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Quasiparticle band-structure calculations for semiconductors treat the exchange-correlation self-
energy operator within the GW approximation. In this paper, a detailed study of the energy
dependence of the self-energy due to dynamical screening is presented. Spectral functions for near-
band-gap excitations in silicon and diamond are calculated and the quasiparticle peak and satellite
structures are discussed.

In order to describe the excitation energies of semi-
conducting or insulating solids in a reasonable manner
the quasiparticle (QP) theoryi has to be applied. The
single-particle energy excitation spectrum is determined
by the poles of the corresponding exact Green's function
G. Apart from the Hartree contribution the electron-
electron interaction is included in a self-energy Z. For
solids Hedin proposed the linear expansion Z = GW of
the exchange and correlation (XC) electron self-energy
in terms of the screened Coulomb potential W. Cancel-
lation efFects in the most prominent vertex corrections
emphasize the quality of the restriction to linear terms.
After 6rst attempts, Hybertsen and Louie4 have recently
shown that the GR' approximation is a reasonable ap-
proach to the true eKect of XC on the single-particle
energy within the &amework of the 6rst-principle pseu-
dopotential method. They started &om the results of
the density-functional theory (DFT) in the local-density
approximation (LDA) and treated the ffetecosf XC be-
yond the DFT LDA in a perturbational-theory manner.
Other authors4 followed more or less this line with de-
viations in the treatment of the dynamical screening in
the system.

Performing this procedure, in general, the full dynam-
ics of the screening has to be taken into the screened
potential W and hence into the full self-energy. The dy-
namical behavior of.the self-energy itself gives rise to an
energy dependence. It inBuences not only the position of
the QP peak in the spectral function of the one-particle
Green's function G. The strength of the QP peak is re-
duced, indicating the appearance of satellite structures.
Typical values of this reduction are about 2070. Several
questions arise &om this fact. One is concerned with
whether the approximated Green's function can be used
in the self-energy calculation, or more strictly speaking,
whether the reduced strength yields a reduction of the
QP shift from the DFT LDA value via the Green's func-
tion in the GW representation. Furthermore, the relation
of the QP peak and the accompanying satellites should
be clari6ed. For this purpose, we analyze the dynami-
cal behavior of XC self-energy Z of electrons and holes

in a nonmetal in more detail. Consequences for the ap-
proximation and the single-particle spectra are explicitly
studied for the near-band-gap excitations in silicon and
diamond.

Within a diagonal Bloch representation the Dyson
equation for the QP Green's function can be written in
the form4

G„„(k,E) = G„„T(k,E) + G„„(k,E)bZ (k, E)
xG„„(k,E),

where the oK-diagonal Bloch elements with respect to the
band index n of the perturbation operator

bZ(x, x', E) = Z(x, x'; E) —Vxc(x)b'(x —x') (2)

are neglected. This assumption is in agreement with the
findings of the near equivalence of QP and DFT LDA
wave functions g„i,(x). The perturbation is defined with
respect to potential Vxc(x), which describes the XC ef-
fects within the DFT LDA.

Despite the band diagonalization the Dyson equation
(1) can only be solved approximately via an iteration
procedure since the perturbation itself is a functional of
the Green's function. To accelerate the convergence of
the iterative solution we apply a method developed by
Blomberg and Bergersen ' in the case of the homoge-
neous electron gas and later refined for core holes (cf.
Ref. 10 and references therein). A Green's function

G k E 1
tan( & ) =

E (k)

is introduced with rl„k = +b (il„i,= —b), 8 -+ +0, for
energies below (above) the chemical potential p of the
inholnogeneous electron gas.

The band energies e' (k) are already shifted by a cer-
tain QP shift b (k) with respect to the DFT LDA values
sDFT(k). According to an idea of Hedin, this shift has
to be calculated self-consistently. Later it has been taken
up also by other authors ' in the case of the homoge-
neous electron gas or simple metals. The Dyson equation
(1) changes into
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G„„(k,E) = G„„(k,E)
+G„„(k,E) (6Z„„(k,E) —6„(k)}
x G„„(k,E). (4)

This equation represents a suitable starting point for an
iterative solution. Restricting to the Brst nonvanishing
order with respect to (6Z„„(k,E) —6„(k)}one obtains

G„„(k,E) = G„„(k,E)
+ (6Z„„(k,E) —6„(k)) G„„(k,E), (5)

where the Green's function in the self-energy has to be
replaced by Go. To avoid the unphysical double pole at
E = s„(k)in the second term on the right-hand side one
has to take

A„(k,E) of the diagonal Green's function G„„(k,E),
+OO w aE'

(k E) „,A„(k,E)
E —E' + i6sgn(E' —p)

(6 ~ +o) (7)

is much more iaBuenced by the energy dependence of the
self-energy resulting &om the dynamics in the screening.
After the first iteration we derive from Eq. (5)

A„(k,E) = 1+ ReZ„„(k,E) 6(E —s„(k))8

8 P'"(' ") aEE-,„(k)
6„(k)= Re6Z„„(k,s„(k)). (6) x —ImZ„„(k,E) (8)

To simplify the considerations we have assumed that the
quasiparticle described by the Green's function (3) is un-

damped, i.e., ImZ„„(k,e'„(k))= 0. In the explicit cal-
culations, where we apply a screening function in the
plasmon-pole approximation, this assumption is practi-
cally always fulfilled.

Together with expression (2) this equation gives a clear
definition of a QP shift of a band state. However, the ma-
trix element of the self-energy change depends on 6„(k)
itself via the Green's function Go. Consequently, the QP
shifts 6„(k)and the QP band energies c„(k),respectively,
have to be determined self-consistently. On the other
hand, the appearance of G [Eq. (3)] in the QP-shift
definition [Eq. (5)] indicates that there is no reduction
of the QP shift by dynamical screening effects so far the
function G is really taken at the QP energy s„(k)itself
and not at other energies, e.g. , sDFT(k).

Contrary to the QP shift (6) the spectral function

The spectral function represents a sharp peak at the QP
energy s„(k)with a reduced spectral weight and addi-
tional broad peaks at shifted energies. The additional
peaks describe satellite structures related to shakeup
excitations. For the purpose of the preparation of a
more complete spectral representation (7) it is convenient
and physically appealing to divide each matrix element
of the self-energy into the energy-independent bare ex-
change (X) term and the energy depend-ent correlation

(C) part which contains the dynamical effects of screen-
1ng:

Z„'„(k,E) = Zx(k) + Z~(k, E).

The correlation part of the self-energy fulfills a similar
spectral representation as the QP Green's function in Eq.
(7). The corresponding spectral function I'„(k,E) can be
written as

(10)

7l 6I'„(k,E) = ——) ) ) B„"„"(q+ G)B„"„"(q+ G') —Ime (q+ G, q+ G', E —s„,(k'))
V - -, q+G q+6' 7r

q G,G' n', k'

x [O(E —s„(k'))O(s„(k')—p) —8(s„(k')—E)O(y—s„(k',))],

where the Bloch matrix elements B„"„",(q+ G) of plane waves are introduced. The wave vector q runs throughout the
Brillouin zone whereas the vectors G, G' are elements of the reciprocal Bravais lattice. V denotes the crystal volume.

The behavior of the spectral function is governed by the wave-vector- and &equency-dependent inverse dielectric
function e

By means of the spectral function (10) of the correlation self-energy the spectral function (8) of a quasiparticle in
a Bloch state nk can be transformed into a more familiar form

+oo

A„(k,E) = 1— 6{E— „(k))+ dE' " ' 6(E — „(k)—E'
@12 TL

The expression (11) of the QP spectral function repre-
sents a linear expansion of a more general result C„(kt)=f , I'„(k,E'+ s„(k))

E/2

"d'--.
(l E) t [E e„(k)]t —c'„(k,t)—

2mb

(13)

with respect to the so-called satellite generator
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1 = dEA„k,E, (14)

P„(k)= f BEER„(t,z), (15)

where the band energy in the Hartree-Fock approxi-
mation eH (k) = e„(k)—ih&, C„(k,t)~q —o

——s„(k)—
ReZ+(k, s„(k))is introduced. The sum rule (15) gives
insight into Koopman's theorem, even when correlation
is taken into account. The energy of an excited electron
(hole) is not eHF(k) but, rather electrons (holes) appear
with energies s„(k)or at shifted positions in the satellite
structures. Hovrever, the center of gravity of all excita-
tions is again governed by eHF(k).

The reduction of the spectral strength of the main QP
peak can be described by the so-called QP renormaliza-
tion factor z„(k). In contrast to the first iteration in
Eq. (8) the spectral function (12) gives rise to a strength
of the QP peak at E = e„(k)of

z„(k)= exp [-P„(k)], (16)

P„(k)= — ReZ„(k,E)
0

C„(k,t),i4 which is an integral over linked diagrams of
the screened interaction.

A rigorous proof of representation (12) for arbitrary
band states and screening models cannot be given by the
continuation of the iteration procedure according to Eq.
(5). This is only possible in an approximate manner.
An exact proof has been given for dispersionless bands,
e.g. , core levels, vrith strongly localized wave functions
and b-function-like behavior of the imaginary part of the
screening function (see Refs. 10, 13, and 14 and refer-
ences therein). For band states the main difficulties arise
&om the momentum changes of the particles. Approxi-
mate treatments for band states follow the exactly solv-
able case as closely as possible, but partially neglect the
recoil effect in the energy denominators to obtain a solu-
tion in a closed form. One example is the calculation of
the electron Green's function for metals by Hedin. is An
elegant way to derive expression (12) has been demon-
strated by Almbladh and Hedin. is They started from
an equation of motion for the logarithm of the Green's
function, the main time dependence of which is already
separated. In the term generating the satellites the full
Green's functions are approximated by the start function
of Eq. (3).

The satellite generator in Eq. (13), which is only
related to the spectral function of the correlation self-

energy, involves the deviation of the line shape from a
single b function. That particularly concerns the reduc-
tion of the spectral strength of the main peak at the po-
sition of the QP energy, E = s„(k),and the correspond-
ing redistribution of states into the satellite structures.
Consequently the generalized spectral function (12) of a
quasiparticle also fulfills important sum rules, in contrast
to the iterative solution (ll). It holds

That can be shown by expansion of e "&" ~ in Eq.
(12) in a power series and by consideration of the time-
independent contribution. According to the iteration
procedure in Eq. (4), in which the starting Green's func-
tion already contains QP effects, the definition in Eq.
(16) is somewhat different from that usually obtained, i'

considering only a spectral function with one pole and
a self-energy GDFTW. In this case one has z (k) =

1 —hReZ+(k, E) [E = s'„(k)].Since, however, in

general —&&ReZ„(k,E) « 1 [E = s„(k)]holds, the
different strength definitions do not give rise to very dif-
ferent results and agree vrithin the linear approximation.

In order to discuss the XC self-energy and the resulting

QP self-energy we focus our attention on the highest oc-
cupied state I'zs„and the lowest unoccupied state Xi, of
silicon and diamond. The small displacement of the last
state on the 6 line &om X tovrards I' is disregarded. We
perform a model calculation for the self-energy. The elec-
tronic structure is calculated by means of a tight-binding
method using a minimum Gaussian basis set but taking
the full overlap into account. ~~ The screened potential
is described within a generalized plasmon-pole model.
The diagonal dielectric function well describes the screen-
ing in the whole vrave-vector region. Off-diagonal el-

ements are included taking the plasmon-pole frequency
A(q+ & (G+G') ) at the averaged wave vector. To model
the distribution of the energy losses over different fre-
quencies a certain broadening I' of the plasmon peak is
considered.

For the discussion of the analytical properties of elec-
tron and hole self-energies vre have plotted the real and
imaginary parts of the correlation self-energy of the Xq
state and the I'zs state as examples for electrons and
holes in Figs. 1 and 2. More precisely, the modulus of
the imaginary part is shown since apart from a factor m

it represents the spectral function from Eq. (10). For
numerical reasons we consider a finite lifetime parameter
b for both particles. The second curve in each figure rep-
resents screening which is characterized by a broadened
plasmon peak.

In the imaginary parts in Figs. 1(b) and 2(b) we find
two peaks located nearly at the energies E = s„(k)+
AO,g, where O,g represents an effective plasmon fre-
quency somewhat larger than O(0). These peaks are
broadened. In the case of h-like plasmon poles in the
screening function the broadening is mainly due to addi-
tional peaks at E = s„(k)—[s„(k)—s„(k')]khO, s. They
indicate further decay channels for electrons [s„(k)) p]
and holes [s (k) & p] in which electron-hole pairs with
energies e„(k)—e„(k')are annihilated or created be-
sides the plasmons. The strength of the additional peaks
is smaller because of the fact that it holds ~B„"„",(q) ~

&&

[B~~ (q)( for not too large [q( and n g n' The strength.
of two structures around the QP energy z„(k)is dif-
ferent. Betvreen the tvro resonances around E = p,

and E = e (k) the imaginary parts vanish or are at
least rather small. This behavior observed generally for
&rnZ+(k, E) is similar to that calculated for the inter-
acting electron gas for which ImZ+(k, p) = 0. How-
ever, the details of the energy dependence in this region
vary somewhat with the specification of the screening
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FIG. 2. (a) Real part ReZ (k, E) and (b) imaginary part
ImZ (k, E) of the correlation self-energy for I'ss„hole states

in silicon. Different particle and plasmon-pole broadenings
are considered. Solid line, 8' = 0.1 eV and I' = 0; dashed line,
b = 0.1 eV and F = 2 eV.

FIG. 1. (a) Real part ReZ (k, E) and (b) imaginary part
ImZ„(k,E) of the correlation self-energy for Xz, electron

states in silicon. Different particle and plasmon-pole broaden-
ings are considered. Solid line, b = 0.1 eV and 1 = 0; dashed
line, b = 0.1 eV and F = 2 eV.

and the band structure. For instance, we expect small
structures for energies between the two resonances apart
kom an interval around p, given by the gap energy. They
should arise &om the electron-hole pair excitations in the
screening function which, however, are neglected in the
plasmon-pole approximation. We get an idea of this ef-
fect considering the curve for I' =2 eV, although there
electron-hole pair energies with arbitrary energies appear
due to the Lorentzian tail of the imaginary part in the
screening function.

From the spectral representation, where the real part,
ReZ+(k, E) is represented as a Hilbert transform of
ImZ„(k,E), more precisely of the spectral function
I'„(k,E), an energy dependence of the real part of the
self-energies follows as shown in Figs. 1(a) and 2(a). As
in the imaginary parts we find structures of the oscillator
form near E = s„(k)+ AQ, @. The ratio of these struc-
tures is the same as already discussed for electrons and
holes. Between the two structures, particularly for ener-
gies near the quasiparticle energy, the curves ReZ„(k,E)
have a negative slope. Consequently the QP renormaliza-
tion factors in Eq. (16) are smaller than unity. The en-

ergy dependences differ with respect to the higher deriva-
tives. The curves ReZ„(k,E) are concave downwards for
electron states and concave upwards for hole states.

Curves similar to those shown in Figs. 1 and 2 have
been obtained for diamond. Only the abscissa is some-
what scaled because of the larger plasmon &equency.
On the other hand, the variation of the correlation self-

energy itself is weak since the polarization charges are not
so very di8'erent. This fact can also be seen kom the self-
energies at the QP energies. For the two materials under
consideration we find ReZ+(k, e„(k))= —4.09 (—4.89)
eV (Xq, ) and 0.27 (0.97) eV (1&s„).Adding the nega-
tive exchange contributions Zx(k) = —15.35 (—9.72) eV
(Xq,) and —12.31 (—18.88) eV (12s„)to ReZ+(k, E), the
crossing points with the straight lines E —s„(k)give to-
tal self-energies of —10.44 (—14.61) eV (Xq, ) and —12.04

(—17.91) (I'zs„)for silicon (diamond). These values ap-
proach the findings of Hybertsen and Louie, 4 especially
in the I'25 -hole case.

Consequences of the energy dependence of the correla-
tion self-energy for the spectral behavior of electron and
hole QP excitations are represented in Fig. 3. We have
used the general expression (12) for the spectral function.
The energy interval is restricted to the QP peak and the
first satellite structures around the main peak.

In Fig. 3 the central peak of the spectral function
E = z„(k)show a Lorentzian shape according to the
assumed small numerical broadening of 8 = 0.1 eV for
the QP excitations. As a consequence of the behav-
ior of the imaginary part of the dynamical correlation
self-energy the satellite structures are centered around
the energies E = s (k) + hQ, s, or more precisely E =
s (k)+[a (k) —e'„~(k')]+hQ,g. This meansthat, whereas
the main peak is formed by usual quasiparticles, i.e., bare
(Hartree-Fock) particles dressed by a cloud of virtual
plasmons and electron-hole pairs (if the single plasmon-
pole approximation is overcome), the additional satel-
lite structures may be interpreted by particles coupled to
a cloud of real plasmons (and electron-hole pairs). We
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FIG. 8. (a) Electron and (b) hole spectral functions of sil-
icon. The bottom of the conduction band Xq, and the top of
the valence band Fz& are considered. Solid line, 8 = 0.1 eV
and I' = 0, dashed line, 8 = 0.1 eV and I' = 2 eV.

mention that the characteristic energy shift from the QP
position is really given by AO,g. This is due to the it-
eration procedure for the Green's function starting with
expression (3). The introduction of the QP energy s„(k)
into the Green's function appearing in the self-energy
avoids the plasmaron problem, s which means that the
satellites occur closer to the main peak.

According to the discussion of the imaginary part of
the dynamical correlation self-energy the strengths of the
first-neighbor satellites (only considered here) are difer-
ent. For electron (hole) states with s„(k)) p, [s„(k)( p]
the satellite structure near e'„(k)+KO,ir [s„(k)—AO, ir] is
stronger than that around s„(k)—hQ, ir [s„(k)+ hO, ir].
The appearance of such a high-(low) energy peak is re-
lated to the dispersion of the bands. For dispersion-
less, strongly localized states with e'„(k) = s„and
Bg (q+ G) b„„,these satellites even vanish. A satel-
lite can be only observed at E = s„+sgn(e„—p)h0, 6 if,
moreover, the dispersion of the plasmons is neglected.
We remember that within such an approximation the
spectral function in Eq. (12) can be described by Poisson-

distributed b functions at E = s„+sgn(s„—p)N . hg, 6
(N = 0,1,2, ...).i i We point out that the strength of
the satellite structures is remarkable. For the first struc-
ture considered here we find a ratio to the main QP peak
of about —lnz„(k) with z (k) as the QP strength de-
fined in Eq. (16). With characteristic values of the QP
renormalization factors of z„(k)= 0.80 (0.86) for Xi,
and z„(k)= 0.78 (0.86) for I'2s„ofsilicon (diamond) one
derives ratios of about 0.25 (0.16) or 0.28 (0.16). These
numbers indicate that dynamical efFects in the wide-gap
material diamond are somewhat reduced in comparison
with silicon. Hence the satellite structures also play a
more important role in the semiconductors with smaller
plasmon frequency.

In conclusion, we have generalized an iteration pro-
cedure for the band —diagonal one-particle Green's func-
tion. Starting from a zero-order Green's function, which
already contains the QP energy, we derive two impor-
tant results. First, a spectral representation of the full
Green's function follows that fu161ls the important sum
rules. The shape of the corresponding spectral function
is only determined by the dynamical correlation, or more
precisely the energy dependence of the pure correlation
self-energy. On the other hand, the QP energy, i.e., the
position of the main peak of the spectral function, is de-
fined by both quantum-mechanical effects of the electron-
electron interaction, (static) exchange, and (dynamical)
correlation. Second, the QP shift of electrons and holes
with respect to the DFT LDA values is related to the
corresponding self-energy difFerence. Thereby, in the self-
consistent calculation the Green's function in the GTV
expression can be replaced by the zero-order one. As a
consequence of the applied iteration procedure, where the
pole in the zero-order function is fixed at the QP energy
itself and not at the corresponding DFT LDA energy,
the QP shift is not reduced by the QP renormalization
factor.

An important consequence of the dynamical screening
is the energy dependence of the dynamical electron cor-
relation. It determines the spectral behavior of the full
Green's function via the pure correlation self-energy. The
strengths of the main QP peak is reduced. The reduction
is governed by the energy derivative of the real part of
the correlation self-energy. Because of the conservation
of the total strength satellite structures appear at other
energies. They are directly related to the imaginary part
of the correlation self-energy. The spectral behavior of
the full Green's function around the QP energy difFers
very little &om that obtained from the zero-order func-
tion. The main efFect concerns the pole strength. On the
other hand, in spectral regions at a distance of about the
plasmon-pole energy, strong satellite structures appear
and compensate for the loss of strength of the QP peak.
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