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Effective band Hamiltonian in semiconductor quantum wells
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The Luttinger-Kohn canonical transformations are used to derive the effective band Hamiltonian for a
quantum well. The transformations produce 5-function potentials in the effective-mass approximation.
The boundary conditions on envelope functions, obtained from this effective Hamiltonian, differ from
the BenDaniel-Duke ansatz. The effective Hamiltonian depends on the electronic coherence length. It
also has a velocity-dependent term that is proportional to the sum of band lineup energies.

I. INTRODUCTION

In this paper, I use the Luttinger-Kohn representation'
and a canonical transformation to obtain an effective
band Hamiltonian for an electron in a semiconductor
quantum well. The method gives a systematic procedure
for various approximations involved in confining the elec-
tronic motion to one band. The resulting Hamiltonian
requires a set of boundary conditions different from those
used in the current literature.

Contemporary investigations of electronic states in
quantum wells are usually based on a phenomenological
model of a heterostructure that uses the efFective-mass
approximation or the configurational interaction of a
small number of bands. The basic assumption of this
model is that actual electronic states in the vicinity of a
crystalline interface may be approximated by products of
some envelope functions with the Bloch functions of the
relevant homogeneous crystals. For an example, let us
consider a conduction electron in the vicinity of a perfect
interface between two lattice-matched crystals shown in
Fig. 1. Using the effective-mass approximation, the mod-
el postulates that the electronic wave function is given by

F,(z)g,"v(x) for z (0
F,(z)g, (v)xfor z )0,

where 1(,"~ (x) are the Bloch wave functions of the homo-
geneous A and B crystals at k=0. The model further as-
sumes that, for the purpose of finding energy eigenvalues
and eigenfunctions in the effective-mass approximation,
the difference between g,"0 and P,o can be neglected.
The envelope function F, is then continuous at z=O. Its
derivative, however, is allowed to change in a stepwise

fashion at z=O. If m,"and m, are the effective masses in
the crystal segments A and 8, then it is postulated that '

dI', 1 dI',
(z =0 ) = (z =0+ ) .

m," dz m,a dz
(1.2)

This boundary condition may be referred to as the
BenDaniel-Duke ansatz. In a structure in which the in-
terface of Fig. 1 is repeated periodically as in superlat-
tices, the BenDaniel-Duke ansatz is made at each inter-
face and is supposed to conserve the probability current
of the electron. However, its function is not as clear in a
quantum well, where the interest is generally in bound
states that do not carry current. The theoretical frame-
work based on the assumptions outlined above may be re-
ferred to as the conventional method. Not all calcula-
tions concerning semiconductor microstructures fall
within this framework. Nevertheless, one is justified in
calling it conventional, since it is the most widely used
method in the literature.

The conventional method suffers from several defects.
Some of these have been discussed in the literature. Burt
has pointed out that neglecting the difFerence between
P„"v and P„o may cause substantial errors, on the order of
1.0 eV, in the computation of energy eigenvalues. Note
also that effective masses are determined from band gaps
and k p coupling terms that are evaluated in the repre-
sentations of p„"0 and 1(„0. These parameters take the
same values on both sides of the interface, when

Self-consistency requires one to neglect the
difference between m„" and m„, if the difference between

P„"0 and $„0 is neglected. The effective masses then drop
out of ansatz (1.2).

If the difference between f„"o and g„o is not neglected,
F„(z) cannot be continuous across an interface. This fol-
lows from the fact that the Hamiltonian underlying the
postulate (1.1) is given by

~ 0 ~', o o

2

H = +8( —z)v„(x)+8(z)vz(x), (1.3)

~ 1 ~ o o
-4--0---~-;-Q--9- Q

,
'00 o ooo

FIG. 1. A heterostructure junction.

where m is the ordinary electron mass, v„(x) and vz(x)
are the crystal potentials for homogeneous crystals of A
and B, and 8(z) is the step function. The stationary
Schrodinger equation corresponding to H requires P to
be continuous at z=O:
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F,(0 )g,"z(x,y, z =0 }=F,(0+ )+(x,y, z =0+ ) . (1.4)

(0+ )Pv(x, y, O+ )+F,(0+ ) (x,y, O+ ) .
z dz

The boundary conditions (1.5) cannot take the simple
form (1.2) for two distinct functions g,"o(x) and P,~(x).

A second defect of the conventional method has been
pointed out by Nag and Mukhopadhyay. It is associat-
ed with the ambiguity of the effective-mass concept itself.
There is more than one way to define an effective mass.
If the homogeneous crystal bands are parabolic, then
these various definitions coincide and one has a pair of
unambiguously determined effective masses to use in
(1.2). However, if one or both bands of the heterostruc-
ture are nonparabolic, then different definitions of
efFective masses depend on energy difFerently. Without
an additional assumption, one does not know which
efFective mass should be used in (1.2).

Another difficulty with the conventional method is in-
dicated indirectly from the comparison of its predictions
with the exact solutions for a model superlattice. ' In the
model, barrier potentials are 5 functions. This permits
one to solve the Schrodinger equation exactly. One finds
that if the effective masses are omitted from (1.2), there is
significantly better agreement between the results of the
exact calculation and the results of the envelope-function
approximation as in (1.1).

The origin of the problems referred to above appears to
be the incorrect application of the perturbation theory in
the conventional method. The efFective-mass approxima-
tion corresponds to a perturbative treatment of the elec-
tronic motion. When one is developing a perturbative
solution, one must choose a basis. This could be the set
of Bloch functions for A, or for 8, but not both together.
The fact that one must use the same Bloch functions on
both sides of an interface has been particularly em-
phasized by Burt. If the set of Bloch functions for A is
chosen as the basis, one may expand the complete wave
function as

f(x)= g C„zP„"z(x) . (1.6)
nk

To determine C„&, one treats the difference between the
crystal potentials of A and B as a perturbation. This is
equivalent to rewriting the Hamiltonian of (1.3) in the
form

2

H = +u„(x)+U,„(x),
2m

where the perturbation potential is given by

(1.7)

U~&(x) =0(z)[vs (x)—v z (x ) ] . (1.8)

Thus one has a set of basis states [g„j,"(x)] which is

When g,"v changes into + in a stepwise fashion, Ii, must
also change in a stepwise fashion. Note also that the
Hamiltonian (1.3) requires Vg, as well as g, to be con-
tinuous at z=0. The continuity of the former leads to

dI, „ d "
(0 )f,"v(x,y, O )+F,(0 ) (x y 0 )

dz dz

complete and well-defined throughout the entire space.
Using U,„,one calculates the corrections to these basis
states. Of course, one does not need to choose the set

I g„z"(x)] or the set Ig„„(x}[as the basis. Another
complete set might be more convenient. Smith and
Mailhiot" choose the set of the Bloch functions corre-
sponding to a reference crystal with the potential
[v„(x)+us(x)]/2. In their theory, the difFerences be-
tween this reference potential and vz and vz are treated
as perturbations.

The basic concern of the present work is the elimina-
tion of another inconsistency in the conventional method,
as well as in others that use the effective-mass approxima-
tion. The effective-mass approximation corresponds to
the elimination of the interband couplings represented by
the k.p term in the homogeneous crystal Hamiltonian to
the lowest order. If one considers the example of the
coupling between one conduction band and one valence
band, the relevant coupling energy is given by
b,E =m 'fikP, „, where P,„ is the interband matrix ele-
ment of the momentum operator. Typically, fi 'P,„—10
cm '. Assuming a large k value, say k-10 cm ', one
finds hE-500 meV. In a quantum-well geometry, the
difference between the potentials of the well and the bar-
rier crystals also produces interband coupling. For typi-
cal quantum-well structures, the corresponding energy is
comparable to hE. Therefore, the interband coupling in-
duced by the quantum-we11 potential must be eliminated
simultaneously with the k p coupling. To eliminate one
without the other is not a self-consistent application of
the effective-mass approximation.

To treat the interband couplings on an equal basis, one
can use the method of approximate canonical transforma-
tions in a Luttinger-Kohn representation. This method
is used in Sec. II to derive an effective band Hamiltonian
and a set of boundary conditions on envelope functions at
the interfaces of the well. One welcome by-product of
the method is the transformation of the stationary
Schrodinger equation to a Sturm-Liouville problem. The
boundary conditions are thus determined by the effective
Hamiltonian itself. The main results of the analysis may
be summarized as follows.

(a) For a given band, there is a position-independent
effective mass in and around a quantum well. This
effective mass depends on the band lineup energies of the
crystals of A and B, as well as on the coherence length
within which a single electron wave function may be
defined.

(b) The effective Hamiltonian has 5-function potentials.
These require discontinuities in the derivative of an en-
velope function across the quantum-well interfaces. The
stepwise jumps of the derivative are proportional to a
component of a complex vector quantity designated by
d„„. d„„depends on the interband matrix elements of the
momentum operator, as well as on the ratios of the band
lineup energies to the band gaps. The efFective Hamil-
tonian has, of course, the usual step function potential
that depends on the band lineup energies.

(c) The effective Hamiltonian has a velocity-dependent
term whose coef6cient is determined by the real part of
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d„„. This velocity-dependant term is present only inside
the well and modi6es energy dispersions in the transverse
directions.

(d) Unlike the solutions of the conventional method,
the eigenstates of the present effective Hamiltonian do
not split into even and odd functions. There is only one
eigenvalue equation.

(e) Bound-state eigenfunctions have certain propa-
gating phase factors within the well which can have an
observable effect on electronic transition matrix elements.

B

~ ~ '; 0
~ 0:0

I
I--4-- ~—.-C
I

o o,''0
0 ~ :0

0 0 0 0 0 0: ~ ~ ~
0 0 0 0 0 0, ~ ~ ~

I--6---0---9 -g--0 — 0 ' 4.— ~
I

0 0 0 0 0 0: ~ ~ ~
0 0 0 0 0 0; ~ ~ 0

— L/2 + L/2

FIG. 2. A semiconductor quantum we11.

These results, as well as the range of validity for the
effective Hamiltonian given in (2.66}, are discussed in
greater detail in Sec. III.

II. CANONICAL TRANSFORMATION

2

Hz = +v„(x), (2.5b)

1
g&g(x)=

&&2
8 Q&p(x)

( ) 3)

1 eik.x y eiG xyA(G)
)
1/2

(2.1)

Here X,X+3 is the quantization volume, IGI is the set
of reciprocal lattice vectors, and P„" are the momentum
Bloch functions. y„& are orthornormal:

f d xg„'„( x)g„z( x)= «5(5k, k')., (2.2)

where 5(k, k') is related to the Dirac 5 function by

In this section, I use the original Luttinger-Kohn
method to derive the effective band Hamiltonian for an
electron in and around a quantum well. The method is
based on canonical transformations in the Luttinger-
Kohn representation for eliminating the coupling be-
tween the chosen band and the other bands to some ap-
proximate order. Because of the quantum well, the elec-
tron acquires a two-dimensional character that is rnani-
fested through the well-localized states, as well as
through the dependence of the effective Hamiltonian on
the ratio L/X, where L is the well width and X is the
coherence length.

For the basis states, the derivation uses the Luttinger-
Kohn states corresponding to the center of the Brillouin
zone (BZ) of the homogeneous crystal of A. These states
are given by'

W =e(z)[vs(x) —v„(x)], (2.5c)

L LE(z)=8 z+ ——8 z ——
2 2

(2.5d}

Equation (2.5c} assumes that the interfaces are perfect
planes and that the potential is determined completely by
the atomic layers. Under this assumption, the ratio of L
to a, the lattice constant of the homogeneous crystal, is
an odd or even integer. In Fig. 2, it is assumed to be odd:

L =(210+1)a, (2.6)

where lo is a positive integer. W given by (2.5c) may be
referred to as a structural well potential.

Actual quantum-well potentials do not need to be
structural. They may depend on the coupling among
electrons and on the distribution of electrons over various
states. An individual electron may therefore move in a
potential that is produced dynamically in the vicinity of
interfaces. Tersoff theory of heterostructure junction, '

for example, attributes a dynamical origin to a barrier po-
tential. Nevertheless, (2.5c) provides a good starting
point, since the states produced by a structural 8' yield
reasonable transition spectra. One may use these states
as the basis to formulate electronic many-body interac-
tions.

Using (2.1), one finds that the matrix elements of H„
are given by

2 3

5(k, k') = 5(k —k') .
1 3

The set Iy„i,I is complete:

(2.3)
A' k(nk~H„~n'k') = +E„"(0) 5„„.5(k, k')
2m

g y„i,(x)y„*q(x')=5(x—x') .
nk

(2.4) + 5(k, k'), (2.7a)

H =H~+8
where

(2.5a)

Let us consider the Hamiltonian for the quantum well
illustrated in Fig. 2:

where

P„"„=A'gGP„"*(G}P„"(G).
G

Similarly, the matrix elements of 8'are given by

(2.7b)
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(nk~Qn'k') = 5i(k, k') g P„"'(G)P„".(G')[Vii(Gi —Gi+z63') —Vz(Gi —Gi+z63')]
GG'6

3

sin —(k —k' +G —6' —6" )
2 3 3 3 3 3

(k3 —k3+63 —G3 —63' ) —i5
(2.8)

Here

5i(k, k') =5(k„k', )5(k2, k2), (2.9)

and V„z(G) are the Fourier coefficients of the periodic
crystal potentials:

v„~(x)= g V„ ii(G)e'
6

(2.10)

sin —(G3 —63 —63 ) =sin[ir(2lo+1)i, ]=0,L
(2.12)

where i, is some integer. Clearly, the limit k~k yields a
finite result only if

The matrix elements of the full Hamiltonian are given by
the sum of (2.7a) and (2.8):

(nk)H(n'k') =(nk~H„~n'k')+(nkvd@'~n'k') . (2.11)

Comparing (2.8) with (2.7a), one sees that diff'erent
bands are coupled not only by the k p term of (2.7a), but
also by F. The efFective-mass approximation for an iso-
lated band corresponds to the removal of these interband
couplings from the Hamiltonian in the lowest order. Be-
fore proceeding with the discussion of the canonical
transformation that removes the interband couplings to
first order, let us discuss some features of (nk~ 8'~n'k').

Let us set k3 =k 3 in (2.8). This means that k =k', since
the transverse wave-vector components are required to be
equal by the transverse 5 function. The sine function ap-
proaches zero as k~k':

P

quantization volume, be infinite, then X3~ 00 and
W„„.~O (as long as L is finite). This is to be expected,
since in an infinitely large three-dimensional crystal, the
contribution of a thin sheet of material to the total energy
of the sample will be infinitesimally small. However, the
choice of quantization volume is not arbitrary. A single-
particle Hamiltonian such as (2.5a) can describe the dy-
namics of the electron with reasonable accuracy only
over a finite range. Over this range, the electron has a
wave function whose phase and amplitude are well-
defined functions of position. Beyond this range, the
electron sufFers many elastic and inelastic scatterings, and
the phase, as well as the amplitude, of its wave function
becomes indefinite. Therefore, there exists a coherence
length X for the electron such that the electron has a
well-defined wave function within the volume X . This
volume may be called the coherence volume. In the inte-
rior of the coherence volume, the evolution of the elec-
tron is determined by H in (2.5a). At the boundaries of
the coherence volume and beyond, the evolution of the
electron is not determined by H. The wave function must
be specified independently of H at the boundaries of the
coherence volume. Thus the quantization volume must
be identified with a volume which falls within the coher-
ence volume. The coherence length X determines the
maximum size for the quantization volume. For the
remainder of the discussion, I will assume that the three
directions are equivalent and set

(2.16)

63 —G3=G3' . (2.13) For a true quantum well, the ratio of L to X must be
less than one:

Then,

and

lim
k3~k3
5~0

sin —(k —k' )
L
2 3 3

k, —k', i5—L
2

(2.14)

(nk~ W~n'k) = g P„"'(G)P„"(G')

=(no(w)n o)= w„„, . —
X [ V~(G —G') —V„(G—G')]

(2.15)

Thus (nk~ Qn'k) is independent of k. It does, however,
depend on the ratio L/X3. This forces us to reconsider
the meaning of the quantization volume.

At first glance, the size of X3 in (2.15) appears to be ar-
bitrary. If one lets the crystal sample, as well as the

0« — 1 .L
(2.17}

This can be seen from the following consideration. Sup-
pose that the ratio is larger than unity and that the elec-
tron is in the rniddle of the well. Because its coherence
length is less than the width of the well, the electron sees
only the potential of the B-type crystal. The electron's
evolution is thus determined by

2

H~ = +vii(x), (2.18}

not by H in (2.5a}. The electron does not see the boun-
daries of the well and therefore one does not have a quan-
tum well. The electronic states correspond to those in
the homogeneous 8 crystal.

The absorption and emission spectrum of a particular
sample may gain considerable complexity if L/X ap-
proaches 1. Indeed, if L/X is near 1, one may observe
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three types of spectral lines in electronic transitions. If
the electron is far to the left of the well so that its Hamil-
tonian is Hz, then its spectrum corresponds to the band
spectrum of the homogeneous crystal of A. If the elec-
tron is close to the left A /B interface but cannot discern
the interface on the right, then its Hamiltonian is the
single-interface Hamiltonian (1.3). Its spectrum will con-
tain transitions which depend on the interface states. Fi-
nally, if the electron is in the quantum well, then its
Hamiltonian is given by (2.5a). Its spectrum will have
lines that correspond to transitions between quantum-
well localized states.

The electronic coherence length in typical semiconduc-
tors is in the range 500-1000 A. The upper part of this
range is achieved in pure crystals at low temperatures.
The coherence length may vary not only from one ma-
terial to another, but also from one device geometry to
another. In the rest of this paper, I will treat X as a pa-
rameter which is determined individually for each sam-
ple.

The quantity (XW„„/L) is related to the lineup energy
between the bands of A and B. One may see this as fol-
lows. V(G) decreases rapidly for finite G. ' Hence the
sum over the reciprocal lattice vectors in 8'„„may be re-
stricted to the zero and to the three basis vectors of the
reciprocal lattice (designated by g):

—w„„=[E„'(o)—E„"(o)]~y„"(0)~'

~y„"(0)~'=1 .

Thus

(2.26)

W„„=—[E„(0}—E„"(0)]. (2.27)

Let us consider an Al& „Ga„As/GaAs structure and let

the band lineup energies be on the order of 0.2-0.4 eV.
If L —100 A and X-400 A, then W„„-0.05—0.1 eV.

It is necessary to separate the interband coupling terms
from the intraband terms in (2.5a) for the canonical
transformation. Define the Hamiltonians Ho, H„and
H2, such that

H =Ho+H)+H2,

(nk~Hz~n'k'& =5„„.[1—5(k3, k3)](nk~ W~nk'& .

(2.28a)

+ [v (o)—v (o)][1—ly."(0)I'} . (2.25)

Finally, it is reasonable to expect P„ to decrease rapidly
for finite 0 just like V. This implies that the normaliza-
tion condition on the momentum Bloch functions is
essentially exhausted by P„(0), that is,

—W„„=[V~(0)—V„(0)]g P„"'(G)P„"(G)

+ g [P„"'(g)P„"(0)[Va(g)—Va(g)]

+P„"*(0)P„"(g)[V~(—g) —V„(—g)]] .

(nk~H& ~n'k'& =(1—5„„) (nk~ W(n'k'&

+5(k, k')

(2.28b)

(2.28c)

(2 19) (nklH21n'k' & =5„„[1 5(k3—, k3 )]&nkl Wink' &

g P„"(G)P„(G)=5„„. (2.20)

The coefficients V(G) are related to the band energies at
the center of the BZ

The sum in the first line of (2.19} equals one, since the
momentum Bloch functions are orthonormal

(2.28d)

Hp contains the diagonal terms. H
&

contains the inter-
band coupling terms. Hz has intraband terms but is off-

diagonal in wave vectors. The effective-mass approxima-
tion corresponds to the elimination of H& from H by
means of a canonical transformation to first order in H, .
I.et us define

V(G)= yE„(0)y„'(—G)y„(0) .

If this relation is inverted using (2.20), one finds

gP„(G)V( —G)=E„(0)P„(0).
G

Restricting the sum in (2.22) to I o,g], one has

[E„(0)—V(0)]P„(0)=gg„(g)V( —g) .

(2.21)

(2.22)

(2.23}

H'=e ' He'

and choose S such that

i [Ho, S]= H) . —

This eliminates H, from H to first order in H
&

..

H'=Ho+H~+ —[H, ,S]+i [H2, S]+O(W ) .
2

The effective Hamiltonian for band n is given by

(nk~H, &~nk'&=(nk~ Ho+H2+ —[H&,S]

(2.29a)

(2.29b)

(2.30)

p„(g) p„(0)
yA( ) yA(0)

With these assumptions, (2.19) becomes

(2.24)

Let us assume that P„" and P„are sufficiently similar so
that +i [Hz, S] ~nk'& .

From (2.28b) and (2.28c), one readily finds that

i(nklH, In'k' &

(nklSln'k'& =
[E„(k)—E„(k)]

(2.31)

(2.32a)
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where

fi kE (k)—=E„"(0)+ + W„„.

The third and fourth terms in H' are therefore given by

—( n kl [H &,S] l

n'k'
&

= —
—,
' g (nklH& ln "k"&(n "k"lH, ln'k'&

x.
E„-(k") -E„(k')

and

Itklt

( n k
l H2 I n "k"

& & n "k"lH ) l
n 'k'

&

E„.(k" ) —E„(k')

+
E -(k")—E„(k)

(2.34)

1

E -(k")—E„(k)
(2.33) Let us consider (2.33). When (2.28c) is substituted into

(2.33), one finds three groups of terms:

V„'I'.„k = —
z 5(k, k')2'

gg(2)
~ nk;n'k'

n "(n"An, n "An')

k P„"„-kP„"-„[2E„(0)—E„(0)—E„(0)]
[E -(0}—E (0)][E -(0)—E .(0)]

k P„"„-(n "k
l Wl n 'k'

& [E„.(k ) +E„-(0}—E„(0)—E„(k')]
[E„-(0)—E„(0)][E„-(k)—E„(k')]

k'.P„"-.&nklWln "k'&[E.'(k')+E, -(0) E„(k) E, (0)]
[E„(0)-E„(0)][E„-(k') —E„(k)]

(2.35)

(2.36)

V(3)F ke

n "k"(n"Pn, n "An')
& nkl Wink && nk

l
Wln'k'&

0 „o +
o „oE„-(k")—E„(k) E„-(k")—E„(k')

(2.37)

Note that V'" is diagonal in the momentum space. The
intraband element V„'k'. «adds to the k term in Ho to
give the inverse effective-mass tensor of the band n in and
around the quantum well:

f (x)= g F„(k)e'"'*u„o(x)1

g3/2

(k)ei(k+Gj xyA(G)1

g 3/2 II n
nkO

(2.40)

1 1

m . . mn ij

The expansion coefficient F„(k) is related to the Fourier
transform off (x). This Fourier transform is given by

F(p)= fdxe '~*f(x) .1
(2.41)

m E„"-(0)+ W„-„-—E„"(0)—W„„
(n "An)

(2.38)

Substituting (2.40) into (2.41) and performing the spatial
integral, one finds

If W„„and W„-„-are omitted, (2.38) is the effective-mass
equation for the homogeneous crystal of A:

'3

F(p)= g 5(p —k' —G')F„(k')$„"(G') . (2.42)
nk'6'

~A
n ij

1 2=—5.. —
m '

m ~ E"., (P) —E(P)
(n "Pn)

(2.39)

In contrast to V'", V' ' and V' ' are not diagonal in
the momentum space. The intraband matrix elements
V„'k'.„k and V„'k'. „k. yield the potential that may confine
the electron to the well. To determine the form of this
potential in ordinary space, let us consider the effect of
V„'fI„&. and V„'zI„z, on an arbitrary function f (x) in the
Luttinger-Kohn representation.

Let us first expand f (x) in the Luttinger-Kohn basis:

Let

p=k+G, kEBZ . (2.43)

Since k', as well as k, is confined to the BZ,

5(p —k' —G') =5oo.5(k—k') .

Therefore,

F(k+G)= QF„(k)P„"(G) (2.45)

Using the completeness of the momentum Bloch func-
tions,
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g p„'(G)p„(G')=&GG, (2.46}

one may invert (2.45) to find

F„(k)=gP„'(G)F(k+G) .
G

(2.47)

Next, let us consider the operation of V' ' on f in the
Luttinger-Kohn representation:

fi', , A', fi'vr'
(kP —k,') = k, (k,' —k, ) & =5E . (2.50b)

2m m maL
0 06E-0.1 eV for a -5 A and L —100 A. Let us assume

that the narrowest band gap is on the order of 1 eV,
hence substantial compared to 5E. The wavelength
dependence of the denominators in (2.36) may then be
neglected. One can also approximate the sums over the
reciprocal lattice vectors in ( nk

~ W~
n'k') as follows:

I„' '(k)= g V„'g„.t.F„.(k') .
n'k'

(2.48)

sin —(k3 —k3+63 —G3 —G3' )

The matrix elements (n "k~ W~n'k') and (nk~ W~n
"k')

in V„'k'.„.k. have the sine factor of the form

2sin —(k —G )
L
2 3 3

L
2 sin —k

2 3

X(k, i 5—)

(2.51)

The right-hand side follows from the fact that, for finite
63 the amplitude of the sine factor obeys the inequality

= (
—1)'sin —(k3 —k 3 ) . (2.49)

This function is significantly di8'erent from zero only
within the range b,k -m/L. After setting the transverse
wave-vector components equal, the denominators in
(2.36) have the form

2 a —1.6X10 for X—10 A
XG, Xm.

Using (2.46} and (2.51},one then finds

2sin —(k3 —k3)
L

(2.52)

fiE„-(k')—E„(k)=E„-(0)—E„(0)+ (k' —k )
I„' '(k)= g 5,(k, k')

n'k' X(k3 —k 3 i 5)—

The kinetic part of this expression has the range

(2.50a)

where

X [d„„"k+d„'„"k']F„.(k'), (2.53)

d nn'
n "(n"jn, n Qn')GG'

P„"„P„"-'(G)P„"(G')[Vx(G —G') —Vg (G —G')]

1 1

E„(0)—E„(0) E„-(0)—E„(0)
(2.54)

Iff (x) is slowly varying over many lattice sites, then its
spectral components for reciprocal lattice vectors are
small compared to the components for the BZ:

d„= g d„„$„"*(0),d'„= g d„'„.P„"'(0) .
n'

(2.58)

~F(k+ G)
~

&& ~F (k)
~

for finite G . (2.55)

Indeed, (2.55) may be taken as the definition of a slowly
varying function. Taking only G=O term in the sum in
(2.47), one has

To treat (2.57) as a convolution, the sum over k' must be
extended outside the BZ. This is permissible, since the
contribution of the higher zones to the integral is negligi-
bly small. Note that the approximations that led to (2.53)
simplify (nk~ W~nk') to

F„(k)=0„" (0)F(k) . (2.56) 2sin —(k3 —k3)
L

If (2.56) is substituted into (2.53), I„' '(k) takes the form of
a convolution integral:

( nk~ W~nk') = W„„5&(k,k')
X(k3 —k3 —i5)

I„"'(k)=y fi,(k, k }

L2sin —(k —k' )
2 3 3

X(k3 —k3 —i5)

(2.59)

One can deduce the effect of V' ' on f in a similar
manner:

where

X[d„.k+d„' k']F(k'), (2.57)
I„' '(k) = g V„'t;~'t.F„(k') .

n'k'

Using

(2.60)
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f +"dk"
4 sin —(k —k") sin —(k"—k')

2 2

X (k —k"—i5)(k"—k' —i5}

2 sin —(k —k')L
2

L(k k—' 2—i5)
(2.61)

I„' '(k)= g 5j(k, k')
n'k'

2sin —(k& —k3)
L

X(k3 —k3 —2i5)
U„„F„(k'),

and making the same approximations that led to (2.53),
one finds where

(2.62}

1
nn'

n "(n"Pn, n "An')G]6]026'
$„"*(Gi)P„"-(Gi)$„"-'(Gi)P„"(G'p)

X [ Vti(G, —G', )—V„(G,—G', )][V~(Gz —G2) —V„(Gz—G2)]

1 . 1

E„-(0)—E„(0} E„-(0}—E„.(0}
(2.63)

Finally, let us consider the commutator of Hz with S. It is clear from (2.28c) and (2.28d) that the expression (2.34)
yields only an interband correction term:

[1—5(k3, k3 )]& nkl Wink")
(nk~[Hz, S]~n'k'}'=i(1 —5„„)g (nk" ~W~n'k')+5(k", k')

E„(k")-E„(k')
haik' P".

[1—5(k3, k3')](n'k"
~

W~n'k') erik P" ~

+ nk W n'k" +5(k,k")
Eo, (k" ) —Eo(k) '

m
(2.64)

Thus this commutator does not contribute to the
efFective-mass Hamiltonian defined by (2.31).

Using (2.38), (2.53), (2.59), and (2.62), the efFective band
Hamiltonian (2.31) can be written in the explicit form:

(nk~H, s~nk') = E„"(0)+ 5(k, k')
2mn

L L
b,(z)=5 z+ ——5 z ——

2 2

8~= W~~+U~~ ~

Dn =&nn+&nn

(2.67)

2 sin —(k —k' )
L
2 3 3

+5j(k,k')
X(k3 —k3 —i5)

X —W„„+U„„+d~ k+d~. k'

n3 L3 unn

The effective Schrodinger equation becomes

8 fiV
i A = — i e(z}D V—

dt 2m„

(2.65)

If (2.65) is transformed to the ordinary space, one finds

id„35(z}+B„e(z)+—E„"(0) (2.68)

H„' (x)=E„(0)— + —W„„+U„„E(z)es' — A

2m

i d„„VE(z) —i e(z.)d„'„.V—, (2.66)

where e(z) is given by (2.5d). To simplify the notation, let

If t/i( )ixs an eigenfunction of H', then it must be con-
tinuous across the quantum-well interfaces, because the
right-hand side of (2.68) is second order in space deriva-
tives. The derivative of g(x) with respect to z, however,
may be stepwise discontinuous across the interfaces. The
values of the steps are determined by d„3. Consider the
stationary Schrodinger equation corresponding to (2.68):
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Q2V2
+E„"(0) E—/=0

2mn

L Lforz& ——orz& —,
2 2

'

$2V2

i—D„V+B„+E„"(0) E—$=0
2P7l ~

(2.69)

L L
for ——&z & —.

2 2
'

There are two boundary conditions from the continuity
of P across the interfaces (5—+0):

L L
g xy, ———5 =g x,y, ——+5

g xy, ——5 =g xy, —+5L L
(2.70)

Integrating the right-hand side of (2.68) across the inter-
faces, one finds two other boundary conditions:

dg L dg L
dz

' '
2 dz

' '
2

x,y, ——+5 — x,y, ———5

2lm „"d„3$ x,y, ——,(2.71a)
g2

df L dg L
dz

' '
2 dz

' '
2

x,y, —+5 — x,y, ——5

2lm „
d„3|f x,y, — . (2.71b)' '2

Equations (2.71a) and (2.71b) take the place of the
BenDaniel-Duke ansatz.

III. DISCUSSION

The inspection of the effective Schrodinger equation in
(2.68) shows that one has a position-independent effective
mass m„ in a quantum-well structure. m„depends on the
matrix elements

C
W„.„.j. I W„.„ I in turn depend on the

band lineup energies and on the ratio (L /X ). In order to
utilize the efFective-mass concept in a given problem, one
must be able to make the efFective-mass approximation.
A self-consistent application of the effective-mass approx-
imation to a quantum well requires simultaneous elimina-
tion of the interband couplings arising from the homo-
geneous crystal k-p term and the well potential, since
they are usually comparable. As illustrated by the
derivation of (2.68), this leads to a position-independent
effective mass in and around a quantum well.

Conversely, the use of a position-dependent effective
mass as in the BenDaniel-Duke ansatz must postulate
that the interband coupling induced by the well potential
must be negligibly small compared to the homogeneous

crystal k.p coupling. Clearly, such a postulate can hold
only if k is not near the center of the BZ and the well po-
tential is extremely shallow. In fact, the ansatz has usual-
ly been applied in cases where these conditions do not
hold. Crystals used in quantum-well fabrication have
their band edges mostly at the center of the BZ. Well
depths are usually significant fractions of band gaps.

The preceding argument also rules out uses of energy-
dependent effective masses taken from homogeneous crys-
tals. ' ' Such masses have been used for quantum wells
whose depths are larger fractions of band gaps than
GaAs/Al Ga, „As wells. Clearly, this is not a con-
sistent procedure. An energy-dependent effective mass
arises from elimination of the k p coupling between con-
duction and valence bands. Since a typical quantum-well
potential induces comparable coupling between the same
bands, the well-potential-induced coupling must be elim-
inated simultaneously with the k p coupling. Effective
mass of a band would then depend on 8'„„. Its energy
dependence would differ from those of homogeneous
crystals.

In (2.68), the energy parameter B„acts as the effective
band lineup energy. B„ is given by

B„=g P„"'(G)(f„"(G')[V~(G —G') —Vg (G—G')]
GG'

+U„„. (3.1)

U„„ is the perturbative correction given by (2.63), which
is independent of the ratio (X/L) or its inverse. In con-
trast to m„, B„ is not related to the coherence length and
depends purely on the homogeneous crystal potentials.

The effective band Hamiltonian in (2.68}has 5-function
singularities that yield the boundary conditions on the
wave function. The origin of these singularities is the
well-potential-induced coupling, as well as the k.p cou-
pling. The possibility of a 5-function potential in a
heterojunction was discussed earlier by Zhu and Kroe-
mer. ' They arrived at a 5-function potential from the
extrapolation of the wave function across the interface in
the Wannier representation and from the renormalization
of the wave function in terms of the effective masses on
the two sides of the interface. In contrast, the b, (z) term
in (2.68) is obtained from the canonical transformation
that eliminates all interband couplings simultaneously to
first order.

In (2.68), there is a velocity-dependent term propor-
tional to D„. This term is nonzero only inside the well.
The origin of the D„.V term is the same as the origin of
the 5-function potentials. We shall see that its size is of
the same order as the k-p term for the homogeneous
crystal. Thus the D„.V term can significantly modify en-

ergy dispersion. Note that D„.V is three dimensional.
Energy dispersion is modified not only along the z direc-
tion, but also in the transverse directions.

Both the D„V term and the b, (z) term depend on the
vector d„„. One can estimate the size of d„„by using the
approximations (2.23) and (2.24) in (2.54):

E„(0}—E„"(0)+E„(0)—E„"(0 ) —2 V~ (0)+2 V„(0)
1t? E„"(0)—E„"(0)+ W„„—W„„

(3.2)
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If the sum of the band lineup energies is comparable to
the gap energy between two bands for at least one pair,
then the bracketed term is on the order of 1, and md„„/A'
is on the order of P„"„.corresponding to this pair. For ex-
ample, for the two-band model,

(3.4)

One may therefore conclude that the strength of the 5-
function potentials, as well as the size of the D„V terms,
in (2.68) is comparable to the k p term in the ordinary
Bloch Hamiltonian when it is written in the Luttinger-
Kohn representation.

The z component of the D„.V term contributes a z-

dependent phase factor to bound-state wave functions.
One sees from (2.68) that, inside the well, a bound-state
wave function has the form

F„z(z)=e " [A„zcosk„zz+B„&sink„zz]
i (k„~—g„)z, —i (k„~+g„~)z (3.5)

Here A„z, . . . , B„'z are constants. n and A, designate the
band and the bound states, respectively. g„ is given by

n .D„.
2

(3.6)

q„depe nds on the band lineup energies, as well as on the
coherence length through the eff'ective mass m„. It is,
however, independent of I,. According to (3.5), the wave
number k„z is shifted by +g„. This may affect transition
matrix elements. If O(z) is an operator, its matrix ele-
ment between I'„&and I„.&. is given by

L/2
O„~.„&= dz E„*&OF„.& +other terms .—L, /2

(3.7)

For intraband transitions, n =n' and the q„-phase fac-
tors drop out of (3.7}. But for interband transitions,
nAn' and O„z.„.&. depends on the difference Ii„—g„.
For typical semiconductors, g„—10 -10 cm ', and
hence may cause substantial shifts in kn&. The gn

—
gn

dependence may therefore be observable.
While on the subject of transition matrix elements, let

me note that the canonical transformation of Sec. II pro-
vides a systematic procedure for calculating radiative and
nonradiative transition matrix elements between quan-
tum well states in terms of the parameters for homogene-
ous crystals. The accuracy of a calculation may be im-

The quantity Vz(0) —Vz(0) in the bracketed term mea-

sures the difference between the spatially averaged poten-
tials of the homogeneous crystals of A and 8. It may be
identified with the difference between the electronic
amenities of the two materials. The remaining terms in
the numerator represent the sum of the band lineup ener-
gies for bands n and n'. The denominator represents the
gap between n and n' Since P„" are rapidly decreasing
functions of the reciprocal lattice vectors, the normaliza-
tion condition on these functions is essentially exhausted
by P„"(0)and

(3.3)

proved by performing a series of canonical transforma-
tions to eliminate higher-order coupling terms in the
overall Hamiltonian. For radiative transitions, the pro-
cedure yields a hierarchy of selection rules. ' This topic
will be discussed elsewhere.

In the conventional method, the eigenfunctions for
quantum-well-localized states separate into even and odd
functions. One has two eigenvalue equations, one for odd
and one for even eigenfunctions. In contrast, the solu-
tions of (2.69), with the boundary conditions (2.70),
(2.71a), and (2.71b), do not separate into even and odd
functions. There is only one eigenvalue equation. This
difference arises entirely from the interband coupling in-
duced by the well potential. When one lets d„„~0,one
recovers even and odd solutions.

The breakdown of the parity with respect to z is to be
expected. When the interband coupling due to the well

potential is taken into account, there are two special
directions of the quantum-well structure for the band n.
One is, of course, the z direction along which the crystal
layers are grown. The other is the direction of d„„. It is

clear from (3.2) that the direction of d„„ is determined by
the interband momentum matrix element between n and
the nearest band to n. As long as dnn is not perpendicu-
lar to the z axis, the plus z direction differs from the
minus z direction. The z parity is broken. If i& d„„=O,
the plus and minus directions along the z axis are not dis-

tinguishable. The z parity is restored. Indeed, the solu-
tions of (2.69) separate into even and odd functions if
i~ d„„=O,as well as if d„„=O.

Despite the z-parity breakdown, interband transition
energies calculated with (2.69) agree with those obtained
from the conventional method to within 10-20 meV. '7

There are significant differences between the results of the
two methods, however, when one looks at the number of
localized states in the valence and conduction bands and
the separations of bound-state energies within a given
band. The solutions of (2.69) are far more sensitive to
band lineup energies than the solutions obtained from the
conventional method. The breakdown of the z parity also
affects the strength of some radiative transitions.

It is clear from the derivation that H' given by (2.68)
is valid only if the effective approximation holds, that is,

flak PA.
&1.

m [E„"(k}—E„",(k)]
(3.8)

8'„„
[E„"(0)+B„][E„"(0)—E„",(0)]

X 8'nn —Wn. n. +
A(k —k').P„"„

& 1 . (3.9)

Clearly, W„„. must be small relative to E„"(0)+B„,as

The matrix elements of (Rk.p/m) between bands n and
n' must be smaller than the gap separating them. Fur-
thermore, the interband coupling Hamiltonian given by
(2.63) must be negligible relative to E„"(0)+B„:
(nk~[Hz, S]~n'k'}

E„"(0)+B„
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well as relative to E„"(0)—E„".(0). This would also
guarantee that the higher commutators in (2.30) are
negligible. It is interesting that the matrix elements W„„
appear in (3.9). The inequality therefore depends on the
coherence length. Everything else being equal, H' ap-
plies better to a purer sample.

The inequality (3.8) implies that the band n for which
H' is derived is sufficiently isolated in energy. If this
were not true and n had several nearby bands that were
coupled to it through P„„., as well as through the well po-
tential, then this entire set of bands, including n, would
have to be decoupled from the remaining bands. '" The
configurational decoupling could still be efFected by a
canonical transformation. This will be discussed else-
where.

When there are perfect interfaces in a heterostructure

crystal, as in Figs. l and 2, the potential that the electron
"sees" varies rapidly in the vicinity of an interface. This
creates the impression that the electronic wave function
cannot be determined perturbatively, since single-band
efFective Hamiltonians are usually used in conjection with
slowly varying perturbations. The analysis of Sec. II and
(3.9) shows that such a view is not correct. As long as
8'„„.is small relative to the original band gaps, as well as
to those gaps that are shifted by 8„,a perturbative deter-
mination of the wave function is valid.
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