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Spatiotemporal behavior of localized current filaments in p-n-p-n diodes:
Numerical calculations and comparison with experimental results
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A two-component evolution equation of reaction-diffusion type derived recently to describe experi-
mental results on the self-organization of current-density filaments in silicon p-n-p-n diodes has been
solved numerically. By using physically reasonable parameters and applying different boundary condi-
tions, good qualitative agreement with experimental results is obtained. In particular, the following bi-

furcation scenario obtained by increasing the external driving voltage in the experiment can be repro-
duced in the calculations: stationary homogeneous current-density distribution leads to static current
filament leads to rocking current filament leads to traveling current filament. Furthermore, it is shown

that a period-doubling cascade of integral system variables, as, e.g., the device voltage, strongly corre-
lates with the spatiotemporal filament motion which undergoes the same period-doubling route. Even
quantitative agreement between numerical and experimental results could be achieved to some extent.

I. INTRODUCTION

Self-organized spatiotemporal structures can appear in
semiconductors in the form of current-density filaments
or electric-field domains and are usually connected with
the appearance of negative differential conductivity re-
sulting in an S-shaped or ¹haped current-voltage
characteristic, respectively. In experiments, current-
density filaments have been observed in bulk materials,
e.g., n-type GaAs, ' and p-type Ge, as well as in semi-
conductor devices, e.g., SiC p-n junctions, Si p-i-n
diodes, and p-n-p-n diodes. ' Specific models describ-
ing the formation of static current-density filaments and
the dynamical behavior of filaments have only been
developed in a few cases. Examples are p-n junctions, '"
heterostructure diodes, ' p-n-p-n diodes, or bulk semi-
conductors in the low-temperature regime. ' '

In this paper, we start from the two-layer model for
spatial and spatiotem. poral pattern formation in special
p+-n+-p-n diodes derived in Ref. 8. A short review of
the main features of the model and the appertaining mod-
el equations is given in Sec. II. In Sec. III we present re-
sults of numerical calculations of the model equations,
which describe essentially the evolution of the current
density and the potential in the interface layer. In agree-
ment with the predictions made on the basis of qualita-
tive analytical arguments, it is shown that the calcula-
tions yield all bifurcations observed experimentally. The
influence of different boundary conditions on the evolu-

tion and the dynamics of the observed current filaments is
studied in order to get insight into the interaction mecha-
nism between the boundary of the system and the fila-

ment. In Sec. IV the numerical results are compared in

detail with experimental results, and, finally, some con-
clusions are drawn.

summing up the main features of the model and writing
down the final equations. The basic idea for modeling the
spatial and spatiotemporal behavior of current-density
filaments in p+-n+-p-n diodes is founded on the
division of the device into two parts, a p+-n +-p transis-
tor and a p-n junction as shown in Fig. 1. The
p+-n+-p transistor works as an avalanche transistor: if
the electric field in the reverse-biased n -p junction
reaches a critical value impact ionization takes place.
The generated electron-hole pairs are separated by the
electric field and the electrons reaching the p+-n +

emitter cause an additional injection of holes into the n+
base. This combination of an autocatalytic mechanism
due to the avalanche process in the n+-p collector and
the positive feedback mechanism based on the additional
hole injection leads to the S-shaped current-voltage
characteristic of the p+-n +-p transistor.

The device is considered to be quasi-two-dimensional,
i.e., the current-density and the potential distributions do
not vary in the z direction (Fig. i). For the description of
the p+-n+-p transistor the following assumptions have
been made.
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II. THE MODEL

For a detailed derivation of the model equations we
refer the reader to Ref. 8; here we restrict ourselves to

FIG. 1. Schematic outline of the p -n+-p-n device and the

electrical circuit; typical dimensions are I = 1 —5 mm,

l„=400—800 pm, I, =400—1000 JMm.
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(i) The current density j,(x, t) of the p+ n-+ emitter is
the sum of the displacement current density C,BV, /Bt,
the current density j,[exp[ V, (x, t)/Vz ]

—1] arising from
the diffusion of injected holes into the n+ base, and the
recombination current density j„[exp[V, (x, t)/2' I

—1]:

BV, V,j,(x, t) =C, +j, exp
Bt T

V- —V
+ i e

PL,

.—[p{V~, V) —p„o], (4)

and p ( V; (x, t) ) depends exponentially on V, :

V,
Q( V„V;,V) = Mjsc+PMjz expe8' T

V,+j, exp
T

Vp
p( V„V)=p„oexp =p„oexp

T

V—V;

VT

V,j (x t)=MJsc+MPj, exP
T

V,—1 +
PI.

(iii) In order to take into account the spreading of the
current in the n+ base, we connect the emitter and col-
lector current densities by the following equation:

(ii) The current density j,(x, t) of the n+-p collector is
the sum of the collector saturation current density jsc,
the transfer current density of holes pj, [exp [ V, (x, t ) /
Vz] —1] injected from the p+-n+ emitter, both being
multiplied by the multiplication factor M( V, )

=[1—(V, /Vb) ] ' due to the avalanche effect, and the
leakage current density V, (x, r)/pL.

r=(r~ '+r, ') ' is an effective lifetime determined by
the lifetime ~ of holes in the n region and the surface
recombination rate ~, ' at the cathode. V is the voltage
drop across the entire p+-n+ p n --diode. V (x, t)
= V —V, (x, t) denotes the voltage drop across the p-n
junction. For a complete listing of the parameters see
again Table 1.

Equations (1) and (3) form a set of evolution equations
for the emitter voltage V, and the transistor voltage V;,
which is determined by the hole density via Eq. (5). If the
device is driven by a constant dc driving voltage source
V„V,and V; can be calculated by these equations with
V= V, . In experiment, the device is usually operated via
a load resistor Ro. Then we have to take into account a
third equation resulting from the external circuit:

J (x, r )=J (x, r ) +m cr, d' V (x, t ) /Bx ' 1„
V= V, Rol, J j—(x, t}dx,

0
(6)

For a listing of the parameters see Table I.
Using these assumptions the evolution of the emitter

voltage V, is determined by

BV,(x, t) 8 V, (x, t)
C, =wob —q( V„V;),

dt

where j (x, t) is the current density in the device chosen at
an arbitrary cross section parallel to the metallic con-
tacts. l„and l, denote the width of the sample in the cor-
responding direction. For numerical calculations we
choose the collector current density:

with q( V„V;)defined as

V,
J j ( V V' } MJsc+PMJ exp

T

V —V—1 +
PI.

V,+j, exp
T

1 —Mjsc

V,
q(V„V,}=[1—PM]j, exp

T

V; —V,

(2)

The set of Eqs. (1), (3), and (6) has to be completed by
specifying suitable boundary conditions of the space-
dependent variables V, and p. %'e have studied the fol-
lowing two cases.

Case A. Homogeneous Neumann boundary conditions
for V, andp:

&p(V;) &'p(V, )r =l. +Q( V„V„V), (3)

where Q( V„V„V)has the form

V;(x, t)= V, (x,t)+ V, (x, t) is the voltage drop across the
entire p+-n+-p transistor and, therefore, M can be writ-
ten also as M =M( V, —V, ).

The p-n junction is considered as an ideal Shockley
diode. As outlined in detail in Ref. 8, the evolution of the
average hale density p{V~(x, t)) in the n region obtained
by integrating the continuity equation for the hole con-
centration p (x,y, t) over the y axis (Fig. 1), is given by

BV,(x =O, t) =0,
C)X

aV, (x =l„,t} =0,
Bx

(Sa)

Bp(x =O, t)
Bx

Bp(x =l„,t) =0.
Bx

(8b)

Equation (Sa) means that there is no lateral current in the
n+ base at the sample boundaries and Eq. (8b) is physi-
cally reasonable to ensure that no lateral diffusion at the
sample boundaries takes place in the n region.

Case 8. Mixed boundary conditions, i.e., Dirichlet
boundary conditions for V, and homogeneous Neumann
boundary conditions for p:
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V, (x =O, t) = V,o, V, (x =1„t) = V,o,

Bp(x =1„t) =0.
Bx

(9b)

The Dirichlet condition for V, may be useful if the
emitter voltage is limited or fixed, e.g., by surface recom-
bination.

The evolution of the two system variables V, and p is
based on a competition process between the variables.

This can be seen easily when we consider the device un-
der such a large bias voltage that avalanche multiplica-
tion in the n+-p junction takes place. The generated
electrons move to the p+-n+ emitter and cause there an
additional injection of holes leading to an autocatalytic
increase of V, . j, then increases, too, because it depends
exponentially on V, . Because of the activating property
of V, in this range we call V„and loosely j, orj„too, an
activator. An increase of V, connected with a growth of
j, and j, leads to an increase of the holes injected in the

Parameter

C,

Dp

Jsc

Pno

Rp

Parameter meaning and manner of determination

capacity per unit square of the p+-n+ junction;
estimated by the doping profile, see Ref. 9

diffusion coefficient of holes in the n layer;
determined from literature, see, e.g., Ref. 25

saturation current density of the recombination current in the
p+-n+ junction; determined by fitting the experimental

to the numerical I( V) characteristic

saturation current density of the diffusion current in the
p+-n+ junction; determined by fitting the experimental

to the numerical I( V) characteristic

saturation current density of the n+-p collector; determined by
fitting the experimental to the numerical I(V) characteristic

sample width in x direction;
measured after finishing preparation procedure

sample width in z direction;
measured after finishing preparation procedure

effective diffusion length of holes in the n region;
defined by L =(D~7)'

coefficient determining the dependence of the multiplication factor
on the collector voltage; determined from literature, e.g., Ref. 25

equilibrium concentration of holes in the n layer;
determined by the doping profile, see Ref. 9

external load resistor

temperature

Standard parameter value

(typical parameter range)

1 X 10 F/cm
10

—2 10
—6 F/cm2

10 cm'/s
5-20 cm2/s

3X10 7 A/cm2
10 '-10 ' A/cm'

1.5X10 " A/cm
10 "-10 ' A/cm

2X10 ' A/cm'
10 -10 ' A/cm

0.5 cm
0.1-1.0 cm

005 cm
0.03-0.1 cm

0.02 cm
0.01-0.05 cm

3
2—5

1X 10 cm
10 -3X10 cm

1 0
0. 1-10 0

300 K
77-370 K

Vb

VT

PL

breakdown voltage of the n+-p collector; determined by fitting the
experimental to the numerical I(V) characteristic

thermal voltage; defined by kT/e,
with Boltzmann constant k and elementary charge e

thickness of the n+ base; determined by the doping profile, see
Ref. 9; the influence of a drift field in the base may be taken into

account by an effective base width smaller than the real one

thickness of the n substrate;
determined by the doping profile, see Ref. 9
base transport factor; determined by fitting

the experimental to the numerical I(V) characteristic

leakage resistance of the collector; determined by fitting
the experimental to the numerical I(V) characteristic

average conductivity of the n+ base;
determined by the doping profile, see Ref. 9

effective hole lifetime; defined by the hole lifetime- in the n region
and the surface recombination rate at the cathode

42 V
35-45 V

0.026 V
0.0065-0.032 V

0.0003 cm
10 —10 ' cm

0.06 cm
0.04-0.08 cm

0.6
0.5-0.9

40000 Qcm
10 —10' Qcm'

10 (Qcm)
1—100 (Qcm)

10 ps
10—300 ps
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has been solved by introducing a time dependence of the
device voltage V with an effective relaxation-time con-
stant which is at least two orders of magnitude faster
than that of the other system variables V, and V, .

In what follows, we present results of numerical calcu-
lations with different boundary conditions performed
with reference to experiments. In particular, the spatial
and temporal evolution of the activating and the inhibit-
ing variables are analyzed in terms of their dependence
on the value of the dc driving voltage V, . The parame-
ters for the numerical calculations have been estimated
partly from experiments and partly from the literature, as
summarized in Table I.

FIG. 2. Null-cline system of Eqs. (1) and (3}for parameters of
Table I, but Rp =0 0; V, has been chosen as 28.0 and 33.2 V for
Q, and Qz, respectively.

n layer and consequently to an increase of V~ according
to Eq. (5}. This results in a decrease of V; = V—V, the
latter being valid if the device voltage is kept constant.
Thus, the inhibiting process based on the properties of
the p-n junction counteracts the autocatalytic process
in the p+-n+-p transistor. The voltage V; or V may
therefore be called the inhibitor. Furthermore, the load
resistor effects a global inhibition that may have an im-
portant influence on the creation of spatiotemporal pat-
tern$8, 15—17

In order to get an insight into the possible behavior of
the system it is helpful to look at the null-cline system of
Eqs. (1}and (3) for homogeneous distributions of V, and

p; i.e., we have to find the solutions of the equations
q(V„V,)=0 and Q{V„V(p);V)=0. In Fig. 2 the
curves V, {V, ) are drawn as they result for a parameter
set under voltage-bias conditions, i.e., without a load
resistor. The curves Q, =0 and Qz =0 have a small neg-
ative slope and belong to different values of the voltage
source V, with V,2& V„.A variation of V, leads to a
vertical shift of the curve Q=0. Depending on V, it is
therefore possible to realize one, two, or three intersec-
tion points of the curves q=0 and Q=O. Since the in-
tersection points of the null clines correspond to homo-
geneous stationary solutions of the system, it is clear that
the system can realize for a given set of parameters up to
three stationary pairs (V„V,) of the emitter and collector
voltage. However, not all these states are stable, and in-
homogeneous distributions and/or nonstationary distri-
butions can be expected.

III. NUMERICAL RESULTS

The numerical calculations have been performed on a
parallel computer consisting of nine transputers of type
T800. As discretization technique the finite-difference
method has been used; in particular the Crank-Nicolson
method has been applied for discretization in time. For
the solution of the implicit equations corresponding to
Eqs. (1) and (3},we have used a relaxation method that is
a simplified version of the Newton-single-step method.
The third equation, Eq. (6), involving the integral term,

A. Calculations using homogeneous
Neumann boundary conditions

1. Transition from a homogeneous
current densi-ty distribution to a static localized filament

As initial values, we choose spatially homogeneous dis-
tributions for V, and p. In order to simulate statistical
fluctuations, which are unavoidable in real systems, a
pseudorandom variable of about 0.01% of the corre-
sponding values is added to both distributions in each
time step. For a given value of V, and the initial distribu-
tions, new steady-state distributions of V, and p are cal-
culated via Eqs. (1), (3), and (6) and are used as initial
conditions for the next value of V, . In Fig. 3(a), the cal-
culated total current-voltage characteristic I(V) of the
device obtained by increasing V, is depicted. For low
values of the device voltage V, only a very small total
current distributed homogeneously is allowed to flow
through the p+-n +-p-n diode. The current limitation
is governed by the reverse-biased n+-p junction. If the
voltage drop V, across this junction approaches the value
of Vb =40 V, the multiplication factor M( V, ) increases
significantly. The maximum value of M at breakdown is
about 5. The steady-state distributions of the voltages V,
and V; are homogeneous for the blocking branch and,
therefore, those of the current densities j, and j, are too.
Even in the region with negative differential resistance,
where steady states are obtained if the load resistor in the
external circuit is sufficiently large (typically Ro&10
kQ), the calculated distributions are homogeneous up to
a total device current of I=0.4 mA, indicated as point A
on the I( V) characteristic in Fig. 3(a). The correspond-
ing homogeneous distributions of j, and V for this
current are shown in the uppermost diagram of Fig. 3(b).
Here and in what follows, we have drawn the current
density j,( V„V;) and the potential Vr = V—V;(p ) in-
stead of V, and p because these variables can most easily
be compared with experimental results (cf. Sec. IV). In
doing so, one has in mind that j, essentially represents
the activator whereas V corresponds to the inhibitor.
At the point B, where the negative differential resistance
reaches approximately its minimum value, the current-
density distribution starts to contract, whereas the poten-
tial distribution Vz remains nearly homogeneous. How-
ever, if we proceed along the I( V}characteristic to larger
current values, Vs becomes inhomogeneous, too [point (-,
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Fig. 3(b)]. Both the current-density distribution and the
potential contract further with increasing total current
(D) until they reach a minimum width (E). This contrac-
tion phase is strongly connected with the pronounced
negative-differential-resistance region in the I( V) charac-
teristic, where the inequality PM»1 holds. Note that
all distributions drawn in Fig. 3(b) are stable stationary
solutions of the set of Eqs. (1), (3), and (6) and the process
of contraction is completely reversible at any stage.
When the contraction phase is completed a stable local-
ized current-density filament has been formed. Thereby a
filament is considered to be localized if the values of the
system variables V, and p, and consequently the values of
j„j„andV;, far away from the center of the filament,
are solutions of the homogeneous steady-state problem:
q=0and Q=O.

For an analysis of the contraction from the homogene-

5000;
~ 5j (num. )
L hV (num. )

P
3000-'~

2000+ ~ g gk

s
10QQ 1~~ 6ca o ow o o ~o

0 20 40 60 80 100
total current I (mA)

O 6 l.d. (exp.)
LL pot. (exp.)

FIG. 4. Full widths hj, and 6V~ at half maximum obtained
from the calculated steady-state distributions j, and V~ as func-
tions of the total current I; parameters as in Table I but Rp =10
kQ; the open symbols represent results from experiments and
mark the full widths 5 at half maximum of the light density
(l.d.) and potential distribution (pot. ) in a p-n-p-n diode as func-
tions of the current I (cf. Sec. IV).
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ous current density distribution to a localized filament,
we consider the dependence of its width, more precisely
the full width b, at half maximum, on the total current I
Filaments as shown in Fig. 3 are considered as half fila-
ments. The result of an evaluation of the calculated
steady-state distributions of j,(x) and V (x) is shown in

Fig. 4, where b,j, and b, V are drawn as functions of the
total current I. The contraction phase takes place in the
current interval IE-[0.4, 20 mA]. The minimum values
of the widths Aj, and hV are 0.33 and 1.7 mm, respec-
tively. The quite broad distribution of V with respect to

j, is analogous to solutions of conventional reaction-
diffusion systems of activator-inhibitor type, in which lo-
calized structures can be stabilized by a fast inhibitor
with rather large diffusion length in comparison with a
slowly acting activator characterized by a relative short
diffusion length. '

It is conspicuous that the localized structures shown in

Fig. 3 always develop near one of the system boundaries.
The boundary at which the filament rises is selected by
random Quctuations of the system variables included in
the numerical calculation. If we choose a filament in the
center of the system as initial condition, this filament
moves to one of the boundaries and becomes stable again
as a half filament. The velocity of this moving process is
governed by the ratio of the relaxation-time constants of
the activating and the inhibiting component V, and V;,
respectively, and can be slowed down essentially by, e.g.,
increasing the emitter capacity C, . For sufficiently large
C„sayan increase of C, from 10 to 10 F/cm, the
filament can be stabilized at any arbitrary point.

0.3
0

E
poten 'al current density

re

I I

1 2 3
x-coordinate (mm)

100.0~
E
O

0.0

FIG. 3. (a) Numerically calculated current-voltage charac-
teristic I( V) and (b) stationary spatial distributions of V~ and j,
for different values of the driving voltage V, indicated as points
A —E; (V„I)=(40.826 V,0.56 mA) (A), (45.2 V,0.9 mA) (B),
(47.61 V, 1.2 mA) (C), (229.4 V, 19.7 mA) (D), (952.4 V, 92 mA)

(E);other parameters as in Table I but Rp = 10 kQ.

2. Transition from a static to a breathing loea1izedglament

The static filament is stable only up to a certain critical
total current I„corresponding to a critical width of the
filament. When this critical value is reached the wall of
the filament becomes unstable and a breathing filament
develops, i.e., the filament width widens and narrows
periodically. In Fig. 5 the time evolution of the current
density j, is shown for different values of the applied dc
driving voltage V, . The dark areas mark those parts of
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FIG. 5. Numerically calculated spatio-
temporal evolution of j,(x, t) for different
values of V„parameters as in Table I
and (V„I)=(33.890 V, 1.445 A) (a), (33.895
V, 1.450 A) (b), (33.900 V, 1.455 mA) (c).

the distribution in which a certain threshold value, ap-
proximately —', of the maximum current density, is exceed-
ed. Thus, these regions correspond to high-current re-
gions and indicate the spatial position of the current fila-
ment. For V, =33.890 V [Fig. 5(a)] the distribution is
still stable, whereas for V, =33.895 V [Fig. 5(b)] a small
modulation of one of the filament walls becomes visible;
the amplitude of this wall oscillation increases continu-
ously with increasing V, as shown in Fig. 5(c), where

V, =33.900 V has been chosen. The wall oscillations are
accompanied by oscillations of the total current I(t) and
of the voltage drop V (t } across the device. The period of
these oscillations is the same as the period of the wall os-
cillations.

A detailed analysis of the spatial motion is possible if
we investigate the spatial distributions of j,(x, t) and
V (x, t) at different stages of the oscillation period, as
shown in Fig. 6. In Fig. 6(a), the points of time r;,
i =1—6, chosen to represent j,(x, t; ) and V (x, t; ) are re-
lated to the time trace V(t) of the voltage drop across the
device. As can be seen from the spatial distributions in
Fig. 6(b), there is a modulation of the amplitude of the
current density in addition to the breathing oscillation.
The amplitude oscillation is about 30%%uo of the maximum
value of j,. The interplay between the amplitude and the
breathing oscillation is such that the total current oscil-
lates with a quite small amplitude, typically in the range
of a few tenths of a percent to a few percent of the dc
current part, depending on the value of R0. The max-
imum elongation of the wall in the direction of large x
values corresponds to a maximum total current I(t), car-
ried essentially by the filament, and a minimum in
V(t)=V, ROI(t). A com—parison of the distributions
V~(x, t) with the corresponding current-density distribu-
tions j,(x, t) at t, and t3, which correspond to a max-
imum and minimum of the mall elongation of j„reveals
that there is a time delay between the movement of both
distributions. The potential distribution representing the
inhibitor follows behind the current-density distribution,
which represents the activator, as a result of the larger
relaxation-time constant determined by the e8'ective life-
time ~ of holes in the n layer. %e remark that the vari-
ations of V are quite small and, therefore, they cannot be
resolved in Fig. 6(b}.

For different values of Ro (values from 0.1 0 to 10 kQ
have been used together with the parameter set of Table
I), the transition from a static to a breathing current fila-
ment occurs in all cases at the same critical current value
I,&=1.447 A. Therefore, the total current seems to be
the proper bifurcation parameter rather than the value of
V„the critical value of which changes if R0 is changed.

In order to characterize the bifurcation type from the
static to the oscillating filament it is therefore reasonable
to consider the amplitude Vo of the ac part of the device
voltage V(r) and the amplitude IP of the wall oscillations
of j„defined by half the distance of the maximum and
minimum wall elongation, as functions of the arithmetic
mean I of the total current I. As a result, we obtain that
both quantities Vo and l increase in a square-root-like
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FIG. 6. Numerically calculated time trace V(t) of the device
voltage (a) and distributions V~(x) and j,(x) for different times
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manner with I. In contrast to this continuous growing of
V0 and I starting from zero at I=I„,the oscillation at
the bifurcation point sets in with a value of the funda-
mental frequency definitely larger than zero. This value
decreases when I is increased. Thus, the transition shows
typical features of the well-known supercritical Hopf bi-
furcation.

3. Period-doubling cascade
of an oscillating localized filament

The simple periodic filament motion is stable in a
current interval from I=1.447-1.500 A. For larger

average currents, the spatiotemporal motion undergoes a
period-doubling cascade. The threshold diagrams in
Figs. 7(a) —7(c) show a period-2 motion, a period-4
motion, and a motion which reveals no periodicity during
the total recording time (12 ms) for values of
V, =33.9450, 33.9495, and 33.9505 V corresponding to
an average current of I=1.501, 1.510, and 1.511 A, re-
spectively. The time traces V ( t } belonging to the dia-
grams of Fig. 7 are shown in Fig. 8. Evidently, the
period-2 and period-4 oscillations of the filament wall are
accompanied by respective oscillations of the voltage sig-
nal V(t) Acc. ordingly, the time trace V(t) of the non-
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periodic wall oscillations reveals no periodicity. There is
still a strong correlation between the global signal and
the local filament motion. As example we point out that
each large elongation of the filament wall is connected
with a local maximum in the current I(t) and a corre-
sponding local minimum in the voltage signal V(t). In
addition to the time traces, the projections of the phase
space onto the 8 V/Bt- V plane, the return maps, obtained
by plotting the (n+1)th vs the nth minimum of V(t),
and the power spectra of the three time series are shown
in Fig. 8. For the nonperiodic time trace V(t), the power
spectrum is quite broad and relatively smooth in compar-
ison with those of the periodic signals. Furthermore, the
form of the phase-space projection and the return map
indicate chaotic behavior of V(t). An evaluation of five
nonperiodic time series that contain data with a digitiz-
ing resolution of 8 bits supplies attractor dimensions be-
tween 1.87 and 1.94, using the algorithm from
Grassberger and Procacia' with a modification described
in Ref. 20; so we have strong hints for a chaotic wall
motion of the current filament in this case.

4. Transition to a traueling localized filament

The current interval in which nonperiodic oscillations
can be stabilized is very small and contains only some

hundreds of microamperes. As indicated already in the
threshold diagrams, e.g., in Fig. 7(c), the filament is able
to separate from the boundary. Indeed, a complete sepa-
ration of the filament takes place if the total average
current is large enough. As shown in Fig. 9(b), the fila-
ment oscillates for a certain period of time near one of
the system boundaries. During this stage, the amplitude
of the wall oscillations increases in course of time. If the
amplitude exceeds a threshold value, the filament is de-
tached from the boundary and travels with a constant ve-
locity of about u =60 pm/p, s through the sample. When
it reaches the opposite boundary the filament is reat-
tached there, oscillates another few periods near the
boundary with increasing breathing amplitude, and, final-

ly, travels back to the right boundary. This superposition
of breathing and traveling motion becomes visible in the
voltage trace Y{t) of Fig. 9{a), too: on the one side, the
relatively small local minima in this trace are accom-
panied by maximum filament elongations during the
breathing oscillation. The decrease of these minima in
course of time between the points t, and t2 marked in
Fig. 9(a) corresponds to an increase of local maxima in
the current trace I(t)= [ V, —V(t) ]/Ro and indicates the
growing breathing mode. On the other side, the global
minima of V(t) [Fig. 9(a), between ts and t&] coincide
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with those moments at which the traveling filament
reaches one of the system boundaries. When the filament
is traveling through the system, the device voltage and
therefore the total current changes only little, revealing
that the filament is moving with a constant shape.

In Fig. 9(c), the spatial distributions of j,(x) and V (x)
are drawn for the time steps t& —t6. On the basis of this
representation, the mechanism leading to the transition
from the boundary oscillation to the traveling filament
and the inverse trapping process becomes plainly visible:
the widely spread inhibitor Vz moves with a certain delay
behind the activator j,. This can be seen very clearly
when the filament is in the traveling mode as in point t4
of Fig. 9(c}. The interplay of the so-called diffusion pre-
cursor ' of the inhibitor distribution in front of the lead-
ing activator wall with the boundary of the system is
essential for the reflection of the filament when it ap-
proaches the boundary. The Neumann boundary acts as
a mirror for the filament and the inhibitor precursor of
the imaginary filament interacts with the traveling fila-
ment, resulting in a reflection of the filament. An im-
mediate reflection of the filament, however, is prevented
by the broad inhibitor tail that runs behind the activator
distribution; the maximum of the inhibitor distribution
and the inhibitor tail are still far away from the boundary
when the activator maximum has already reached the
boundary. As can be seen by looking upon the distribu-
tions j,(x) and Vz(x) at the times t, and t2, the inhibitor
distribution concentrates near the activator distribution
and decreases in the remainder of the sample during the
oscillation near the boundary. This subsiding of the inhi-
bitor far away from the activator maximum allows the
renewed expansion of the activator to the interior of the
system.

An increase of V„i.e., an increase of the average total
current I, leads to a more complex behavior of the oscil-
lation near the sample boundary. With further increasing
I the durations of breathing oscillations become smaller.
Finally, when I exceeds 1.86 A the breathing oscillations
near the boundary vanish completely and a well-defined
traveling motion between the sample boundaries devel-

ops.

l. Eoolution ofa static localized filament

(a)
vp

Jc

0.82

The formation of a localized current-density filament is
very similar to the case with homogeneous Neumann
boundary conditions. For boundary values of V, larger
than the value V, & and for low total currents and
sufficiently long samples, the current density decreases
from the boundaries to the interior of the sample and
V, (x) is nearly homogeneous far away from the
boundaries. When the dc driving voltage is increased, in
the environment of one of the boundaries a current-
density filament is generated by contraction, as in the
case with Neumann boundary conditions described in
Sec. III A 1. This contraction is accompanied by the ap-
pearance of a negative differential resistance in the global
current-voltage characteristic I(V), as well. For a total
current of 20 mA, the contraction phase is completed and
the filament width reaches a minimum. In Fig. 10 sta-
tionary spatial distributions of j, and V~ are drawn for a
current at which the device is operating in the blocking
mode and the conducting branch of the I ( V) characteris-
tic, respectively. As can be seen clearly [Fig. 10(b)] the
filament keeps away from the boundary having the value
of V, (x =O, l„)=0.63 V. This is valid to less extent for
the voltage distribution Vz(x), which has its maximum
value also well away from the boundary, but is not
separated completely due to the relatively large spreading
of V that represents the laterally extended inhibitor.
The localization of the current filament in a well-defined
distance from the boundary is a result of an interaction of
the boundary with the filament. The interaction is attrac-
tive if the filament removes itself too far from the bound-
ary and repulsive in the opposite case. This becomes evi-
dent when a stable stationary filament is thrown from its
equilibrium position: in this case the elongated filament
moves back and performs a damped oscillation around

B. Calculations using mixed boundary conditions

The choice of Dirichlet boundary conditions for V, is
suggested by experimental results (cf. Sec. IV}, which re-
veal that the current-density filaments do not develop
directly at the boundary in general, but evolve in a cer-
tain distance, although rather close to the boundary.
When we choose values for the emitter voltage
V, (x =O, l„)at the boundaries that are smaller than the
value V, z of the corresponding spatially homogeneous
distribution determined by q ( V„V;) =0 and Q ( V„V;,V)
=0, the filament is repelled from the bound-
aries as outlined in detail below. In experiment, a con-
stant emitter voltage at the boundary may be motivated
by surface effects. Especially for sufficiently large
currents, there are some hints from measurements with a
scanning electron microscope that the effective feed-
back mechanism is weakened near the sample boundaries.
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FIG. 10. Numerically calculated stationary spatial distribu-
tions of j, and V~ for di8'erent values of the driving voltage V„'
parameters as in Table I and V, (x =0,I„)=0.63 V,
( V I Rp) =(65.57 V,3.1 mA, 10 kQ) (a), (32.85 V,400 mA, 1 0)
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the stationary position, caused by the delayed response of
the inhibitor with respect to the activator.

2. Transition from a static to a rocking localized filament

With increasing applied voltage V„i.e., increasing to-
tal current I, the damping becomes smaller and at a criti-
cal current I„=410mA a rocking motion of the current
filament around the former equilibrium filament position
appears [Fig. 11(a)]. Similar to the behavior in the case
of homogeneous Neumann boundary conditions, the fila-

ment motion is accompanied by oscillations of the device
voltage V(t) [Fig. 11(b)]. A inain qualitative difference in
comparison to Neumann boundary conditions is the ap-
pearance of additional local extrema in the voltage signal.
The maxima of V(t), corresponding to minima in I(t),
appear when the filament turns back. In detail, the small-
er local maxima belong to the inversion points situated in
the interior of the sample, and the global ones are corre-
lated with those moments at which the filament reaches
the sample boundary. The voltage minima correspond to
moments of maximal filament velocity. The two different
kinds of minima are caused by the asymmetric filament
reflection: when the filament is reflected from the bound-
ary to the interior of the sample its velocity becomes
larger than in the opposite case. The proper reason for
this asymmetry is based on the influence of the Dirichlet
boundary condition for V„which leads to a narrowing
and a stretching of the current filament when it is
reflected near the boundary or in the interior of the sam-

ple, respectively. We point out that there is no noticeable
modulation of the amplitude of the current density when
the filament is in the rocking mode.

For sufficiently small values of V, (x =O, l„),i.e., small-

er than the value V, &, the boundaries are exclusively
repulsive. This leads to the formation of a symmetric
current filament at the center of the sample and by
exceeding the critical current to a symmetric rocking
motion of the filament, because the reflection is governed
by both boundaries in this case, being difFerent from the
case discussed here with V, (x =0, l, ) ) V, I, .

As the applied voltage V, is increased, and with it the
total average current, the spatial amplitude l„ofthe rock-
ing filament as well as the peak-to-peak value of the glo-
bal extrema of the voltage trace grow. In the following
we denote the half of this peak-to-peak value as ampli-
tude VD of the voltage trace. The scaling behavior of
both quantities, l„and Vo, is slightly different from that
observed in the case of homogeneous Neumann boundary

conditions. We find a square-root-like increase between
l„and I, whereas Vo increases linearly with I. The
difference between the scaling laws is not surprising, be-
cause the maximum filament elongations are correlated
with the maxima in the voltage signal but not with the
minima. The fundamental frequency f of the observed
rocking oscillation rises at the bifurcation point discon-
tinuously and decreases with increasing I. From these re-
sults, the transition to the rocking filament can be
classified as supercritical Hopf bifurcation; this is similar
to the transition from a static to a breathing filament in
the case of homogeneous Neumann boundary conditions.

3. Transition from a rocking to a traveling localized filament

The filament motion changes when the applied voltage
V, is so large that the rocking filament reaches the
nearest sample boundary. In this case the spatial ampli-
tude I„reaches a value equal to the distance of the static
filament from the boundary at a total current just below
the critical current I„.The moving filament is then able
to surmount the attractive infiuence of the boundary and
travels through the whole sample. Reaching the other
boundary the filament again is reflected at the boundary
and turns back to the boundary it started from. This
traveling between the boundaries repeats itself periodical-
ly. A typical filament motion of this kind is shown in the
threshold diagram of Fig. 12(a). The global maxima in
the corresponding voltage trace V(t), Fig. 12(b), coincide
in time with the refiection events at the boundaries. If
the system is suSciently long, the filament travels in a
quasi-force-free region in the interior of the sample with
an approximately constant velocity. We remark that the
critical currents obtained for distinct boundary condi-
tions are not identical.

The transition from the rocking to the traveling
current filament is characterized by a sharp change in the
fundamental frequency of the oscillation. The sharpness
depends on the length of the sample. If we consider the
motion for a current close to the bifurcation point,
I=I,2=605 mA, but I &I,2, the filament can just sur-
mount the virtual potential wall induced by the Dirichlet
boundary conditio&. 'or V, and travels with a rather small
velocity of about 30 pm/ps to the opposite boundary.
Therefore, the fundamental frequency depends on the
sample length and the sample current: the shorter the
sample and the larger the current the larger the funda-
mental of the voltage osci11ation.

As a result of the numerical calculations we can state
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ing current Slament; parameters as in Table I
and V, =32.9 V, I=450 mA, V,(x=0,1„)
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FIG. 12. (a) Numerically calculated time
evolution of the spatial distribution of j, and
(b) time trace of the device voltage V(t) in the
case of a traveling current filament; parameters
as in Table I and V, =33.05 V, I=610 mA,
V, (x =0,1„)=0.63 V.

that independent of the different boundary conditions,
the fundamental solutions of the set of Eqs. (1), (3), and
(6} can be classified as follows. For low total currents a
homogeneous current-density distribution develops, at
least far away from the sample boundaries. If the applied
voltage V, is sufficiently large, avalanche breakdown
occurs and a static localized current filament appears,
characterized by a typical width. This filament is stable
in a certain interval of the total current. At a critical
value I, &

a destablization of the static filament takes place
and a spatial filament oscillation grows continuously as
the total current increases, showing all the features of a
Hopf bifurcation. At a second critical current I,z a tran-
sition to a traveling filament occurs, characterized by a
discontinuous jump in the fundamental frequency of the
oscillation. This is a rough summing up of the bifurca-
tion scenarios and their properties found in the system
with homogeneous Neumann as well as mixed boundary
conditions. The main difFerences between the solutions of
Eqs. (1), (3},and (6) that appear if different boundary can-
ditions are used concern the shape of the static filament
that develops in the case of Neumann boundary condi-
tions directly at the sample boundary and in the case of
mixed boundary conditions at a well-defined distance
from the boundary. Furthermore, the destablization of
the static filament difFers in both cases: it transforms into
a breathing filament with a superimposed amplitude os-
cillation or a rocking filament, respectively. Finally, we
remark that the critical currents I,&

and I,2 are shifted
down to lower values for mixed boundary conditions in
comparison to Neumann boundary conditions.

IV. COMPARISON WITH EXPERIMENTS

In order to compare the above-mentioned results with
experiments we fall back upon experimental results pub-
lished in Refs. 8 and 9 and additionally present some new
ones.

anode, the radiation is most efFective near both electrical
contacts. A streak camera with an Sl photocathode al-
lows the detection of infrared radiation of wavelengths up
to 1.2 pm in one space dimension and temporally
resolved. The results presented below have been obtained
by focusing a small stripe of the xy plane (Fig. 1) to the
streak camera. The stripe is aligned parallel with the
anode, has a width of about 100-150 pm and includes
the p+-n+-p transistor. From evaluations of calibrating
measurements it follows that the electroluminescence sig-
nal is a good measure for the current density.

The second experimental method is based on the scan-
ning of a potential probe across the xy surface (Fig. 1) of
the sample. Since the electrical behavior of the device
changes drastically if the sample is mechanically dam-
aged, e.g., by contacting the probe, the measurements
have mainly been performed in the n region rather
close to the p-n junction. In our model, the voltage
drop along the n layer has been neglected for
simplification; however, experiments reveal that this volt-
age drop is certainly not very large, but still exists. In
literature, much work has been done concerning the in-
terpretation of potential measurements with a potential
probe. Mayer et al. have shown for silicon p-i-n diodes
that the measured potential V~, can be correlated to the
average of the quasi-Fermi levels, respectively weighted
with the product of the carrier concentration and mobili-

ty. The conditions in the n layer of the p+-n+-p-n
device are to some extent comparable to those in the
p-i-n diode: in both cases we have a slightly doped or in-
trinsic region in which holes from the one side and elec-
trons from the other side are injected. In a first approxi-
mation, we tentatively compare the measured potential
with the potential V of our model. Naturally, we do not
expect quantitative agreement; however, typical features
of the distribution, e.g. , the width, should be comparable.
More details about both experimenta1 methods applied
here can be found in Ref. 9.

A. Measuring techniques

We have applied two different measurement techniques
to determine the current density and the potential distri-
bution in the sample. For detection of the current densi-
ty the recombination radiation of band-band transitions
has been used. The electroluminescence signal is particu-
larly large near the p-n junctions and the n -n+ contact.
As the p-n junctions are situated rather close to the

8. Experimental results and comparison
with numerical calculations

1. Transition from a homogeneous current distribution
to a static localizedglament

A measured current-voltage characteristic I(V) of a
p+ n+ p ndiode is-s-h-own in Fig. 13(a). As discussed
above, there is a low-current branch due to the blocking
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properties of the middle n+-p junction that allows only a
small leakage current and a current of thermally generat-
ed carriers separated by the electric field at this junction.
The radiation, induced by recombination of holes and
electrons, is so weak in this operating range that no signal
distinguishable from the noise of the S1 photocathode
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FIG. 13. (a) Experimentally determined current-voltage
characteristic I( V) of the p+-n+-p-n device and (b) stationary
spatial distributions of the light density and the probe potential
for different values of the driving voltage V, corresponding to
points A —C; parameters are Ro =1.01 kQ, T=318 K,
(I, V, )=(6 mA, 45.46 V) (A), (10 mA, 48.86 V) (B), (30 mA, 61.8
V) (C), exposure time for the streak image=250 s (A,B), 0.5 s
(C).

can be detected with the streak camera. Potential mea-

surements, however, show a homogeneous distribution
indicating a homogeneous current flow. At the lower end
of the range of negative differential resistance (referring
to the current values), the recombination radiation as
well as the potential distribution are still homogeneous,
as shown in Fig. 13(b) for a total current I=6 mA. We
remark that the light-density distribution at this current
is noisy, but significantly different from the noise of the
photocathode. Near the boundaries the potential distri-
bution shows some deviation from the homogeneous
state. This may be rated as a sign that mixed boundary
conditions are suitable conditions for numerical calcula-
tions. Self-organized structures are not visible at this
current value, either in the potential or in the radiation
distribution. As the total current is increased, a contrac-
tion of the light-density and the potential distribution can
be observed. The stationary distributions shown in dia-
gram B of Fig. 13(b) have been taken at a total current
I=10 mA, a value at which the negative resistance is ap-
proximately minimal. For a total current of about 30 mA
the contraction phase is completed and a localized
current-density filament has been formed [Fig. 13(b), dia-
gram C] near the left sample boundary (x =0). Obvious-

ly, the light-density distribution indicates a current-
density filament well away from the boundary. Note that
the exposure time to the streak camera for point C is only
1/500 in comparison to points A and B in Fig. 13(a).

In experiment, we find that the width of the current
distribution is clearly smaller than that of the potential
distribution, similar to the results of numerical calcula-
tions. The contraction procedure is completely reversible
at any stage. The bifurcation from the homogeneous
state to a filament takes place in a current interval be-
tween 5 and 30 mA in experiment and between 1 and 20
mA in the numerical calculations. A better agreement
could be achieved by fitting the current saturation densi-
ties j„j„,jsc, and the leakage resistance pL but is not
done in the present work. Furthermore, in the calcula-
tions only one space coordinate is taken into account and
the total current is obtained by assuming the same
current density at any cross section in the z direction
(Fig. 1). A cylindrical current-density filament with radi-
ally decreasing current density would be more realistic
and would lead to a smaller total current.

An evaluation of the widths of the current-density and
potential distributions shows that the experimentally ob-
served contraction from the homogeneous state to a fila-
ment is reproduced by the model calculations in a satis-
factory manner. As shown in Fig. 4, the widths decrease
during contraction of the current and voltage distribu-
tions, reach a minimal value, and increase slightly for
larger current values. %e remark that the agreement be-
tween experimentaHy and numerically determined widths
is even quantitatively good for large total currents.

2. Transition from a static to a rocking localized filament

When the average total current exceeds a critical value

I,&, the static localized current filament becomes unstable
and a rocking filament motion develops. This rocking
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motion is correlated with oscillations of the voltage drop
V(t) across the device. In Fig. 14, a typical time trace
V(t) and a streak-camera record revealing the spatiotem-
poral evolution of the light-density distribution are
shown. The bright regions correspond to regions of large
light density. The correlation between the global voltage
signal and the spatial filament motion differs from the re-
sults of numerical calculations. In experiment, we find
that the extrema of the voltage signal correspond to the
maximum elongations of the filament motion, at which
the filament velocity becomes zero. In more detail, the
voltage maximum coincides with the filament inversion
point near the left sample boundary and the minimum
with the turning back in the interior of the sample. In
contrast to these experimental results, the minima in the
numerically calculated global voltage trace in the case of
mixed boundary conditions, whose application led to a
rocking filament, appear in those moments in which the
filament reaches its maximum velocity, as outlined in de-
tail in Sec. III B2.

We have investigated about twenty samples whose typ-
ical dimensions are shown in Fig. 1. The critical currents
at which the destabilization of the static localized fila-
ments takes place. vary between 100 and 300 mA. The
fundamental frequencies of the oscillations are typically
in a range between 1 and 8 kHz. With the parameters of
Table I, the numerical calculations lead to critical
currents of about 400 mA and a rocking fundamental of

about 10 kHz. A better agreement between experiment
and the results of numerical calculations is achievable by
fitting the emitter capacity C, and the effective lifetime ~.
However, in experiment, the rocking amplitude as well as
the voltage amplitude start from zero at the bifurcation
point and increase continuously with increasing total
current, whereas the fundamental frequency is definitely
larger than zero at the bifurcation point, indicating a su-
percritical Hopf bifurcation as in the numerical calcula-
tions. As already reported in Ref. 8, the amplitude l„of
the rocking motion shows a square-root dependence on
the average total current I, and the fundamental frequen-
cy decreases linearly with I. This is consistent with the
numerical results. For the increment hl„/b,I we obtain
about 7000 p,m /mA in experiment and about 1400
pm /mA in numerical calculations. These values are the
results of linear fits to the measured and calculated 1, (I )

values. For the decrement b,f/AI we obtain values be-
tween 18 and 34 Hz/mA as a result of experimental mea-
surements and 15 Hz/mA from numerical calculations
with the standard parameter set. The data for the incre-
ment hl„/EI are based on measurements on a single sam-

ple; for the decrement bf/bI measurements on five
different samples have been evaluated.

From the above-mentioned results, we can state that
the experimentally observed bifurcation from a static to a
rocking current filament is reproduced by numerical cal-
culations with mixed boundary conditions qualitatively
very well. Even the order of magnitude of the critical
current, the fundamental frequency at the bifurcation
point, the increment hl„/6I, and the decrement b f /EI
agree in a satisfactory manner, although no sophisticated
fitting procedure has been used. We remark that a com-
parison of potential measurements with numerically cal-
culated potential distributions in the cases of dynamical
structures is not possible at this stage, because the capaci-
ty of the potential probe used in conjunction with the
necessarily high-Ohmic voltage measurements is too
large for the detection of voltage signals in the kHz re-
gime. Measurements with an active potential probe,
which will eliminate this problem, are in preparation.

3. Transition from a rocking to a traveling localizedglament

FIG. 14. (a) Experimental voltage trace and (b) streak-
camera record of the light density in the case of a rocking
current filament; parameters are R o

=80 0, T=295 K,
V, =43.3 V, I=200 mA.

By a further increase of the total current in the experi-
ment, a third transition occurs when a critical current I,2

is reached: the rocking motion is superimposed by a
traveling motion of the filament. Near the bifurcation
point, the superimposed filament motion presents itself as
follows. The filament oscillates in the environxnent of one
of the sample boundaries in the rocking mode. After a
certain duration, which varies statistically, it travels to
the other sample boundary, performs there some rocking
oscillations, then turns back to the boundary it started
from, and the process repeats itself. With increasing aver-

age total current the durations of the rocking oscillations
become smaller and smaller, and finally a pure traveling
motion of the filament between the sample boundaries
takes place. In the voltage signal V(t) the superposition
of rocking and traveling motions becomes visible usually
as a superposition of small-amplitude oscillations corre-
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FIG. 15. (a) Experimental voltage trace V(t) and (b) streak-
camera record of the light density in the case of a traveling
current 61ament; parameters are Ro = 163 0, T=295 K,
V, =95.3 V, I=410 mA.

lated with the rocking motion and large-amplitude oscil-
lations which are due to the traveling component.

In Fig. 15, the experimental result for a typical time
trace V(t) and the appertaining streak-camera record
showing the spatiotemporal evolution of the light-density
distribution are depicted. As in the case of rocking fila-

ments, there is a strong correlation between the integral
voltage signal and the traveling filament motion. The
minima and maxima of the voltage signal correspond to
moments where the filament is near the left and the right
sample boundary, respectively. The filament velocity U is
approximately constant during travel from one side to
the other. Typical values observed experimentally lie in
the range between 1 and 8 pm/ps and are smaller than
those obtained from numerical calculations with mixed
boundary conditions (U =30 pm/ps). But as in the case
of rocking filaments, a better agreement between experi-
ment and calculations should be achievable by fitting the
model parameters, in particular C, and ~.

We remark that the interval of the average current in
which rocking oscillations are stable and no traveling
motion exists varies in the investigated samples from
about 10 to 50 mA, whereas numerical calculations yield
a pure rocking filament motion in a current interval of
about 180 mA. This mismatch can be eliminated by
choosing larger boundary values V, (x =0,I„),which lead
to a smaller distance of the filament from the sample

boundary. Finally, we point out that we have observed
also experimentally a period-doubling cascade of a rock-
ing filament into a chaotic rocking filament as described
in detail in Ref. 24. This behavior is similar to the
behavior of the breathing filament described in Sec.
IIIA3. There, in the case of homogeneous Neumann
boundary conditions, the transition from a breathing to a
traveling current filament was characterized by a period-
doubling sequence, which results in an irregular behavior
of the filament wall when the total current is increased.
Using the standard parameter set with mixed boundary
conditions, which lead to a rocking instead of to a breath-
ing filament, we did not find such a period-doubling se-
quence in the transition region between a rocking and a
traveling filament; but it is not excluded that it is possible
to find such a behavior for slightly modified parameters.

V. CONCLUSIONS

In the present work the spatiotemporal behavior of lo-
calized current-density filaments in p+ n+-p--n devices
has been discussed. We have presented results of numeri-
cal calculations of a simplified two-layer model for
different boundary conditions. For low total currents the
device forms a homogeneous current-density distribution
for homogeneous Neumann boundary conditions as well
as for mixed boundary conditions. In the latter case only
some deviations near the sample boundaries occur. In
both cases a stable localized current filament develops for
larger currents and spatiotemporal instabilities occur at a
critical current I,i. A detailed numerical analysis reveals
that the stable filament becomes unstable with respect to
oscillations of the width and the amplitude in the case of
Neumann boundary conditions, whereas a rocking
current filament develops in the case of mixed boundary
conditions. The oscillations are a result of the delayed re-
action of the inhibitor with respect to the activator and
the interaction of the filament with the sample boundary.
A suppression of the oscillation is possible if the ratio of
the relaxation-time constants of the inhibitor and activa-
tor is reduced, e.g., by increasing C, . We point out that
the spatiotemporal oscillations are strongly correlated to
oscillations of the global voltage drop V(t) across the de-
vice and the total current I(t). When a second critical
current is reached, the breathing (Neumann boundary
conditions) or rocking filament (mixed boundary condi-
tions) transforms to a traveling filament that moves be-
tween the sample boundaries. We remark that the appli-
cation of inhomogeneous Neumann boundary conditions
leads to similar results as in the case of homogeneous
Neumann boundary or mixed boundary conditions for
sufficiently small or large values of the gradients, respec-
tively.

In experiment, a bifurcation sequence from a homo-
geneous current distribution to a localized static current
filament, followed by a transition to a rocking, and, final-
ly, to a traveling current filament, has been observed in
p+-n+-p-n diodes. All in all, this sequence is repro-
duced best by the numerical calculations with mixed
boundary conditions. Within experimental error, satis-
factory agreement between experimental and numerical
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results could be achieved concerning the filament width,
the fundamental frequency of rocking filaments, and the
dependence of the fundamental and the spatial amplitude
of the rocking oscillation on the total current. Beyond
that, the critical currents at which bifurcations set in
could be approximated much better if appropriate pa-
rarneters are fitted to experiment.
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