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The contributions of soliton-antisoliton (SS) configurations to the linear and third-order nonlinear

optical response are investigated for conjugated polymers having a degenerate ground state. We treat
the direct photoproduction of charged solitons as a nonlinear Franck-Condon problem and obtain
analytical expressions for the linear optical susceptibility gl ~(io). With the help of the oscillator
strength sum rule, we decompose the s —z ' oscillator strength into two parts; a contribution where
the final states are charged SS pairs and a contribution where the final states are free electron-hole
pairs (as in the noninteracting rigid lattice). The linear optical coefficients calculated from gl'~(~)
are in general agreement with optical data obtained from trans-polyacetylene. The results imply that
approximately 25'Fo of the integrated oscillator strength of trans-polyacetylene arises from the direct
photoproduction of solitons. A parallel treatment of the generalized third-order nonlinear optical
susceptibility yl ~(u ) is presented, demonstrating that, for any third-order process, contributions
arising from neutral SS pair configurations as intermediate states are one to two orders of magnitude
larger than the corresponding rigid-lattice contribution. This mechanism for g is enabled by
nonlinear zero-point motion which provides a finite Franck-Condon overlap between the ground and
SS excited state lattice wave functions. The large contribution to y from the SS intermediate
states results from the large transition dipole moment between the free electron-hole pair excited
states of B„symmetry and the A~ symmetric neutral SS excited state. This enhanced transition
dipole moment is a consequence of the large virtual shifts of oscillator strength associated with
the localized SS electron-lattice configuration. The third-harmonic conversion efficiency y ~(3u) is
further enhanced by a condition unique to degenerate-ground-state systems, simultaneous two- and
three-photon resonance.

I. INTRODUCTION

A. Ground state symmetry
and the nonlinear optical response

important contribution to the third-order nonlinear op-
tical susceptibility &om virtual SS electron-lattice con-
figurations (SS pairs) enabled by nonlinear zero-point
motion. ~5

Frequency dependent third-harmonic generation
(THG) measurements on cis- and trans-polyacetylene
have demonstrated that y(s)(3ai) for tranw(CH) is an
order of magnitude larger than that for the cis-isomer
over the entire spectral range, even comparing the re-
spective three-photon resonances. ' By measuring THG
on oriented &ee standing films of trans-(CH), Halvorson
et aLs obtained y(s) (3u) values in excess of 10 r esu, two
orders of magnitude greater than nonoriented cis-(CH)
or any other nondegenerate-ground-state polymer.
The traditional dependence of y~ ) on the m. —m' en-
ergy gap obtained &om noninteracting rigid-lattice mod-
els (NRL), s i4 i.e., y(sl E s, does not explain the
observed order of magnitude enhancement in yls)(3u)
achieved by thermal isomerization; (E"'/E "') 3.
Furthermore, within the rigid-lattice approximation, the
efFects of electron-electron interactions are expected to
be similar in the two polyacetylene isomers since the
Bp p hybridization and the vr-electron density are essen-
tially identical. The THG data, therefore, demonstrate
a symmetry specific mechanism favoring the degenerate-
ground-state system, consistent with the existence of an.

B. Ground state symmetry and the linear
optical response

The efFects of ground state lattice symmetry and non-
linear zero-point motion are observed in the linear opti-
cal properties as well. Using a variety of experimental
techniques, Lauchlan et al. ' performed a comparative
investigation of cia- and truns-polyacetylene, and demon-
strated the following isomeric characteristics for the non-
degenerute ground state: cis-(CH) (i) a sharp absorption
onset and well-defined vibronic structure, (ii) no mea-
surable photoconductivity, and (iii) band-edge photolu-
minescence with a Stokes shift of 0.15 eV; and for the
degenerate ground state: trans-(CH) (i) a broad absorp-
tion spectrum, distinct low-energy shoulder, and "band
tailing" extending deep into the gap, (ii) a three-order-
of-magnitude increase in the photoconductivity relative
to "cis"-(CH), and (iii) the absence of band-edge pho-
toluminescence.

When making the cis/trans experimental comparison,
one must first use an effective-medium correction to de-
convolve the true cis-(CH) optical data from the mea
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8umd "cis"-(CH) spectrum due to the presence of an
inevitable volume &action of the more thermodynam-
ically stable trans isomer. The spectral signature of
partial trans conversion are readily observed in the lin-
ear absorptioni6, i8, i9 and reflectivity spectra 20 In the
third-order nonlinear response, partial trans conversion
results in two distinct spectral regions in the electroab-
sorption spectra, ' and in an antiresonance in the THG
spectrum. '

Once the effective-medium correction has been made,
the absorption spectrum of cia-(CH) is found to be char-
acterized by a very sharp onset and well-defined vibronic
structure, similar to other nondegenerate-ground-state
polymers. 2s In contrast, the terms-(CH) absorption line
shape is broad with a pronounced shoulder on the lead-
ing edge and band-tailing, which extends deep into the
gap. Although one might argue that the subgap absorp-
tion in trans-(CH) is caused by disorder, z4 x-ray diffrac-
tion studies yield Bragg peaks which are significantly
narrowed in highly oriented samples. 2s Nevertheless, the
subgap absorption features are observed most clearly in
data obtained &om such highly oriented, structurally or-
dered samples

The photoconductivity action spectrum ' indicates
that the subgap optical absorption in trans-(CH) leads
to charge separation: a result consistent with both the
Su-Schrieffer mechanism2~ and the direct photoproduc-
tion of charged solitons. The photoconductivity in-
creases exponentially in the subgap range and shows a
well-defined shoulder at 1.5 eV, above which the pho-
tocurrent increases much more slowly. In contrast, t;he

as-grown "cia"-(CH) samples showed little evidence of
photogenerated &ee carriers at any pump energy; the
photoconductivity in "cia"-(CH) samples with a volume
fraction of less than 20'%%up truns was below experimental
resolution.

The photoluminescence excitation spectrum demon-
strates that, for instantaneous optical processes such as
absorption and third-harmonic generation, cis-(CH) is
accurately described as a rigid lattice; the 0.15 eV Stokes
shift and the relatively sharp excitation threshold demon-
strate that the ground state lattice wave function does
not overlap the relaxed configuration of the luminescent
polaron exciton. If the nonlinear Franck-Condon factor
was of any significance, the relaxed configuration of the
polaron exciton could be excited directly and a subgap
excitonic feature would be visible in the linear absorption
spectriim. For pure cia-(CH), there is no evidence of
significant subgap optical absorption and certainly no ev-
idence of a sharp absorption resonance at the photolumi-
nescence energy. We therefore conclude that in cia-(CH)
the nonlinear component of the lattice zero-point motion
is quenched by the nondegenerate ground state.

These results are indicative of a symmetry specific
mechanism, which for the degenerate ground state fa-
vors charge separation and for the nondegenerate ground
state favors polaron-exciton confinement and radiative
recombination. The data obtained from the cia/tmns
comparative study are consistent with the existence of
an important contribution to the linear susceptibility in
degenerate-ground-state systems &om the direct photo-

production of charged SS electron-lattice configurations
enabled by nonlinear zero-point motion and this charge
separation mechanism is quenched in cis-(CH) due to
the nondegenerate ground state.

C. The role of quantum lattice Huctuations
in the linear and nonlinear response

In this paper, we examine the role of quantum lat-
tice Buctuations in both the linear and third-order non-
linear optical susceptibility g~i~(~) and y~si(ur ) within
the &amework of the continuum version of the Su-
Schrieffer-Heeger (SSH) models4 and the Takayama —Lin-
Liu—Maki (TLM) model. ss s~ In our approach, the lo-
calized electronic wave function of the SS intermedi-
ate state is defined in terms of the eigenstates of the
perfectly dimerized lattice using a two-particle effective-
mass approximation ' and the quantum lattice Quc-
tuations in the degenerate ground state are described
by a single collective configurational coordinate repre-
senting simultaneously the separation, coherence length,
and number density of virtual soliton-antisoliton pairs
on the polymer chain. Using this model, we obtain ana-
lytical expressions for the linear and third-order nonlin-
ear optical susceptibilities for both the perfectly dimer-
ized (classical) infinite chain and the infinite chain with
nonlinear zero-point motion. In our analysis of the lin-
ear susceptibility, we demonstrate that vr —sr* oscillator
strength is conserved for all SS electron-lattice configu-
rations and that the direct photoproduction of charged
soliton pairs accounts for roughly 25% of the total in-

tegrated oscillator strength in conjugated polymers with
a degenerate ground state. For the nonlinear suscepti-
bility, we show that terms in the perturbation theory
expansion for g~sl(ur ) involving neutral SS configura-
tions with Ag symmetry as intermediate states are one
to two orders of magnitude larger than the correspond-
ing rigid-lattice contribution. The large magnitude of
the contribution to the nonlinear response from the neu-
tral SS pair intermediate state results &om the enhanced
transition dipole inoment, a consequence of the large (vir-
tual) shifts in oscillator strength required to form the
localized electronic wave functions associated with the
bond-alternation domain walls. The nonlinear suscepti-
bility for third-harmonic generation y~sl(3u) is further
enhanced by simultaneous two- and three-photon reso-
nance: a condition which is unique to conjugated poly-
mers with a degenerate ground state and strategically
designed inorganic quantum-well systems.

In Sec. II the results of time-dependent perturbation
theory are reproduced for the case of a one-dimensional
electronic system of C2p spatial symmetry interacting
with a &equency dependent radiation field; these equa-
tions form the basis for the comparison between the NRL
model and models containing Ag symmetry states other
than the ground state and the doubly occupied Bloch
orbitals. In Secs. III and IV the SS electron-lattice in-
termediate states are defined and the nonlinear Franck-
Condon factor is evaluated in terms of the ground state
lattice wave function. In Sec. V a model is developed
for the ground-state lattice wave function in which the
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anharmonic quantum lattice Buctuations of the ground
state are described as an effective density of virtual
soliton-antisoliton pairs. In Sec. VI the linear suscepti-
bility y&~l(ur) is calculated for both the perfectly dimer-
ized infinite chain and the infinite chain with nonlinear
zero-point motion, demonstrating that the direct photo-
production of charged soliton pairs accounts for approx-
imately 25%%uo of the total integrated oscillator strength
in conjugated polymers with a degenerate ground state.
Using typical SSH parameters, 42 we calculate the linear
optical absorption coeKcient, and find it to be consistent
with that obtained &om optical measurements on ori-
ented trnng-(CH) .20'2s In Sec. VII an expression for the
generalized third-order nonlinear susceptibility is derived
for both the noninteracting rigid lattice and the degener-
ate ground-state system supporting SS type excitations,
and the &equency dependence of that component of the
tensor responsible for third-harmonic generation ytsl (3u)
is computed. Throughout the paper, issues of a technical
nature as well as units and dimensions are deferred to the
Appendixes.

II. TIME-DEPENDENT PERTURBATION
THEORY

A. The linear and third-order
nonlinear optical susceptibilities

To evaluate the SSH and TIM linear and nonlin-
ear optical susceptibility, we utilize the results of time-
dependent perturbation theory as presented by Orr and
Ward. For a system with C2p symmetry, the linear sus-
ceptibility is given as

x"(~) = "~) .&girl~&&~lrlg& +
l

(1)

where lg) is the Ag symmetric many-body ground state
and the sum over ll& involves only those configurations
with B„symmetry.

The dominant terms in the corresponding expansion
for the generalized third-order nonlinear optical suscep-
tibility y (~~ = ~q + ~2 + ~s) are given by

(s) 4 1 )-)-) - &ylrl&&&&lrlm) &mlrlu) &ulrlg) 4 1 ) - ) - &alrl&&&&lrlg) &glrlu) &ulrlg&

(4 Zg ~n) (~rng ~1 ~2)(~ng ~1) I
&

(~lg ~o ) (~lg ~3) (~ng ~1)

(2)

where, in the first term, the intermediate states lm) are
any Az states other than the ground state, and in the
second term, only the ground state is considered as the
intermediate A~ state.

B. Relevant intermediate states

The linear and nonlinear optical susceptibilities pre-
sented in Secs. VI and VII are calculated using the fol-
lowing intermediate states (see Appendixes C and D):
intermediate state ll): (i) a &ee electron-hole pair with
wave vector k, lKr& and (ii) a B„symmetric SS electron-
lattice configuration lSS ); intermediate state lm): (i)
the ground state lG), (ii) a doubly occupied conduc-
tion band orbital lKrr), and (iii) an Ag symmetric SS
electron-lattice configuration lSS ); and intermediate
state ln&: (i) a &ee electron-hole pair with wave vec-
tor q lQy) and (ii) a B„symmetric SS electron-lattice
configuration lSS ).

There are N B„symmetric vertical free electron-hole
pair excited states le) labeled by the N allowed (0'+ k)
states of the infinite polyene chain, where o. and k are the
electron spin and momentum degrees of &eedom, respec-
tively. There are, furthermore, N(N —(oja) /2 distinct
geometrical configurations for the virtual SS pair, each
with a different center of mass coordinate Y along the
chain and for each center of mass coordinate, the solitons
comprising the SS pair can be separated by a distance
R, with $0 & R & Na/2, where (e 7a is the coher-
ence length of an isolated soliton: approximately seven
carbon-carbon spacings along the chain. 2 Note that in

I

our coordinate system the chain direction, and therefore,
the dipole moment, is along the y axis: r ~ y.

Recent theoretical work has emphasized the impor-
tance of intraband or "exciton-migration" terms to the
nonlinear optical properties of truns-polyacetylene. 44 In
Appendix F we show that, while the interband transi-
tion strength is actually enhanced by relaxing momentum
conservation, an exact cancellation occurs when summing
the intraband terms in the SSH/TLM model as a di-
rect result of charge conjugation symmetry. The lack
of a significant intraband contribution to the third-order
nonlinear susceptibility has been confirmed experimen-
tally by the absence of a third-derivative component to
the electroabsorption line shape. ' ' We also omit any
contributions to the third-order hyperpolarizibility which
are proportional to N2, since these terms correspond to
disconnected diagrams and, again, cancel exactly.

XII. SS INTERMEDIATE STATES

In conjugated polymers, the configurational coordinate
coupled most strongly to the x-electronic system is the
change in the staggered order parameter: u„+q —u„=
(—1)"uo+bu„. The configurational coordinate bu„de-
scribes the local deformation in the bond alternation or-
der parameter, E(y); the latter has been modeled in the
continuum limit as bound soliton-antisoliton pairs of sep-
aration R. 6' 7

b, (y) = 40(1+ tanh(KoR) (tanh[KO(y —yo —Y)]
—tanh[Ko(y + yo —Y)])),

(3)
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where ((R) = Ke defines the localization length of
the individual bond-alternation defects, or kinks, cen-
tered at Y + yo, R = 2yo is the physical separation
between the two solitons along the chain (y direction),
and Y is the SS pair center of mass. Due to the con-
straints imposed by the self-consistent-gap equation, two
of the three configurational coordinates, R and Ko, are
not independent; we therefore consider the config-
urational coordinate defined by the product s = KOR.
The following equation defines the relationship between
all configurational coordinates relevant to the SS inter-
mediate state: -5.0 -2.5 0.0

I I I I I I

I 1 I
I

I I I I
I

I I I
I

I I I

5.0

tanh(KoB) = tanh(s) = Kp(p = —= Kp. (4)
1 0 s e I

y (0,)

As shown in Appendix D, the SS many-body elec-
tronic wave function 4&g can be represented as a two-
particle product constructed from various combinations
of the upper and lower gap states; gy, are the one-
electron parity eigenstates associated with the deforma-
tion in the bond alternation order parameter, which in
turn are linear combinations of gl, and Q~, the left- and
right-hand kink wave functions. Note that the localiza-
tion length of gL, and Q~, and therefore 4&s, depends
on the SS separation ((R) = (p/Kp. The relationship
between s, KD, and R is shown in Fig. 1, and in Fig. 2
we plot the lattice order parameter and the correspond-
ing self-localized SS electronic wave functions for several
values of the configurational coordinate s, demonstrating
the inverse relationship between the kink separation and

3,

I \

I '~
I

\

I
l

I
I
I

~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~

0.0
-5.0 -2.5

I

0.0

y ((a)

2.5 5.0

FIG. 2. Upper panel: the lattice order parameter in the
continuum limit for three different values of the configura-
tional coordinate 8. Lower panel: the corresponding self-
localized wave functions demonstrating the inverse relation-
ship between the coherence length and the separation.

2.

the localization length of 4~g. For s & 3, the electron
density becomes strongly localized on the left- and right-
hand lattice kinks, eventually becoming two isolated and
well-localized solitons. In the limit s ~ 0, the perfectly
dimerized configuration, the SS electronic wave function
extends over the entire lattice and merges with the va-
lence and conduction band continuum at +40.

A. The SS electronic structure
in the non-phase-shifted basis

0.

Configurational Coordinate {s)

.0

To analyze the contribution of SS configurations to the
optical susceptibility, we choose to define the electronic
component of the wave function in the non-phase-shifted
basis, i.e., the basis appropriate to the perfectly dimer-
ized structure with translational symmetry. In this pic-
ture, as the two bond-alternation defects begin to sepa-
rate, the electron-phonon interaction generates quantum
mechanical coherence between individual Bloch orbitals
resulting in the localized electronic structure of the SS
electron-lattice configuration

FIG. 1. The relationship between the configurational co-
ordinates 8, Ko, and R in units of the isolated kink coherence
length (0.

i@sr) = ).).I&i'&')(O'I &'loess) (i, i = ",c)

The independent sum over k and q re8ects the two-
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particle nature of the SS electronic wave function. 4"

Note, however, that in the electric dipole approximation,
moment»ro conservation requires that only the diagonal
components of Eq. (5) couple to the external electromag-
netic field. 4o The basis transformation defined in Eq. (5)
is a mathematical convenience which allows us to calcu-
late the optical properties of the in6nite chain with an SS
type excitation as a function of the separation 8 without
having to rediagonalize the Hamiltonian.

The diagonal component of the expansion coefficients
appearing in Eq. (5) are defined in terms of an electronic
enhancement factor Io times the SS spectral density
function G(s, k), which defines the spectral decomposi-
tion of the projection of the SS electronic state onto the
non-phase-shifted basis

1 (zz(pl 1 2 (z k(pl
Ha@I.I@ s) &( k)= —

l

——l—
N (2 a) Kp (2Kp)
1= —Io G(s, k). (6)

The large magnitude of the electronic enhancement fac-
tor Io 35 is a result of the delocalized nature of the
SS wave function as compared to the Wannier functions
of the rigid lattice, which have a spatial extent on the
order of the unit cell.4s' Note that in the Bloch repre-
sentation the isolated soliton wave function is localized
as the Bloch wave functions extend over the entire lat-
tice. The magnitude of Ioz was confirmed by Feldblum
et al.ss in detailed quantitative in situ doping studies on
trans-(CH)

Hence there is no phonon-assisted transfer of oscillator
strength from the valence and conduction band contin-
uum to the midgap levels; the system is in the rigid-
lattice configuration.

As shown in Fig. 2, for s & 3, the electron den-
sity becomes strongly localized on the left- and right-
hand solitons. To illustrate the electronic structure of
the well-separated SS pair in the non-phase-shifted ba-
sis, recall that for a spatial b function the projection
amplitude is uniform in the Bloch wave vector k, i.e.,

P& e'"'+ = b(R). This is simply the equivalence of the
Bloch and Wannier descriptions of the electronic states
in the noninteracting rigid lattice. The isolated soliton
wave functions, on the other hand, have a intermediate
localization length L/a )) (o/a &) 1; therefore the expan-

10 ~ $ ~

0
6—

Ch

In this limit, the projection of the SS electronic wave
function onto the non-phase-shifted basis becomes quasi-
monochromatic and eventually merges with the valence
and conduction band continuum at +40..

lim G(s, k) = —b(k).
2

B. The SS localization length and spectral
density function

In this section, we illustrate an important relationship
between the SS separation, the coherence length, and the
quantity of the oscillator strength (virtual or real) trans-
ferred from the valence and conduction band continuum
to the SSelectron-lattice configuration. The two-particle
mixed-basis formalism [Eqs. (5) and (6)], with a minor
empirical mass correction, si is found to conserve the z-
electron oscillator strength for all values of the SS separa-
tion and demonstrates that the largest shifts of oscillator
strength occur for a well-separated SS pair. We empha-
size that oscillator strength conservation forms the basis
for the SS intermediate state mechanism which domi-
nates the third-order nonlinear susceptibility as described
below in Sec. VIIB.

We de6ne L&g to be the localization length of the SS
electron-lattice con6guration; for 8 & 3, L&g is approx-
imately the length over which the SS electronic wave
function is extended along the chain

KO 1.0 2.0
I ~ I s I

3.0 4.0

li5 I
~

~ l ~ ~ l I / I l I

~ ~

1.0—
s =0.3

0.5—

0.0
-0.3 -0.2 -0.1 0.0 0.2

TLM Wave vector (k)

Configurational Coordinate (s)

5.0

0.3

L g = R+ 2 ((R) = (o (s+ 2)/Ko. (7)

It is clear from Eq. (4) and Figs. 1 and 2 that the mini-
mum separation is R = (o, at which point the coherence
length ((R) becomes infinite, with the SS electron-lattice
con6guration delocalized over the entire chain

1
lim Lss = (o + 2 (Nu —(o) = Nu = L-
s—+0 2

FIG. 3. Upper panel: the SS localization length, Eq. (7),
as a function of the SS separation, demonstrating that for
small 8, the SS wave function is highly delocalized. The
dashed line is y = (0(s + 2) and corresponds to the linear
separation of two well-localized solitons. Lower panel: the
spectral density removed from the valence and conduction
continuum by the gap-state wave functions. As the soliton-
antisoliton separation s decreases, the distribution approaches
a b function at +Do [see Eq. (9)].
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sion is never uniform in k but rather reBects the Fourier
transformation properties of the soliton wave function
[see Eq. (Bl)]

lice G(e, k) = sech' —i'eeee) .
B~OO 2

Hence, for large separation the projection of the SS elec-
tronic wave function onto the eigenstates of the non-
phase-shifted basis remains peaked at +60, but extends
well into the band.

The localization length Lsg is plotted in the upper
panel of Fig. 3 as a function of the SS separation. In
the lower panel, the SS spectral density function G(s, k)
projecting a single SS pair onto the non-phase-shifted
basis is plotted for several values of the separation s. It
is clear that for a well-separated SS pair, large shifts of
x-electron oscillator strength are required to construct
the localized SS electronic wave function. Note that as
the soliton-antisoliton separation decreases, the SS local-
ization length increases and the SS spectral density func-
tion becomes more strongly peaked at +40, eventually
G(s, k) becomes a 8 function centered at the band edge
and Lss spans the entire chain. As shown in Sec. VA,
these complementary trends require that the efI'ective

density of SS pairs on the infinite chain be a function
of the SS separation. The relationship between Lsg,
G(s, k), and the effective density of SS pairs is an essen-
tial statement of oscillator strength conservation for the
system with nonlinear zero-point motion.

C. Total energy and symmetry
of the SS electron-lattice con6guration

The total energy (electronic and lattice) of the SS
electron-lattice con6guration is a function of the relative
occupation of @~, and the separation s = ltoR of the
SS pair:

Ess = (tanh(s) + cos [tanh(s)]sech(s) j440

+(n+ —n ) b.o sech(s),

where n+ and n are the respective occupation numbers
of gy, and 2b, o is the ir —ir' energy gap. 42 Charge neu-
trality of the photoexcited chain requires that the midgap
states associated with the SS pair are occupied by two
electrons. Since there are two single-particle levels as-
sociated with the SS pair, there are three distinct two-
particle singlet electronic con6gurations de6ned by the
relative occupations of gy, , v—:(n+ —n ) = —2, 0, 2,
shown schematically in Fig. 4. Because polyacetylene is a
member of the C2h, symmetry group, these SS electron-
lattice configurations have either A~ or B„symmetry.

The configurational potential energy surfaces gener-
ated by Eq. (11) are shown in Fig. 5 for the occupa-
tions of the midgap levels depicted in Fig. 4, demon-

3.6

3.0

2.4
OQ

Q

05

1.8

0
C4

55

1.2

a)
0.6

0.
%% 1.0 2.0 3.0 4.0 5.0

Configurational Coordinate (s)

FIG. 4. The gap-state energy level diagram showing the
occupancies corresponding to the three SS two-particle sin-
glet electronic configurations. Configuratio (a) is the Aii
symmetric ground state, configuration (b) is the B„sy metm-

ric charged SS pair, snd configuratio (c) is the A~ symmetric
neutral SS pair.

FIG. 5. Con6gurational potential energy diagrams cor-
responding to the gap-state occupancies depicted in Fig. 4.
Curve a is the A~ symmetric ground state, curve b is the B„
symmetric charged SS pair that evolves from a free electron-
hole pair, and curve c is the neutral SS pair that evolves from
the 2A~ state in the noninteracting rigid lattice. Also shown
is ~go(s)~, the ground state SS probability distribution, Eq.
(l7).
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IV. THE NONLINEAR FRANCE-CONDON
FACTOR

The Born-Oppenheimer approximation

We assume that the many-body wave function of the
SS electron-lattice configuration is given by the Born-
Oppenheimer product

SS) = less(s)) g le. (s, Y)) (12)

where ~4'ss(s)) and ~4,„(s,Y)) are, respectively, the
many-body electronic and lattice wave functions corre-
sponding to a single SS pair with separation s and center
of mass coordinate Y. The ground state of the coupled
electron-phonon system is given by

It-") = Ig) I@p)

where ~g) is the many-body electronic wave function of
the ground state and ~4p) is the ground state lattice wave
function. Hence the matrix elements become the product
of an electronic matrix element and a Franck-Condon
lattice overlap factor

(S'Sly l&) = (@ss(s')lyl~) (@-(s')l~'p) (14)

strating that, for finite separation, the creation energy
of the SS pair is less than the classical energy gap. In
the limit of large separation, the energy of the SS con-
figuration is Ess ~ 46p/z independent of the occupa-
tion; the three electronic configurations become energet-
ically degenerate. Wu and Kivelson have shown, how-

ever, that this degeneracy is lifted by even weak electron-
electron interactions. ' Nevertheless, the energy of the
well-separated SS electron-lattice configuration is signif-
icantly lower than the one- and two-photon energy gaps,
260 and 430, respectively, of the noninteracting rigid
lattice. The subgap energy of the SS electron-lattice
configuration in conjunction with the localization of the
SS electronic wave function, which requires the weighted
coherent s»mmation of momentum eigenstates with en-
ergies equal to, or greater than, 260 for single-photon
excitations or 46O for the two-photon excitations, im-
plies that large shifts of oscillator strength are associated
with SS type excitations.

Since the continuum of soliton-antisoliton electron-
lattice configurations falls below the energy of the inter-
band m —7t. transition in a rigid-lattice model, one might
anticipate that soliton pairs could be directly photogen-
erated at energies below the band edge, i.e., within the
continuum from 4b, p/7r & hu & 26p. Indeed, since the
charged soliton pair evolves continuously &om an excited
electron-hole pair, r there is an SS configuration with 8„
symmetry. 4~ Therefore, an electric dipole moment matrix
element from the ground state (with Ap symmetry) to a
B„symmetric SS electron-lattice configuration does ex-
ist. In order for the transition to be allowed, however,
there must be a 6nite overlap between the ground and
excited state lattice wave function as well. The lattice
overlap between the ground state and the SS electron-
lattice excited state is considered in the following section.

where, for instance, (@sg(s)~y~g) denotes the electronic
dipole matrix element between the ground and SS ex-
cited state electronic wave functions and (4 (8, Y)~@p)
is the overlap between the ground and SS excited state
lattice wave functions.

As is well known in optical studies of the 6nite
polyenes and nondegener ate-ground-state poly-
mers, the quantum mechanical zero-point motion
of the lattice allows direct access to the electronic
states of the relaxed con6guration, resulting in the
Franck-Condon vibronic progressions observed in both
the absorption and emission spectra. In trans-(CH),
where the potential energy surfaces are anharmonic (see
Fig. 5), nonlinear zero-point motion allows direct access
to excited electronic states associated with SS lattice
configurations. 2s sz In order to evaluate Eq. (14), one
must determine both the ground and excited state lat-
tice wave functions.

In trnns-(CH) the excited state configurational poten-
tial energy surface is unbounded and may therefore be
treated classically with every s corresponding to a differ-
ent electronic eigenstate. In this semiclassical approxi-
mation, the Franck-Condon overlap between the ground
state and the excited state SS continuum is simply the
ground state probability amplitude evaluated at the ex-
cited state lattice configuration s',

(@ (s') l@p) = I@'p(s')
I

V. THE MODEL GROUND STATE
LATTICE WAVE FUNCTION

Monte Carlo calculations have demonstrated that
quantum lattice fiuctuations significantly modify the
electronic density of states by reducing the ampli-
tude of the zero-temperature dirnerization. 6 9 These
simulations show much structure in the instantaneous
lattice configuration for degenerate-ground-state conju-
gated polymers, demonstrating both harmonic and long-
wavelength anharmonic contributions. Since the high-
&equency harmonic terms, which yield simple Franck-
Condon vibronic progressions, tend to average out, the
observed reduction in the classical dimerization is pri-
marily a result of low-frequency long-wavelength anhar-
rnonic quantum lattice Buctuations. In the model pre-
sented here, the reduction in the dimerization and the
corresponding modifications imparted to the electronic
density of states are the result of an as yet unspecified
efFective density p, = N, /N of SS pairs in the ground
state.

As a first approximation, we adopt the following model
for the anharrnonic component of the ground-state lattice
wave function.

(i) The ground state lattice wave function is described
as a statistical distribution of instantaneous lattice con-
figurations describing N, identical noninteracting SS
pairs of separation s, each located at an arbitrary center
of mass coordinate Y;.

(ii) The total number of SS pairs in a given instan-
taneous lattice configuration is limited by the constraint
that the sum of the expansion coefBcients projecting the
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above which the m —x' interband transition at 26p is
completely depleted. It is interesting to note that this
density of SSpairs is precisely the concentration at which
a metal-insulator phase transition is observed in doping
studies on trun8-polyacetylene. 6

From the 10—20% reduction in the magnitude of the
bond alternation (compared with that in the classi-
cal lattice approximation) due to nonlinear zero-point
motion, one can estimate the effective density of SS
pairs in the ground state p, = N, /N:

(o.to —o.oo)a, =o,' ff oooo rc, [a,(o)-a,] ~y, (,)p,

(19)

where 6, (y) is the site dependent order parameter in the
presence of an SS pair with separation s as described in
Eq. (3). From Eq. (19), one finds ps 2.5% & p,
Equation (19) ensures that the model ground state lat-
tice wave function is consistent with the results of the
Monte Carlo calculations. ss ss The instantaneous lattice
configuration is plotted in the upper panel of Fig. 6 for
several values of the separation s, demonstrating the in-
verse relationship between the SS coherence length and
the number density. The lower panel shows the expan-
sion coefficients projecting the p, (s) = p, Ko identi-
cal, noninteracting SS electronic wave functions onto the
non-phase-shifted basis.

VX. THE SSH LINEAR SUSCEPTIBILITY

A number of different approaches to calculating the
contribution of direct photoproduction of charged soli-
tons to y~ l (~) have appeared in the literature. ls s2 The
problem is of interest because this contribution to yli& (u)
would not exist for a classical lattice. The subgap direct
photoproduction of charged soliton pairs relies on quan-
tum lattice Quctuations; without such nonlinear zero-
point motion there would be no overlap of the lattice
wave function of the perfectly dimerized ground state
with that of the chain containing a kink-antikink pair.
The linear susceptibility calculation therefore provides a
reasonable test of the accuracy with which we treat the
nonlinear Franck-Condon factor.

A. Rigid-lattice contribution

The contribution to the linear term in the dielectric
(optical) susceptibility &om interband n —s transitions
in a noninteracting rigid lattice has been calculated in
detail previously. We outline the calculation here be-
cause we want to compare the rigid-lattice result with
that calculated for the infinite chain with nonlinear zero-
point motion. As shown in Sec. II, the rigid-lattice limit
of the SSH linear susceptibility as obtained from Grst-
order time dependent perturbation theory is given by

&RL(~) = e
V ). (+IyIKI)(Kllyl+)

k

1 1

[E „(k) —(u] [E' (k) + cu]

(20)

where the sum is over all vertical transitions and V =
Na/o is the volume occupied by a single polyacetylene
chain; i.e., P(u) = y~i&(ur)E(u) is the dipole moment per
unit vobi~e and E(u) is the macroscopic electric field;
in this analysis local-Geld effects are not considered. Our
strategy is to express the linear susceptibility in terms
of a constant prefactor times a dimensionless integral of
order unity. For this purpose, we define the following di-
mensionless energy variables: x = [E (k) —iI's/2]/26O
and z = her/2b, s, and convert the siim over k to an inte-
gral weighted by the joint density of electronic statess

Na W/2EO
= 2 26p dz p,„(z)2x 1

Nc ~'~ N
dZ = —.

s(p 2
(21)

The joint density of electronic states and the dipole
moment matrix elements are discussed in detail in Ap-
pendixes E and F, respectively. The linear susceptibil-
ity can now be written as a numerical prefactor times a
dimensionless integral containing the band-edge square-
root singular resonance at 24p.

(~) (~) 1 1
gR, (z) =I&o IRL d~

I
I, ( )( )

The rigid-lattice linear susceptibility prefactor is given
by

1
Iys~ lIRr, = 4—e (f,„) 0 p,„1.9 esu, (23)

The contribution of the SS continuum to the linear
susceptibility is given by

X,"g(~) ="
V ).N. (s) (Glyl»)(»lyl&)

1 1
X

.(Ess — ) (Ess+ ). '

(24)

where the SS electronic configurations are defined in Ap-
pendix D. The factor N, (s) appearing in Eq. (24) results
from the ground state lattice wave function being able
to support (statistically) N, (s) noninteracting, incoher-
ent and energetically degenerate SS electronic configu-
rations, as described in detail in Sec. V. Converting the
sum over the SS separation to an integral yields

g~ gl (z) = 2e — dsN, (s) (0Iy I
S8)(SS

Iy I G)2 p p

(vu„—z)(m„'+ z)
(25)

where ur„= (E&& —iF,"/2)/2b s is the dimensionless SS

where a = I/V, and fo„and ps are the prefactors for
the x-electron dipole moment matrix elements and the
joint density of states, respectively (see Appendix H).

B. H„symmetric SS contribution
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energy variable.
As shown in Fig. 4, for a given SS lattice configura-

tion, there are three distinct singlet SS electronic states,
defined by the relative occupation of the upper and lower

gap states v. Of these, two have Az symmetry and one
has B„symmetry. Since the many-body ground state has

Ag symmetry, it has a nonvanishing dipole matrix ele-
ment only to that configuration with B„symmetry. The
potential energy surface corresponding to the Ag sym-
metric ground state and the B„symmetric first excited
state along with the ground state lattice wave function
describing the nonlinear zero-point motion are shown in
Fig. 5.

To calculate the dipole moment matrix element, we ex-
pand the SS many-body electronic wave function in the
non-phase-shifted basis and sum the individual interband
rigid lattice momentum matrix elements weighted by the
appropriate expansion coefBcient. The electronic matrix
element connecting the ground state to the B„symmet-
ric SS configuration is shown in Appendix G to be given
by

(26)

where
1 1

Z~(s) dZ —G(s, z)

is the Fourier decomposition of the electronic dipole mo-
ment matrix element between the many-body ground
state and a single B„symmetric SS electron-lattice con-
figuration of separation s; Ioz G(s, z)/N is the expansion
coefEcient projecting the dipole moment of a single B„
symmetric SS configuration onto the non-phase-shifted
basis.

The SS contribution to the linear optical susceptibility
can be written, therefore, as

(i) (i) — lioo
I

&ss( ) = l&o Iss "s I~o
( +

x I&o(s) I' ~'+(s) (»)
with the SS linear susceptibility prefactor given by

2 0

2 '" a 26p

The ratio of the SS and rigid-lattice linear susceptibil-
ity prefactors is given by the following expression:

(~)
l&o Is s o (30){1} ~8 X

2Ixo IRL

which, as expected, is proportional to both the elec-
tronic enhancement factor and the effective density of
SS pairs in the ground state. For p, = p, this ratio
is vr/2, which is the ratio of the non phase -shifted -band
gap to the creation energy of a well-separated SS pair,
i.e. , x/2 = 2Eo/(46o/~).

C. Total linear susceptibility

Since the electronic structure of the rigid lattice and
that of the lattice containing an SS type configuration

are related by a simple basis transformation, the total ar-
m* oscillator strength must be conserved. Hence y( )(ur)
must satisfy the oscillator strength sum rule:

d~ (u Im(y(')((u)) = —0„', (3l)

X (~) = Xo +XSS(~;~.)+XRi, (~;n.),(&) (&) (&) . p (&) (32)

where yp is the dc offset resulting from excitations in-
volving the higher energy o and core electrons. The rigid-
lattice contribution is now given by

QRL (z i Io. )
(~) . p

(~) 2 1 1= l&o IR& ds l&o(s)l dZ
I

I' ( )(
x [1 —N, (s)P(s, z)].

The second term on the right-hand side in Eq. (33) self-
consistently corrects the rigid-lattice contribution to the
linear susceptibility for the oscillator strength transferred
out of the vertical interband transition and into transi-
tions involving the direct photoproduction of N, (s) iden-
tical, noninteracting B„symmetri c(charged) SS elec-
tronic configurations; P(s, z) = Ioz G(s, z)/N is the SS
interband spectral density function, which measures the
total oscillator strength transferred out of the vertical
interband transition and into transitions involving the
direct photoproduction of a single B„symmetric SS elec-
tronic configuration for optical energy between x and
x+ dx.

The total hnear susceptibility for the rigid lattice,
Eq. (22), and the infinite chain with nonlinear zero-point
motion, Eq. (32), have been evaluated numerically us-

ing the parameters listed in Appendix H and assuming

p, ~ p, ". The results for the real and imaginary com-
ponents of y(i)(u) are plotted in Figs. 7 and 8, respec-
tively, demonstrating that the inclusion of nonlinear zero-
point motion leads to a large shift of oscillator strength
&om the electron-hole pair continuum to states below

where 0& is the plasma frequency, 0„=4mne2/m„and
n = N/V is the density of x electrons with charge e and
mass m, . In the rigid-lattice limit the oscillator strength
sum rule is exhausted by all excitations involving free
electron-hole pairs. As a result, any oscillator strength
associated with the direct photoproduction of charged
solitons must be acquired at the expense of the rigid-
lattice contribution. This transfer of oscillator strength
is analogous to that which occurs when the polymer is
doped; the doping-induced oscillator strength near mid-

gap is transferred from the total m —sr* transition, result-
ing in a bleach of the interband absorption and the ap-
pearance of optically allowed transitions within the clas-
sically forbidden energy gap. Hence, in order to con-
serve total oscillator strength, Eq. (20) must be modified
to account for the spectral density present in the coher-
ent superposition comprising the gap-state wave func-
tions [see Eq. (5)]. We therefore write the total linear
susceptibility as
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l the classical energy gap. The feature which appears on
the low energy side of the spectrum corresponds to the
direct photoproduction of charged solitons and is spec-
trally consistent with the measured photoconductivity
action spectrum. The x-electron integrated oscilla-
tor strength, Eq. (31), is shown in Fig. 9, demonstrating
that the oscillator strength s»m rule is properly satisfied
for both the rigid lattice and the infinite chain with non-
linear zero-point motion; for both contributions we find

Op = W = 26p((p/a).
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FIG. 7. The real part of the SSH linear susceptibility in

the rigid-lattice approximation (bold) and with the inclusion

of nonlinear zero-point motion (dotted).
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The absorption coefficients a(u) = 2ulc(ur)/c, calcu-
lated from y(~) (u), ss for the rigid-lattice and the infinite
chain with nonlinear zero-point motion are compared in
Fig. 10. The agreement of the latter with experiment
is satisfactory; the magnitude and overall shape of n(u)
are in general agreement with measurements on oriented
trans-(CH)

The shoulder on the leading edge of the absorption
curve is a general feature of tranw(CH), and while it is
observable in both the absorption spectra ' and the
photoconductivity action spectrum~6'~ of nonoriented
samples, it is more clearly visible in data obtained &om
oriented samples; it is seen directly in the absorption
spectrumzs and in the measured reflectivity spectrum (see
Fig. 1 in Ref. 20). Using polarized electroabsorption spec-
troscopy, Phillips et OL demonstrated that, in the ori-
ented material, this "low-energy" feature, which follows
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FIG. 8. The imaginary part of the SSH linear suscepti-

bility in the rigid-lattice approximation (bold) and with the
inclusion of nonlinear zero-point motion (dotted). The low-
energy feature which appears upon the inclusion of the non-
linear zero-point motion corresponds to the direct photopro-
duction of charged soliton pairs.

Energy (eV)

FIG. 9. The total integrated oscillator strength, which for
both the rigid lattice and the infinite chain with nonlinear
zero-point motion, asymptotically approaches —R', where
W = 2b,s((s/a) is the z —z'* bandwidth (Ref. 42).
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~ I l I2. VII. SSH THIRD-ORDER NONLINEAR
SUSCEPTIBILITY'

A. Rigid-lattice contribution
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Since it is our purpose to demonstrate the enhance-
ment to the nonlinear optical response by considering SS
intermediate states, we begin by evaluating the expres-
sion for the generalized third-order nonlinear susceptibil-
ity y(s)(ur ) of the rigid lattice in the absence of zero-
point motion by considering the following sequences of
virtual transitions (see Sec. II and Appendix F):

(&lyl&r&(&rlyl&rr&(&rrlyl&r&(&rlyl~&, (34)

5.0—

y~o

C

I

(&lyl&r&(&r lylG&(~lyl&r&{&rlylG& (35)

By adding the two contributions and substituting in
terms of the dimensionless variables defined above, the
expression for the rigid-lattice contribution to the third-
order nonlinear optical susceptibility y(s)(&u ) becomes

%%.0 1.0
I s I s I s I I
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Energy (eV)
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(3) 3 1 1
~RL( o) = l~olaL

l
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1
X
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(* zs)

FIG. 10. The absorption coe%cient calculated from the
linear susceptibility for both the rigid-lattice (bold) and the
lattice with nonlinear zero-point motion (dotted). The de-
tailed shape of the shoulder on the leading edge of the
degenerate-ground-state spectrum is a strong function of the
quantum lattice fiuctuation amplitude (see Sec. VIII 8).

with the rigid-lattice third-order prefactor given by

2

IxolaL = 4 —e' (f.'.)' ~
I

=2.7 x 10 esu.

(36)

the first energy derivative of the unperturbed absorption
line shape, is strongly anisotropic, and enhanced and red-
shifted relative to the nonoriented material, presumably
due to an increase in structural order. The data support
the notion that the low-energy feature, which is seen only
in the degenerate-ground-state isomer, is intrinsic to the
one-dimensional vr-electron system.

Although, by comparison, the shoulder appears some-
what exaggerated in the theoretical curve, we emphasize
that the detailed shape is found to be quite sensitive to
both the quantum lattice Buctuation amplitude and the
functional form of the ground state lattice wave function
Po(s). By making small corrections to the ground state
lattice wave function, curves can be generated which
more closely resemble experimental data. These modifi-
cations to the absorption line shape are described below
in Sec. VIIIB and are plotted in Fig. 15.

The general agreement between the contribution to
n(u) &om direct photoproduction of charged soliton
pairs with the experimental results for trans-(CH) pro-
vides a quantitative measure of the accuracy with which
we have treated the nonlinear Franck-Condon problem.
Although approximate, the treatment of the ground state
and the quantum lattice Quctuations is sufficiently accu-
rate to reproduce the essential features and scale of the
linear optical data.

The factor of 4 appearing in Eq. (37) is due to the spin
degeneracy and is contained within the definition of the
wave functions. The magnitude of the rigid-lattice pref-
actor scales like 60, and, using 260 ——1.8 eV, compares
favorably to that calculated by Agrawal et al. , who re-
ported 3.2 x 10 esu.

For the specific case of third-harmonic generation,
Eq. (36) reduces to

(3) 1 3 1 1
xar, (3z) =

2
IXolaL "

lzls (z 3z)(z z)(z z)
.

(38)

The minus sign appearing in Eq. (38) is in direct contra-
diction with the measured electroabsorption spectra,
which, for both ci8- and trune-polyacetylene, demonstrate
conclusively that the real and imaginary components of
y~ )(w;ur, O, fI) are positive below the first resonance. s

From the structural form of the generalized third-order
nonlinear susceptibility, Eq. (2) in Sec. II, it is apparent
that the same preresonant behavior must hold for any
third-order nonlinear process.

B. A~ symmetric SS intermediate state contribution

The process considered involves the A~ symmetric SS
electron-lattice configurations as an intermediate state in
the perturbation theory expansion:
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f'h' 'u'"l SS contribution to y~ ) is given by

Ix. Isa=~. x «' —(f.')'(3)
I

o Io (~' )'

=p, x 1.5x10 esu. (42)

For the sspeci6c case of third-harmo
'

Eq. (41) reduces to
ir - armonic generation

(3)(3 ) I

(s)I J' ~ g IW. ( )I*'
(m, —2z)

dZ ', G '
Izl (z —3z)

x dZ' 1 G8 z'

the interbanan ipole moment matrix el

h t l d
o e p oton this selec

'

in e i nite chain i.e.
h h b

~ ~

ecomes significant onl w

1 li i }i
li d fi ld. I

is on e order of the

of th t' I 1

n ppendix F we show that

b d m iio f
se ec ion r e efFectivel do

pendent complete
' '

n s rengt for each inde e
a we sum over. Hence we

p ibility prefactors,

, where p is the number of inde enden
f& d fm or a given linear or nonli

th li tib'lit
d h SS 'b '

h
i i i y calculation both t

ri u ions have one mom
&eedom. Hence the relax

momentum degree of
e e re axation of the interband selection

50 ~
I

~
I & I

'
II ( ' ' ' '

&
'

I
' ' '

I
'

&
'

I
I I I

SS in
'

termediate-state mechanism

40—

cn 30—

Com utp ational approximation
8

20-
In order to aavoid a possibly non h sico p y a divergence i

o qs. ~41 and ~43~ we( )
in e enominator of t le momen

e ween the &ee electron-
d h A

' SS
[ . o H

ll to t th h t
s approximation un

g en ancement a
intermediate st

nt associated with the SS
e a e state contribution to

roughly vr .
o y (ur ) by a factor of

10 ) '~
~

'~

~
'
~

I

r

~r
~ y 0
--«-~~—+--r-l" I

aaae aa
-r '

s I i s I s I I I i I
"i T"

~
"I 'i-0-'s'w"r--

0.8 0.9 1.0 1.1 1.2

Pump Energy (eV)

C. Th. The relaxation of the veo e vertical interband
selection rule

In the calculation of th li
li b li

e near an
i ies presented in Sec

d t vector selection rule for

FIG. 11. Thee rigid-lat tice and SS c

both 2Ao = 2.1 V
- a ice contributio

e and 2AO ——18 eV c
e or

cia- and truce-polyacet leace y ene, respectivel . T
S t b to dd

M
is a jtionall en

e, where 3(u = 2b, o and 2(u = 4EO m.



7326 T. W. HAGLER AND A. i. HEEGER 49

rule leaves the linear susceptibility prefactor ratio un-
changed and, therefore, the oscillator strength remains
conserved. In the calculation of y~sl(ur ) the rigid-lattice
contribution has two degrees of momentum freedom (one
for each electron-hole pair), while the SS contribution
has three (two electron-hole pairs and the localized SS
wave function). The nonlinear susceptibility prefactor
ratio becomes

(3)
Ixp Isa p= P 7f' p)
Ixp 'IRL

which is twice as large as the ratio found for the lin-
ear susceptibility prefactors. For the maximum effective
density of soliton-antisoliton pairs in the ground state,
pP = pm~, the nonlinear susceptibility prefactor ratio,
Eq. (44), is equal to 4b, p/(4b, p/m) = m, demonstrat-
ing that the enhancement to the nonlinear susceptibil-
ity from the SS intermediate state mechanism, as shown
in Fig. 11, is a result of a true redistribution of oscilla-
tor strength rather than an anomalously large numerical
prefactor.

VIII. RESULTS AND DISCUSSION

Figure 11 shows the results of a numerical integration
of Eq. (43), the SS intermediate state contribution, and
Eq. (38), the rigid-lattice contribution to yi l(3ur). The
parameters used in the calculation of the nonlinear sus-
ceptibility are identical to those used in the linear sus-
ceptibility calculation. A second curve generated for the
rigid-lattice model was evaluated assuming 260 ——2.1 eV
and (p ——W/26p, parameters appropriate for cis-(CH) .
In all of the calculated spectra, we have assumed a com-
mon lifetime broadening parameter for all of the excited
states: r = I'. = r+ = 0.10 eV, corresponding to an
excited state lifetime of roughly 10 fs. This value is con-
sistent with both the Su-Schrieffer mechanism2r and the
decay of the high energy peak observed in the transient
photoinduced absorption spectroscopy of Shank et al.

The results demonstrate that the inclusion of non-
linear zero-point motion yields a significant enhance-
ment of g~s&(3ur) in systems with a degenerate ground
state. From the preceding discussion, it is clear that
this enhancement in the nonlinear susceptibility is a di-
rect result of oscillator strength conservation; the nonlin-
ear zero-point motion facilitates a transfer of oscillator
strength kom states with energies above the band gap
to states with energies below the band gap) and virtual
transitions involving these lower energy states result in a
corresponding larger hyperpolarizability. Note that the
SS intermediate state contribution is positive and larger
than the rigid-lattice contribution at all frequencies, thus
reversing the overall sign and making both the real and
imaginary components of )t'i i (u ) positive below the first
resonance.

A. Electron-electron interactions

of electron-electron interactions on the ordering of the
energy eigenstates is well known for polyene oligomers,
tending to lower the energy of the 2A& state relative to
that of the 1B„state.6 To simulate the possible efFects
of electron-electron interactions on the SS contribution
to yis& (3ur), we assume in our numerical calculations that

E g w E g
—26p cr IO(s)I (45)

where n defines the magnitude of the Coulomb interac-
tion and O(s) is the overlap of the gap-state wave func-
tions centered on S and S, respectively,

O(s) = dy sech[Kp(y+ R/2)] sech[Kp(y —R/2)]
Kp
2

s

sinh(s)
(46)
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Thus E&2&(s) = (2 —u)Eg for s = 0 and approaches

E&~&(s) = (2/vr)Es as s ~ oo. Equation (45) is clearly
an assumption; it is, however, qualitatively correct in the
two limits; for s ~ 0, correlation efFects reduce the energy
of the As excited state to be intermediate between 26p
and 460,6 and for s ~ oo, the neutral pair will only be
afFected by long range Coulomb interactions which should
be well screened in the solid state. The potential energy
surface of the neutral SS configuration for n = 0.00,
o. = 0.50, and o. = 0.85 are shown as the dotted, dashed,
and solid lines, respectively, in Fig. 12.

Numerical integration of Eq. (43) for various values
of the correlation parameter a have been carried out.

The proper description of the SS intermediate state
requires taking into account both electron-electron in-
teractions and electron-phonon interactions. The efFects

PIG. 12. The effects of the phenomenological electron-
electron interaction [Eq. (45)] on the configurational potential
surfaces of a degenerate-ground-state polymer.
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The dotted curve in Fig. 13 is a plot of the SS inter-
mediate state contribution without electron correlation
(i.e., u = 0), the dashed curve corresponds to cr = 0.50,
and the heavy solid curve in Fig. 13 corresponds to
a = 0.85. Figure 13 demonstrates the additional en-
hancement gained by reducing E&~&(s) for small s, so that
the double resonance condition is satis6ed over a wider

range of the con6gurational coordinate.

B. Quantum lattice fluctuation amplitude

To examine the eHects of the quantum lattice Quctua-
tion amplitude on the linear and nonlinear optical suscep-
tibility, the ground state lattice wave function is modi6ed
as follows:

[Pc(s) (
= exp ——s

27r

exp ——(s/or, )
1 1

2' 0'~
(47)

The inset in Fig. 14 shows the percent reduction in the
classical dimerization as a function of the quantum lat-
tice Buctuation amplitude 0., while assuming the maxi-
mum density of SS pairs that the system can support;

p, = p, . The results of the various Monte Carlo
simulationsM 9 fall between the two horizontal lines and
a fully dense neutral soliton lattice yields a reduction
in the classical dimerization of roughly 56%%uo. The inset

demonstrates that our initial model of the SSprobability
distribution, Eq. (17), is at the upper limit of the Monte
Carlo results.

In Fig. 14 we plot the magnitude of y( ) (Su) evaluated
at 0.6 eV as a function of the percent reduction in the
dimerization amplitude —bu/uo. Over the 5—20%%uc range,
the curve shows a linear relationship between the mag-
nitude of the nonlinear susceptibility and the reduction
in the dimerization amplitude, and g( ) (3u) is found to
vary by less than a factor of 2.

The effects of the quantum lattice Suctuation ampli-
tude on the linear optical absorption coefficient are shown
in Fig. 15 for several values of o.„corresponding to a
5—20% reduction in the dimerization amplitude. Note
that with —bu/uo ——15'%%uo, the absorption line shape more
closely resembles that measured experimentally. Figures
14 and 15 demonstrate that the absorption edge can be
significantly modified without quenching the SS inter-
mediate state mechanism.

C. Confinemen

In systems which do not have a degenerate ground
state (e.g. , cia-polyacetylene) the configurational poten-
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FIG. 13. The SS intermediate state mechanism contribu-
tion to Xi )(3ug) resulting from the conflgurational potential
energy surfaces shown in Fig. 12. The results demonstrate
the sensitivity of g to the details of the potential energy
surface of the A~ symmetric neutral SS pair.

FIG. 14. Inset: the percent reduction in the classical
dimerization —bu/uo as a function of the nonlinear zero-point
amplitude o, . The range spanned by the various Monte Carlo
simulations (Refs. 56—59) is deflned by the two horizontal
lines, and a symmetric neutral soliton lattice yields a reduc-
tion of roughly 56'%%uo. Main Iigure: the magnitude of X I(3~)
evaluated at 0.6 eV as a function of the reduction in the classi-
cal dimerization amplitude. Note that y (3u) varies by less
than a factor of 2 over the 5—20 Fo range. Both curves assume
the maximum density of SS pairs p, = p, " [see Eqs. (19)
and (47)].
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FIG. 15. The absorption coefficient for the degenerate
ground state calculated from Eq. (33) using several values for
the nonlinear zero-point amplitude, corresponding to s 5'%%uo,

10%, 15'%%uo, snd 20'%%uo reduction in the classical dimerizstion
amplitude, respectively. Over this same range, the magnitude
of X (3~) changes by less than s factor of 2. The absorp-
tion coefficient calculated for the rigid lattice is also shown

for comparison.
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FIG. 16. The configurational potential energy surfaces for
s nondegenerste ground state (bold) snd s degenerate ground
state (dotted). The linear confinement potential of the non-

degenerate ground state leads to the appearance of excited
states with a locally stable lattice configuration; A~ and B„
symmetric polaron excitons. A significant Stokes shift in the
photoluminescence excitation spectrum would indicate that
the ground-state lattice wave function does not strongly over-

lap that of the relaxed B„symmetric polsron exciton (Ref.
23).

tial energy, Eq. (11), must be augmented by the confine-
ment potential

46p
Esg w Esg + p [s —tanh(s)], (48)

where p, the confinement parameter, is a measure of
the amount by which the one-electron crystal poten-
tial lifts the ground state degeneracy. In Fig. 16, we

plot the configurational potential energy surfaces for
a nondegenerate-ground-state polymer generated Rom
Eqs. (11) and (48) with p = 1. For comparison, the
corresponding curves for the degenerate ground state are
also shown (dotted). The linear confinement potential
quenches the amplitude of the nonlinear zero-point mo-
tion and leads to the appearance of bound excited states,
A~ and B„symmetric polaron excitons, which are de-
scribed as confined soliton-antisoliton pairs. Note that
"confinement" refers to the separation of the mass cen-
ters of the two kinks and does not imply a localization
of the electronic wave function. In fact, the tread is just
the opposite: as p increases the localization length I~g
increases, and in the limit of infinite confinement, where
8 ~ 0, the SS wave function extends over the entire lat-
tice and xnerges with the Bloch continuuxn at +Go (see
Sec. IIIB and Fig. 3).

The nondegenerate ground state quenches the SS in-
termediate state mechanism in the following ways.

(i) The linear confining potential quenches the am-

plitude of the nonlinear zero-point motion. A Franck-
Coadon analysis of the absorption, electroabsorption,
and photoluminescence line shapes demonstrates that the
potential energy surfaces of many nondegeaerate-ground-
state polymers, including cia-polyacetylene, are approxi-
mately harmonic and that the excited state relaxation is
very weak

(ii) In the nondegenerate ground state polymer, the
spectral density of the confined" SS electronic wave
function is strongly peaked at the band edge, +Ap.
Therefore, the amount of oscillator strength transferred
&om the vis-ultraviolet to the near-in&ared for a given
SS pair is substantially reduced.

(iii) Phase space Filling in nondegenerate-ground-state
systems: since the minimum coherence length of the SS
wave function (polaron-exciton) in the nondegenerate-
ground-state polymer is larger than that of the well-

separated SS pair in the degenerate-ground-state poly-
mer, the effective density of SS pairs ia the ground state
is substantially reduced. Equation (9) states that in the

limit of infinite confinement the volume of the SS phase



SOLITON-ANTISOLITON CONFIGURATIONS AND THE. . . 7329

space approaches zero.
(iv) Since the energy of the As symmetry state in

the nondegenerate-ground-state polymer is lifted by the
one-electron crystal potential (see Fig. 16) the oscillator
strength enhancement to the nonlinear susceptibility is
diminished.

(v) The third-harmonic nonlinear response in the
nondegenerate-ground-state polymer is further reduced
by a lifting of the simultaneous two- and three-photon
resonance by the one-electron crystal potential.

Using the results of Secs. VI and VII, one can show
that a simple ratio exists between the magnitudes of the
linear and third-order nonlinear optical susceptibilities in
the NRL model
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The data presented by Halvorson et al. 2 show that for
cis-(CH)„ this ratio is of the right order of magnitude,
suggesting that cia-(CH) is accurately described by the
rigid-lattice model. This is consistent with our expec-
tations, since the nondegenerate ground state of the cia
isomer must suppress the nonlinear component of the lat-
tice zero-point motion which enables the SS intermedi-
ate state mechanism. The relatively sharp photolumi-
nescence excitation threshold and 0.15 eV Stokes shift
reported in Ref. 16 demonstrate that the ground state

~ I &
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FIG. 18. The nonlinear susceptibility y l (3u) calculated
for the rigid lattice (bold line) and in the harmonic approxi-
mation assuming Itu~q = 0.19 eV and S = 0.4 (dashed line).
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FIG. 17. The absorption coefBcient calculated for a
nondegenerate-ground-state conjugated polymer (bold line)
demonstrating the typically observed "displaced-harmonic-
oscillator" vibronic progression. For comparison, the ab-
sorption coefFicient calculated for the degenerate-ground-state
conjugated polymer with —bu/uo ——15% (dotted line) is also
shown.

lattice wave function does not overlap the relaxed config-
uration of the luminescent polaron exciton; if the nonlin-
ear Franck-Condon factor w'as of any significance, relaxed
configuration of the polaron exciton could be excited di-
rectly and a subgap excitonic feature would be visible
in the linear absorption spectrum. s For pure cia(CH)
there is no evidence of significant subgap optical absorp-
tion and certainly no evidence of a sharp absorption res-
onance at the photoluminescence energy. We therefore
conclude that in cis-(CH) the nonlinear component of
the lattice zero-point motion is quenched by the nonde-
generate ground state.

We emphasize that the harmonic component of the lat-
tice zero-point motion is observable in the optical spec-
tra of the nondegenerate-ground-state polymer. The de-
generacy lifting eKects of the confinement potential re-
sult in a relatively harmonic configurational potential
energy surface, e.g. , a dominant intra-unit-cell optical
mode, which is characterized by the simple "displaced-
harmonic-oscillator" vibronic progressions observed in
the absorption, electroabsorption, and photolumines-
cence spectra of nondegenerate-ground-state polymers
and oligomers. ' ' ' 3' In Fig. 17, we show the ef-
fects of harmonic quantum lattice Buctuations on the op-
tical absorption line shape using parameters appropriate
for cia-(CH); we use a phonon energy of 0.19 eV and
a Huang-Rhys parameter of S = 0.4. There is excellent
agreement between the positioning of the vibronic fea-
tures and the overall shape of the calculated absorption
line shape and that measured experimentally.
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The effects of this vibronic coupling are also observed
in the third-order optical response. Vibronic features are
readily observed in the electric field modulation spectra
y~ l(u, 0, 0), of both cis- and trans-polyacetylene. Fig-
ure 18 demonstrates the effects of vibronic coupling on
the THG line shape; however, to actually observe these
features would require a much larger signal to noise ratio
than is currently avaliable in THG spectroscopy.

IX. CONCLUSION

We have presented a calculation of the linear and third-
order nonlinear optical susceptibility based on a sym-
metry speci6c mechanism which focuses on the difFer-

ences between degenerate- and nondegenerate-ground-
state conjugated polymers. In doing this, we have de-
veloped an approximate formulation for describing the
quantum lattice Quctuations in the degenerate ground
state in terms of a single collective configurational coor-
dinate s = KoB, representing simultaneously the sepa-
ration, coherence length, and number density of virtual
soliton-antisoliton electron-lattice con6gurations on the
polymer chain.

Using this approximate description of the ground state,
we have calculated both the linear and the third-order
nonlinear optical susceptibility y~ ~ (ur) and yi ~ (u ), for
the rigid lattice and the in6nite chain with nonlinear zero-
point motion. Our results demonstrate that for systems
with a degenerate ground state, contributions from SS
intermediate states enabled by nonlinear zero-point rno-

tion make important contributions to both the linear and
the third-order nonlinear optical response.

(i) With the inclusion of nonlinear zero-point motion,
a feature appears on the low-energy side of the linear
susceptibility spectrum corresponding to the direct pho-
toproduction of charged soliton-antisoliton pairs. The
oscillator strength associated with the direct photopro-
duction of charged solitons pairs comes at the expense of
that associated with interband transition; total oscillator
strength is conserved.

(ii) For any third-order process, contributions arising
&om A~ symmetric neutral SS pair con6gurations as in-
termediate states are one to two orders of magnitude
larger than the corresponding rigid-lattice contribution.
The large contribution to y~3l(&u ) from the SS interme-
diate states results ft.om the large transition dipole mo-
ment between the &ee electron-hole pair excited states
of B„symmetry and the Ag symmetric neutral SS ex-
cited state. This enhanced transition dipole moment
is a consequence of the large virtual shifts of oscilla-
tor strength associated with the localized SS electron-
lattice configuration. For third-harmonic generation,
y~ l(3ur) is further enhanced by a condition unique to
degenerate-ground-state systems, simultaneous two- and
three-photon resonance (see Fig. 11 caption).

These contributions to y~ l(~) and g~sl(~ ) are both
enabled by nonlinear zero-point motion which provides
a finite Franck-Condon overlap between the ground and
SS excited state lattice wave functions. Since confine-
ment quenches the nonlinear zero-point motion, the SS
intermediate state mechanism is specific to the symmetry
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APPENDIX A: TLM WAVE FUNCTIONS

1. Extended band states

The TLM one-electron energy spectrum is given

by

e(k) = keg = +b,pg(k(p)2+ 1. (A1)

The two-component spinors defining the valence and con-
duction band continuum are defined by

(A2)

where

Ul", = —N~(k)(1 —A)e'"", V„" = —N~(k)(1+ A)e'"",

(A3)

Ug = —iND(k)(l + A)e' ", V& ——+i%~(k)(1 —A)e*"",

of the ground state.
The general agreement of the calculated linear opti-

cal coe%cients with those measured experimentally pro-
vides a quantitative measure of the accuracy with which
we have treated the nonlinear Franck-Condon factor; the
treatment of the ground state lattice zero-point motion
and Franck-Condon overlap factor is suKciently accu-
rate to reproduce the essential features and scale of the
linear optical data. Furthermore, the contribution to
the third-order nonlinear optical susceptibility from the
SS intermediate state mechanism is numerically consis-
tent with the experimental values, i.e., 10 —10 esu,
obtained &om third-harmonic generation and electroab-
sorption studies of highly oriented and structurally or-
dered trans-polyacetylene.

We conclude that in degenerate-ground-state conju-
gated polymers nonlinear zero-point motion provides an
effective mechanism to facilitate large (virtual) shifts of
oscillator strength &om the vis-ultraviolet to the near-
inft. ared, which results in both subgap optical absorption
and photoconductivity, as well as a significantly enhanced
third-order nonlinear susceptibility. The cis/trans com-
parative THG and photoconductivity studies are con-
sistent with the model presented here, in which both
the linear and third-order nonlinear optical response of
degenerate-ground-state conjugated polymers are domi-
nated by SS electron-lattice configurations enabled by
nonlinear zero-point motion.
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and
- 1/2

ND(k) =
2~i

k(pAp
(A4)

(s k)
I2 —Is ———2N ND(k) sech l—

x [cos(kyp) —A sin(kyp) ].
The following definition is useful in demonstrating a

wave vector selection rule for the dipole moment matrix
element

2. SS midgap levels

The localized spinor wave functions associated with a
SS pair of arbitrary separation R = 2y0 and center of
mass coordinate Y are given by3

U, = ~iN„[(1+i)S —(1 —i)S+],
V, = —,'N [(1 —i)S —(1+i)S+],

(A5)

I2(")I2(q) + II&(k)I&(q) I
= Io G(a k q)

where

1 t', gp)
p 7I

2E o)
The diagonal component of Eq. (84) is given by

P(a, k) = —Ip G(a, k, q)bs, ~
1 2

= —Io — sech
1 s 1 2 (mk(p)
N Kp (2 Kp)

(B4)

(B5)

U, = —,'N„'[(1+ i)S + (1 —i)S+],

V, = N,'[(1 -—i)S + (1+ i)S+],
2

where

Sy = sech[Kp(y jyp —Y)]

and

(A6)

2. Dimensionless overlap integrals

For computational purposes, it is convenient to re-
cast the basis transformation defined in Eq. (B3) in
terms of the dimensionless optical energy parameters
z = E,„(k)/2b, o and Z = v'z2 —1. The overlap inte-
grals become

N„= —QKp.0 1
(A7)

F~ —— dy e'"" sech E0 y 6 y0 —Y

7r ter k i, +g srsech
l

—
l

e ' "'e'
Kp (2 Kp)

The overlap integrals projecting the single-particle
midgap states onto the non-phase-shifted basis are de-
fined as

(&..(y)l@„(y))=r, (k) e

(y)l@&(y)) = I,(k) e

APPENDIX B:TLM BASIS TRANSFORMATION

1. Basic overlap integrals

In evaluating the overlap integrals necessary for the
basis transformation used in calculating the SS contri-
bution to the linear and nonlinear optical susceptibility,
the following integral is encountered:

Ig ——I4 —— i2N Nrp(z—) sech
l

— Z
lKp (2Kp )

t' B (R
x sinl Z l+A(z)coal Z

l&2o E2 o

(~ 1
I2 ——Is —— 2N ND(z) —sech

l

— Z
lKo (2Ko )(z

x coal Z
l

—A(z)sinl Z
l

E2 o ) (2 o )
where

- X/21 z —1
Ng)(z) =

2 L

A(z) = z
lz —1l

It is useful to define the following diagonal component
of Eq. (B4):

&( z) = I'(z)+ IIi(z)l'= —Io' G(a *)2 —1

N
where

(&--.(y)l@~(y)) =I.(k) e'""
(@--.(y) l&~(y)) = I4(k) e'"

with
k iIi ——I4 ———i2N„N~ (k) sech l-

Kp (2 Ko)
x [sin(kyp) + A cos(kyp)],

(B2)

(B3)

G(a, z) = sech — Z
l

.
Kp |,2Kp )

(B10)

APPENDIX C: MANY-BODY' EIGENSTATES
OF THE RIGID LATTICE

1. The ground state

lG) = lg) l@o). (C1)

Because of the two-particle nature of the SS interme-



7332 T. W. HAGLER AND A. J. HEEGER 49

diate states, all matrix elements are calculated in the
two-particle representation described below. One of the
N(N —1) two-particle moxnentuxn representation for the
many-body ground state is found by factoring gk and
g"&k out of the ground state Slater determinant

lk») = ck.ck.ck .ck .Ig).t (C9)

al. have shown that terms with k P q correspond to
disconnected diagrams and cancel exactly. We therefore
restrict our attention to the following spin-paired doubly
excited states

lg) = ).).I@k(y;)@,"~k(y, )) IN —2) xo (C2) The corresponding two-particle representation is given by

where yz is the many-body singlet spin wave function
henceforth suppressed and IN —2) is the vector spanning
the valence band continuum not including gk and g"&k
subject to the normalization condition

lk») = ) . I&a.(y')&k .(yi)) IN —2) (C10)

(N —2iN —2) = (C3)

APPENDIX D: MANY-BODY EIGENSTATES
OF THE SS ELECTRON-LATTICE

CONFIGURATION

2. The Srst excited state 1. The Srst excited B„symmetric SS pair

I+r) = lkr) IC'o). (C4) The many-body wave function describing a single SS
pair in the B„symmetric electronic configuration is de-
fined as the Born-Oppenheimer product

The first excited state is found by operating on the

ground state with the operator ck ck
ls'~') =l~; ) IC"-( &))

lkr) = ck cklg).

In the two-particle representation this becomes

(c5)
By taking the tensor product of the upper and lower gap
state and the phase-shifted continuum, we find an ex-
pression for the B„symmetric SS many-body electronic
wave function in the two-particle representation

x 3 iN —2). (C6)

3. The second excited state

lkr) = ) [I4k(y')4,"gk(y )) + I&,"gk(y')4k(y ))]'
*,2~* l@»(s)) = ): [IO..(y;)0-..(y, ))

'Li2 0&

+IN--. (y')4-. (y ))l

8IN - 2,., ), (D2)

I&rr) =
I "rr) IC'o). (C7)

where IN 2y, ) is the —vector spanning the phase-shifted
valence band: 2 is the number of electrons occupying the

gap state wave f-unctions. In the non-phase-shifted basis,
Eq. (D2) becomes

The second excited state is found by operating on the

first excited state with the operator cq cq I@+,g(s)) = ) ). IN —2) I&ss( y.
"

y,'))
i,jpi k,qgk

c't c"c'„tc"„
I g) . (C8) —i(k+q) Y (D3)

In the perturbation theory expansion for y~ ~, Soos et

I

where

l&ss(s y.
"

y )) = —[Is(k)Ix(q) —Ix(k)Is(q)]leak(y')gq(yi)) + [I&(k)I2(q) Ix(k)I4(q)]leak(y*)@q(yi))
—[I4(k)Ii (q) —I2(k) Is (q)]

leak

(y, )g" (y~ )) + [I4(k)Ig (q) —Ig (k)I4 (q)] leak (y;)g'(y~)) (D4)

and the vector IN —2) now spans the non-phase-shifted
valence band continuum. Using the parity transforma-
tion properties of the valence and conduction band ex-
tended states, s~ one can show that 4'&&(s) is of B„sym-
metry

n e,+,(s) n =-e+„(s).

2. The second excited A~ symmetric SS pair

I»') =I+',g) IC-( &)) (D6)

The many-body electronic wave function associated
with the A~ symmetric SS configuration in the phase-
shifted basis is given by
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l~&g(s)) = ) . I&-.(~*)&-.(~')) IN —2-.) (D7)
&i28e

The corresponding many-body state in the non-phase-
shifted basis is given by

i~sr(')) = ). ). IN-2) 144('~, " g))

where IM I
h/a is the momentum matrix element be-

tween two carbon p, orbitals located on adjacent sites.

1. Vertical interband transitions

i,jgi k,qgk
—i(k+q) Y

) (D8)
(Wsl~. 14') = du[& U; —«:j= —.

L,)2
(F2)

where

10',~('~," ~')) =+I.(k)f.(q) 14~(~')4q" (~~))
-I.(k)~4(q) l&s(~') 4;(~~))

(k)r, (q) ly„(~,)q,"(~,))
-~4(k)~4(q) 14'(~')4;(~')) (»)

Using the parity transformation properties of the valence
and conduction band extended states, sr one can show
that @os&(s) is of Ay symmetry

The vertical interband dipole moment matrix element
has been determined previously;34 it is expressed here in
terms of the dimensionless complex optical energy pa-
rameter z = E„(k)/2b, p

with the interband dipole moment matrix element pref-
actor given by

rr ep„(.) 11 = ep„(.). (D10) f,, =
I I

IM I
= 7.1 x 10 cm.

1

(m~ p 6p (F4)

APPENDIX E' THE SSH/TLM JOINT DENSITY
OF ELECTRONIC STATES

In the continuum model the optical energy spectrum
is given by

E,„(k) = 26pg(k(p)2+ 1. (El)
The joint density of electronic states per unit length
becomes

2. Nonvertical interband transitions

L/2

—L/2

(b kL') i- sine
I

i(k q)y [U
c—e ~u ~ce Iy v]
q k q k J

(F5)

The nonvertical interband momentum matrix element
is given by

dE,„(k)
dk

Q
X p

Z (E2)

with the joint density of electronic states prefactor given
b 34

where

m 7rAk=—q —k= ——,
N 2a' (F6)

1
p,„= = = 6.6 x 10 eV cm '. (ES)

2bo o aW

In Eq. (E2) we have defined

Z—:k(p ——Qlz2 —11

w dZ = dz —= dx p„(z). (E4)
lxl 1

l'ev

From Eqs. (E2) and (E4) we see that a simple change of
variables can be used to eliminate the singularity in the
joint density of states

dc p,„(c) G(c) = p,„/ dZ G(Z) (E5)

for an arbitrary function G(z).

APPENDIX F: THE SSH/TLM ELECTRIC
DIPOLE MOMENT MATRIX ELEMENT

In the TLM model the electric dipole moment rna-
trix elements are defined in terms of the two-component
spinor inomentum operator i ho'sB/Bz (Ref.—37)

where sine(u) = sin(u)/u, m is the difFerence in the Bloch
indices between states q and k, and vr/2a is the zone
boundary. Using Eq. (Fl), the interband electric dipole
moment matrix element becomes

1 . (b,kL ))
x2 ( 2 )

= f,„sine m-
x 4

(F7)

) ( t")y) y )( y's)ys) /ss) = sf(ks) 1'+ 2 ) sine,„(scs—)
n=p

+O(l/N ) = 2 f (k) i (F8)

Because of the alternating gerade-ungerade symmetry
of the Bloch levels within the conduction and valence
bands, a feature not contained within the TLM model,
there is a relaxed interband selection rule for the infi-
nite chain which simply states that m is even. The total
transition strength is enhanced by the nonvertical terms

f2, i = (Alyl&)
. ('h& 1 Ao

(me) o
(Fl)

where m = 4n+ 2. Hence, for each independent com-
plete set of states that we sum over, the relaxation of the
vertical selection rule effectively doubles the interband
transition strength.
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3. Intraband or exciton-migration terms

The intraband electric dipole moment matrix elements
are defined as

(&;"lyl&i'") = —i f.'. E.,- 'E.,- (& "I~sl&g'").
Eq' —E~'

(Fg)

0 m + 2A
f~l, = f,„p sine m—

2N 4
240

X
(z., „)2+ —,'(r, + r„)2'

24~q &des = tan
Fq+ Fg

(F18)

Charge conjugation symmetry requires that

(@;I~sl@l)= -(@,"l~sl@D

and

Re[E" —El', ] = —Re[E"' —E„"].

(F10)

(F11)

The factor of m which appears in the phase factor of the
intra-conduction-band matrix element is a consequence
of charge conjugation symmetry [see Eq. (F10)].

b. The case Fq ——Fq = 0

The important terms occur near the band edge where
the density of states is large. Here the energy can be
expanded to yield its dependence on ¹

If we neglect lifetime broadening effects, the intraband
matrix element becomes

8;lyl+l) = (0,"I yl&l)
es = Gpss(n/N)2p2 + 1

= b, p 1+ —(n/N)'p
2

(F12)
vr 1 ¹= —i sgn(m) f,„sine m—
4 p lml

(F1g)

where p = m(p/2a is the dimensionless TLM wave vector.
Near the singularity at 260, the real part of the energy
denominator is given by

EI = +(e ei ) = (e fg)

2 m(m + 2n)
0 ~ 2¹

(F13)

The sign difference between klml terms leads to an exact
cancellation of the exciton-migration terms.

c. The case I'~ && dEeq, q

If we assume that lifetime broadening eKects dominate
the energy denominator, i.e., Fp && A6q & the matrix
elements become

The spinor momentum matrix element is given by

(F14)

Near the band edge

(i)'(y)s)'S) = f p — „sine (cc—
)

(sP,"(y(sis) =+f psicc .„(cc—)

(F20)

a. The generel case

E —E„'=s.,„+-'(r, +r, ),

E —E,"=-z...+ -'(r, +r„).

(F15)

(F16)

where, as stated previously, the sign difference is a result
of charge conjugation symmetry. It is clear &om Eq.
(F20) that fjnite lifetime effects reduce the amplitude
of the exciton-migration terms, as the matrix elements
go like 1/N. By taking all combinations of third order
intraband processes (vv, vc, cv, cc), it becomes apparent
that the sign difference between the intra-conduction-
band matrix element and the intra-valence-band matrix
element leads, again, to an exact cancellation.

The intraband matrix elements can be written as fol-
lows:

APPENDIX G: SSH/TLM
MATMX ELEMENT SUMMARY

(&,
"

lyl@D = fr ~ e '

(F17)
1. Direct interband transition

(Qclyl@c) f +t(4s~is+yl')

where the magnitude and phase of the intraband electric
dipole moment matrix element are given by

(~ilyl&) = (&iilyl&r) = v 2 f (&) = v 2 f.
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2. Direct photoproduction of B„symmetric
SS con8gurations

(SS+)y)G) = ~2 —Ip f,

x ),*(s+s) G(s, k, q)
1

xi@p(s)i hg, , s.

3. Transitions involving free electron-hole pairs
and A.~ symmetric SS con8gurations

(SS ~y~K') = ~2 —I f ) e'("+s)1 1
I N P ctl ~

(
y I

)k,qgk 2

1
x —G(s, k, q) ~4p(s) ~hs s hs s .

APPENDIX H: NUMERICAL CONSTANTS

Lp ——0.9 eV,

(M ( h/a = 5 5 x 10 eVs/cm,
Lrp ——7a = 8.4 x 10 cm,

f,„=(h/m, )bp ~M (
= 7.1 x 10 cm,

W = 26p ((p/a) = 12.6 eV

o =L/V =3.2x10 cm

p,„=(2b,p('p) = 6.6 x 10 eV cm

n = N/V = o/a = 2.7 x 10 cm

h/m, = 1.16 cm /s,
I'& ——I',+ = I', = 0.10 eV,
e = 1.44 x 10 eVcm = (300 eV/V, ),
Msg = m, [1+0.295Kpj.
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