Eq. (18). If p ( —(1+u2Tf2), S~ changes

2 2

1+~2rf2

and

Sg =„' S1
1+(d 7 f

(32)

where

dqdq, q CsI" (Q)A (Q)
0

x duf(u'+ p)[1 —f(u~+ p+ h(ug)],
0

(a)

~ W
+a ~ ~

~ ~
~ -1.0

I

and ~ ~

f d d 2g~ pl
0'o

x duf(u'+ p)[1 —f(u'+ p+ hung)],
0

(34)

1 4 ~ (b)—with

A (g) = 1+pAI(g) (35)

and
0-

—0.5
~ ~ ~ .'

~ ~ ~ ~ ~ . ~ ~ . . ~ ~

~ ~ ~ —1.02 cf hq/2m' (36)

By summing the contributions to the thermopower ten-
sor elements given in these equations and in Eqs. (18)
and (19) we see that the total magnetothermopower and
the Nernst-Ettingshausen coefBcient are

~27 2II

AS =p C,1+& 7f
FIG. 1. S" /C'q (a) aud 8 „/Cq (b) are plotted versus GATI

for di8erent values of p.
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sign (Fig. 1). This can lead to the observation of a
positive 8 at low temperatures, where diffusion dom-
inates. Such an observation has already been reported
for the electron gas embedded in a Si MOSFET in zero
magnetic field. Here, it is predicted that the electron
density at which the thermopower vanishes changes with
the applied magnetic 6eld.

Detailed numerical calculations for a Si MOSFET used
in recent experiments are presented in Figs. 2, 3, and 5.
The electron density is N, = 10.7 x 10' m and the
measured mobility at T=1K is p, 1m2/Vs, ~s ~~ which
is consistent with theoretical calculations based on domi-
nant interface-ionized impurities and interface roughness
scattering. The calculated value for p is —0.6. Since
pB 1 at B 1 T the predicted semiclassical behav-
ior is expected to be observed for this Si MOSFET, at
low temperatures and for magnetic fields above the lo-
calization regime until the onset of Landau localization.
The high-field limit of the semiclassical regime coincides
with the onset of Landau quantization and measurements
there would indicate the nature of the crossover.

As is illustrated in Fig. 2, the main contribution to
both the magnetothermopower AS and the Nernst-
Ettingshausen S „coefBcients is due to electron diffu-
sion when T & 2 K. We see Rom Eqs. (31) and (32)
that the phonon-drag contribution is determined by the
magnitude of S1, which depends on the ratio h~'I/sf.
At low T the allowed phonon energies are small, result-
ing in a small value of S . Increasing T increases the
allowed phonon energies with the result that S goes up.
We see &om Fig. 3 that the phonon-drag contribution
dominates when T = 7 K.

AS~~ p B
] +p2B2 (4o)

The same magnetic-6eld dependence is predicted for
GaAs/Al Ga' As heterojunctions from Eqs. (37) and
(38) and is shown in Figs. 4(a) and 4(b) respectively. In
this case, both the magnetothermopower AS and the
Nernst-Ettingshausen coeKcient S „are positive because
p is positive (the calculated value for p is 0.9). More-
over, as a result of modulation doping and low interface
roughness the mobility of electrons in a heterojunction
is much higher than that of electro'. s in a Si MOSFET.
Typically for N, = 6.82 x 10 m and at T = 4.2 K,
p 25 m V s . Semiclassical effects are expected to
be dominant up to B p 1'/w, 400 mT. The char-
acteristic behavior is analogous to that described for the
Si MOSFET but the peak in S~„and the turning point
in S are observed at B 150 rnT (Fig. 4). Because of
the higher electron mobility in the heterojunction, most
of the variation with magnetic 6eld is now observed in a
narrow range of values around B 150 mT, which is well
below the onset of Landau quantization. On the other
hand, weak localization is only important for B ( 0.1
mT. Therefore the region where pronounced semiclassical
effects occur is completely distinct and direct measure-
ments should con6rm the above predictions. Drag dom-
inates at almost all temperatures in GaAs/Al Ga~ As
heterojunctions because m' is considerably smaller than
in Si MOSFET's.

Equations (37) and (38) can be expressed in the fol-
lowing way:

-520--

~ ~

—4.
W

O
C4
O

W

—6

X

C
O

— )60 .

0-

O

T4 ~0
O
z
N

Uz

(b)

M

c.

Ul.

—10

-20-

-30-

0 1 2

B (~)
FIG. 2. S (a) and S „ (b) are plotted versus B for drag

(dotted line), diffusion (dashed line), and total (solid line). Si
MQSFET arith N, = 10.7 x 10 m at T = 1.5 K.

H (T)
FIG. 3. (a) S is plotted versus B for drag (dotted line)

and for total thermopower (solid line). (b) S „ is plotted
versus B for diffusion (dashed line), drag (dotted line), and
total thermopower (solid line). Si MOSFET with N, = 10.7x
iO" m 'atT=7K.
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Sy pB
g+ p2B2

are much larger than they are at low temperatures, which
makes their experimental determination as functions of
B much easier.

Another consequence of Eqs. (37) and (38) is:

(41)

The quantity p reflects the dominant scattering process
and will vary &om system to system. The direct relation
between magnetothermopower efFects and p is expected
to prove useful in determining p experimentally. At a
particular temperature, both p and N, (and consequently

sf, since it can be expressed in terms of N, ) are usually
known &om Hall effect and conductivity measurements.
The parameters l~ and Ei in Eq. (25) can be estimated
experimentally. Therefore C in the above equations can
be calculated for a given T and 1V,. Hence, we can deter-
mine the value of p by fitting either Eq. (40) or Eq. (41)
to experimental data points for either ES or S~„as
functions of B. At low temperatures (T ( 2 K for a Si
MOSFET and T ( 0.4 K for a GaAs/Al Gai As het-
erojunction) phonon-drag effects are negligible. There-
fore, the value of p can be deduced &om diffusion mag-
netothermopower effects. It should be noticed that even
zero-magnetic-field thermopower data at low tempera-
tures (where the diffusion thermopower is practically the
only contribution to the total thermopower) can give the
value of p, although here localization effects need to be
considered carefully. The new prediction of the present
theory is that the magnetothermopower effects due to
phonon-drag depend on p in the same way as those due
to difFusion. Thus, even at comparatively high tempera-
tures the experimental data can be processed to yield a
value of p in a similar way to that for low temperatures.
At higher temperatures the values of both AS and S „

AS (B)
S*w(B)

(42)

Equation (42) implies that a plot of b, S /S „versus B
should be a straight line with slope p. Since the mobil-
ity is usually known from other experiments, this plot
provides a simple check of the theory.

The accuracy of the analytical results expressed in
Eqs. (31) and (32) remains to be discussed. The dis-
cussion is concentrated on the situation when phonon
drag dominates (T ) 2 K for a Si MOSFET and 0.4 K
for a GaAs/Al Gai As heterojunction). The deviation
of the results calculated from Eqs. (31) and (32) from
exact results depends on k~T/sf. We compare approx-
imate and exact results in Fig. 5 for a Si MOSFET for
k~T/cf = 0.09 and 0.24. From those and similar plots
we conclude that the approximate phonon-drag formulas
are valid when kgyT/sy ( 0.1.

V. CONCLUSIONS

In this paper thermoelectric effects have been exam-
ined in the presence of a magnetic field perpendicular
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O
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z —4Q

a (T)
FIG. 5. Comparison of exact drag results with approxi-

mations for a Si MOSFET in which functions involving the
relaxation time are expanded about the Fermi level. (a) S
for T = 7 K. The full line is exact and the dots are approxi-
mations for N, = 10.7 x 10 m and k~T/sy = 0.09. The
dash-dot line is exact and the stars are approximations for
N, =4x10 m andknT/ey =0.24. (b) S „forT=7K
for the same two cases using the same notation.

0

0.0 0.2 0.4
I3 (T)

0.6

FIG. 4. S (a) and S „(b) are plotted versus B for drag
(dotted line), difFusion (dashed line), and total (solid line).
GaAs/Al Gaq As heterojunction with N, = 6.82x 10 m
atT=7K.
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to a 2DEG when the magnitude of B is above the weak
localization regime and below the Landau quantization
regime. The Boltzmann equation has been used to ob-
tain the transport coefficients when electron scattering by
ionized impurities and imperfections as well as electron-
phonon interactions are taken into account. When the
electron-phonon coupling is weak and the elastic scatter-
ing of the electrons is described by a relaxation time, the
magnetothermoelectric effects are similar in the diffusion-
and phonon-drag-dominated regimes. The predicted be-
havior is easily verified experimentally, and such experi-
ments provide a convenient route to the direct determi-
nation of the logarithmic derivative of the relaxation time
at the Fermi level.

and

U(k, 0)
(A5)

BG + AG = b(0 —0') (A6)

and the periodic boundary condition: G(2x) = G(0). We
find that

e
—x(e—e )

The differential equation (A2) is solved by using a
Green's function, which is defined by the differential
equation

ACKNOWLEDGMENTS
G(0, 0') = &

] e —27rA '

(A7)

X. Zianni wishes to acknowledge the SERC, the Hirst
Research Centre, and the University of Warwick for fi-
nancial support.

APPENDIX: SOLUTION OF THE BOLTZMANN
EQUATION

We assume that the electron gas is located in the x-y
plane. The Boltzmann equation when only the ground
subband is occupied can be written as

f' e
B(Vi,f x —v), =-

h

(A1)

Defining A = (u7 ),where u = ~e~B/m' is the cyclotron
frequency, and expressing the electron wave vector as k =
(kcos0, ksin0), Eq. (Al) becomes

and the solution of (A2) is seen to be:

2'
f '(k, 0) = d0'G(0, 0') [gi(k) cos 0*

0

+g2(k)sin0* + gs(k, 0')]
=f~+f,'

where

(gi (k) [cos0 + (un )sin0]1+(d 7

+ g2(k) [sin0 —(cur)cos0])

is due to electron diffusion processes and

27r

f' = d0'G(0, 0")gs(k, 0')
0

(A8)

(A9)

(A10)

Af'+ = gi(k)cos0+ g2(k)sin0+ gs(k, 0),
Of 1

(A2)

is due to phonon-drag.
We note that f& can be written in the following form:

where

Bf s —6'f BT
gi k 'U

BE (dT BZ

e——vE eV

(d
(A3)

with

Bf v A —(u7.g(v x A),
Os 1 + A&2&f

(A11)

Of s —sy BT
g2 k V ——VEy

BE (dT Og4J' (A4)
V,T

A = ~(k) eE —(s —sf) T (A12)
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