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Feedback effects in superconductors
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We calculate corrections to the BCS gap equation caused by the interaction of electrons with the col-
lective phase and amplitude modes in the superconducting state. This feedback reduces the BCS gap pa-
rameter 5 and leaves the critical temperature T, unchanged. The feedback effect is proportional to
(6/cF ), where c,F is the Fermi energy. This is a negligible correction for type-I superconductors. How-

ever, in type-II superconductors the feedback effect is greatly enhanced due to smaller Fermi velocities

Uz, and may be responsible for effects seen in recent experimental data on organic superconductors.

In the BCS theory of superconductivity, ' there exist
two distinct collective modes corresponding to the fluc-
tuations of the phase and amplitude of the superconduct-
ing gap. The phase or Anderson-Bogoliubov mode has
been known for a very long time to be important in main-
taining gauge invariance in the BCS theory. In the pres-
ence of a Coulomb field, the phase mode (n) interacts
strongly with the Coulomb field to become the plasmon
mode. On the other hand, the amplitude mode (o) is

largely unaffected by Coulomb interactions, so that this
mode remains intact, except for mixing effects to be dis-
cussed later. This decoupling feature of the amplitude
mode means that it is not easily observable, and it was
only recently that such a mode was discovered in the
charge-density-wave compound NbSe2 through the cou-

pling to long-wavelength optical phonons. '

In this paper we wish to consider the effects of these
collective modes back on the superconducting state. In
the effective four-Fermi interaction BCS theory, an
effective coupling between the collective modes and the
quasiparticles induces self-energy corrections to the
quasiparticle propagator. These corrections can either
enhance the attraction between Cooper pairs and so con-
tribute positively to the superconducting state, or they
can act negatively on the superconducting state and
reduce the gap parameter h. The magnitude of these
corrections is proportional to (b, /sF ) . These are negligi-
ble corrections for type-I superconductors where typical-
ly 6/E~ —10 . However, the feedback effects may be-

come important if the typical Fermi energies are much
smaller. This is the case in type-II superconductors
where UF-—10 cm s . Recent experiments in organic
superconductors, where typical Fermi energies are
small, hint at the possibility that such a scenario may be
at work. We will now present a calculation of these
corrections and show how the superconducting state is
affected.

Let us first recall some basic features of the field
theoretic formulation of BCS superconductivity. ' In
the BCS ansatz' the Frohlich efFective electron-electron
interaction is replaced by a contact potential

V(x —x') = —V5 (x—x')

where V & 0. The effective Lagrangian is given by

(2)

where c. is the electron kinetic energy measured from the
Fermi energy and we have used the two-component nota-
tion

to represent the Bogoliubov-Valatin fermionic quasiparti-
cle modes. In the superconducting state the Lagrangian
(2) is written as a sum of a free term Xo plus an interac-
tion piece Xt,

(4)

where we have introduced the mass gap A. The bare
quasiparticle Green s function corresponding to Xo is

k 1+a~3+A~,
G(k) =i-

(k')' —E'+ ie

where E =c +6 is the quasiparticle excitation energy.
In Xt we have to ensure that there are no self-energy
corrections proportional to ~, in order to maintain con-
sistency with the ansatz that Xo describes the supercon-
ducting ground state with mass gap A. Using a Fierz
identity for the Pauli matrices, this leads directly to the
BCS gap equation'

where the integral is cut off at the Debye energy, coD.
To exhibit the collective modes of the superconducting

state, let us examine the quasiparticle-quasiparticle
scattering amplitude generated by the infinite sum of bub-
ble diagrams, as shown in Fig. 1. The scattering ampli-
tude is a simple geometric series and is easily summed to
give

—(I /2) V

1 I (k)—
where
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FIG. 1. The infinite sum of bubble diagrams for the
quasiparticle-quasiparticle scattering amplitude. The
represents either ~1 (o. mode) or ~& (m mode).

I (k)= i ,'—V —f Tr[r2G(p+k/2)r2G(p —k/2)]d p

(8)

and

d4I (k)= i ',
—Vf— Tr[r& G( p+k /2) r& G(p —k/2)]

(9)

are the integrals for the two types of single bubble dia-
grams. The poles of the scattering amplitude (7) occur
when I„(k}=1.At zero momentum transfer (k=0),
the integrals (8}and (9) can be written in the form

I ( k 0
=cv ) = 1 —

—,
' V

dp 1 co

(2m. ) E co 4E—
3 2 2

I (k2= 2)=1 lv dP 1 N' 4~-
(2m) E c0 4E—

(10)

where we have used the BCS gap equation (6). It is then
obvious that I„(cv =0)=I (co =46 )=1 and the
quasiparticle-quasiparticle scattering amplitude has poles
at co =0 and co =46 which represent the phase (n. } and
amplitude (cr ) modes, respectively. ' For nonzero
momentum transfers k, we can Taylor expand the in-
tegrands in (8) and (9) to obtain the dispersion relations
for the collective modes

E (k)=-,'v k

E (k)=46, +-'v2k

(12)

where uF is the Fermi velocity.
The effective quasiparticle-collective mode coupling is

obtained from the residue at the pole of the scattering
amplitude (7). Using (10), the quasiparticle-m. mode cou-
pling is

dI„f2

dc'
CL) =0

4h
~D»a N(EF)

(14)

where N(e~ ) =mk~/m. is the density of states at the Fer-
mi surface. If we attempt a similar procedure for the o
mode then it turns out that the corresponding integral in
(14) is divergent, because the pole coincides with the
two-particle threshold. This is the inadequacy of Inodel-
ing the BCS theory by the o. model. We will simply cir-
cumvent this problem by assuming f =f„as in the
Ginzburg-Landau theory. This is a good approximation
in the weak-coupling limit.

What are the effects of the collective modes on the
quasiparticle self-energy? First, we assume that a
Coulomb field is present, so that the Goldstone m. mode

I

Q'»

~1

(a) (b)

FIG. 2. The quasiparticle self-energy diagrams arising from
the o. mode coupling, where (a) depicts the tadpole diagram and
(b) shows the Weisskopf term.

turns into the massive plasmon mode. In order to
correctly take into account the plasmon mode, we need to
start with the original Coulomb and phonon interactions
instead of the effective four-Fermi interaction, V. This is
beyond the scope of this paper, so we will ignore its
effects on the quasiparticle self-energy. However we ex-
pect this contribution to be small because the plasmon
mass is large compared to 6 and the Debye energy, coD.

For the massive o. mode there will be two contribu-
tions to the quasiparticle self-energy. The first contribu-
tion comes from the tadpole term shown in Fig. 2. It is
given by

bJ(b)
1 —I (0)

However, this term is already implicitly included in the
BCS gap equation and its inclusion would amount to a
double counting of diagrams. To see this more clearly,
consider the effect of adding a small bare term h0 to the
gap equation (6)

h=bo+b J(b, ) . (16)

If we now seek a perturbative solution of (16) of the form
6+55 then we obtain

~ + '["'"]5~ (17)
1 —I (0)

Thus comparing (15) and (17) we see that the tadpole
term appears only as the response of b, to a nonzero b,o.

The second contribution results from contracting the
crossed tree diagram, leading to the "Weisskopf term"
shown in Fig. 2. This contribution will act negatively on
the superconducting state because contracting the
crossed diagram involves a sign change. Hence the
Weisskopf term will act to reduce the gap h. In order to
calculate the Weisskopf term we reinterpret the
quasiparticle-quasiparticle scattering amplitude, A as
arising from the exchange of the cr mode with propagator

G (k)=i 1
(18)

where we have approximated the continuum cut solely by
the o mode pole. This considerably simplifies the equa-
tions and the corrections arising from the continuum
contribution in (7} do not afFect the qualitative behavior.
The Weisskopf self-energy term may now be written as

d4pX~(k)=if' f r, G(p) G(p k)r, —(19)
(2n )

and we will evaluate it at the Fermi surface: k0=6,
~k~ =k~. The term proportional to r, which gives a con-
tribution to the gap in the limit cF »coD »b is
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2
3 5 D 1

5Zq =— dE,
'}/s +b,

1 c.
ln

4.

2 2

+ Q(s +b, )( —,'s +46, )+-
8cF 4 cF

(20)

where coD is the Debye frequency cutoff.
The Weisskopf term will also give corrections to the ~&

and 1 terms in Xo. The corrections to r~ will renormalize
the chemical potential and the electron mass and give rise
to an effective electron mass, m *. The term proportional
to the identity matrix 1 adds a contribution ko(5Z~ ) to
the energy ko. Defining Z+ =1—5Z+, this corresponds
to a wave-function renormalization +~Z+' 4' and
modifies the mass gap term by Z~'. Evaluating the
wave-function renorrnalization constant at the Fermi sur-
face in the limit cz »coD »5 gives

5Zq, = ——= 3 6'
8 cF

2coD
3 —&3 ln

—0.844+ 8
E,F

Thus the total self-energy contributions to the gap arising

from the Weisskopf term will be hz, =b,(5Z&+5Z+)
where we have kept terms to lowest order in the correc-
tion parameter (5/sF) . The BCS gap equation with the

Weisskopf corrections in the limit cz »coD »6 is

2coD1=—,
' VN(sF)ln

3

8 cF

'2
2coD

ln + ln 2 ln +0.762 —2. 389
COD

3 5'
8 cF

2')D
3 —&3 ln —0.844 (22)

where we have evaluated the integral in (20)
g(lnx/xz) where x =(AD/b, . In normal type-I supercon-
ductors (b, /sF)z-10 because vF =10s cms '. This is

quite a small correction compared to VN(sF) which is

typically -0.25. However, in type-II superconductors
the Fermi velocity is smaller: vF-—10 cms ', and the

gap parameter is larger, so that the correction
(b, /sF) —10 . Note that this does not contradict the
fact that we assumed cF »coD »5, because the correc-
tions are always proportional to (b/sF) Howe. ver, we

need to obtain the coefficients of (b/sF) in the limit

coD. We present the full exact expressions for 5Z~
and 5Z+ below.

All the above results are for T =0. The results at finite
temperature are obtained by using the imaginary time

formalism. The quasiparticle-m mode coupling constant
(14) at finite Tbecomes

1

f'(T)
N(sF) ~D ds p

c.+cF tanh —E
8+s/ "o E'

where P= 1/kz T. It is interesting to note that in the lim-

it s~ &&coD && b, the coupling (23) is simply

f„(T) =46 ( T) /N( s~ ) as T~0. One immediate conse-
quence of (23) is that at T = T, the integral is divergent
and so the coupling constant vanishes, i.e., f (T, )=0.
Hence the determination of T, remains unaffected by the
amplitude mode correction.

Similarly we can obtain the finite-temperature expres-
sions for 5Z& and 5Z~. At the Fermi surface we have

X —(6 +E E) tanh + —(6 E+E ) coth— (24}

N(cF } 1 1 1
5Zq, (T)=f (T} f ds+s+e~ f d(cosO)

1T (E+E )' b, ' (E E—)'——

X 2EE tanh +(6 E E)coth— —
E 2 2

(25)
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where the coupling f„(T}is determined from (23) and

E2 ~2+ Q2

(26)

E2 8~2 1+ 1 c
o 3 F

CF

—
—,'e~+1+(E/c~) cos8+4b, 0.8—

In the limit EF »coD »b, and T =0 the expressions (24)
and (25) reduce to (20) and (21). Combining these correc-
tions with the finite-temperature BCS gap equation, we
obtain the complete finite-temperature equation for b( T}:

CO

CI 0.6—

cj
0.4—

1= VN(e~) f Qe+eF tanh —E1 "o de P
41/ ep

+5Za(T)+5Zq, (T) . (27)

0.2—

0
0 0.2 0.4 0.6

Tff,
0.8

The solution of (27} is shown in Fig. 3 for typical values
of the parameters in a type-II superconductor. The big-
gest deviation is at T=O and decreases until T=T„
where there is no change from the BCS result. Such a
scenario may be occurring in the organic superconductor
(BEDT-TTF)2I3 where a proposal, 6 to place the gap at 6
cm ' may be consistent with the observation that the gap
below T, is reduced from the BCS value [26(T=0}=20
cm '], while T, remains unchanged.

For a thorough discussion of the realistic cases, howev-
er, one has to take into account the complexities of the
electronic band structure and phonon spectra. One of the
important effects is the mixing of the amplitude mode
with the original Coulomb and phonon interactions.
This mixing is proportional to 6/eF and occurs because
of the intrinsic particle-hole asymmetry relative to the
Fermi surface. It again results in a reduction of the pair-
ing forces and is most significant in type-II or organic su-
perconductors.

It should be noted that if one considers so-called "neu-
tral" superconductors and includes the effect of the pure

FIG. 3. Comparison of the solution of the gap equation with

feedback effect (dashed line) with the normal BCS result (solid

line) for typical type-II superconductor parameter values

(m /m, =15, vF/c =10,A/cF=0. 9).

Goldstone ~2 mode then one finds that the feedback is
positive for the v.

&
term. This will almost cancel against

the negative feedback of the amplitude mode (20}. How-
ever, the contribution to the 1 term is the same sign as
for the amplitude mode and will add to the amplitude

~2correction to give b, g, =265Z+.
The feedback effects of the collective bosonic modes on

the superconducting state may also be relevant for the re-
cent high-T, superconductors where b /eF -0.1." How-

ever, without a complete understanding of the mecha-
nism involved in high-T, materials at present, we can
only but speculate on these effects.
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