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A transferable tight-binding model for silicon is found by fitting the energies of silicon in various bulk

crystal structures and examining functional parametrizations of the tight-binding forms. The model has

short-range radial forms similar to the tight-binding Hamiltonian of Goodwin, Skinner, and Pettifor but
can be utilized in molecular dynamics with a fixed radial cutoff for all structural configurations. In addi-
tion to a very good fit to the energy of Si in different bulk crystal structures the model describes very well

the elastic constants, defect-formation energies for vacancies and interstitials in crystalline silicon, the
melting of Si, and short-range order in liquid silicon. Results for phonon frequencies and Griineisen
constants in c-Si are also presented.

I. INTRODUCTION

An outstanding problem in the computer-based micro-
scopic description of materials, especially for molecular
dynamics of semiconductor materials, is the need for an
accurate transferable model of the energetic and electron-
ic properties of semiconductor structures. Classical po-
tential models' have been extensively developed either
by fitting to ab initio calculations for Si or through other
empirical means. These classical models have had much
success in describing melting of silicon, amorphous sil-
icon structures, thin-film growth, and a variety of compu-
tationally intensive molecular-dynamics simulations.
However, by their very nature, the classical-based models
do not contain important electronic information which is
essential in a variety of problems such as determining the
gap states for structural defects. Electronic-driven effects
such as a Jahn-Teller distortion at a vacancy are
specifically not described in classical molecular-dynamics
models. The accuracy of the classical models in very dis-
torted configurations, far from the fitting database, is also
uncertain.

At the other extreme molecular-dynamics simulations
based on the Car-Parrinello method using the local-
density approximation have been very successful in deal-
ing with melting of silicon and amorphous structures.
While being very accurate and yielding much valuable
electronic information, the ab initio molecular dynamics
has been performed on small systems (-100 atoms) for
short-time scales (-10 ps). Both larger systems and
longer times scales are needed for understanding complex
dynamical processes such as the those involved in growth
and epitaxy. The development of ab initio electronic
structure methods that scale linearly with the number of
atoms and could be applied to large systems is an area of
much current effort.

In this paper we aim to find tight-binding models for
silicon that are in between the ab initio simulations and

the classical models for molecular dynamics in level of so-
phistication. Our goal is to describe accurately the elec-
tronic and structural properties with tight-binding mod-
els but still have models robust enough for pursuing
long-time simulation on large systems with a few hundred
atoms. The tight-binding method has been very popular
in many studies of silicon surfaces and defects, but has
not always been very transferable to general geometries.
In this paper we demonstrate that transferable tight-
binding models for silicon can be found by careful fitting
of ab initio calculations and exploring the large parame-
ter space of tight-binding parameters. As will be demon-
strated, these tight-binding models are in many cases
comparable in accuracy to ab initio calculations.

II. TIGHT-BINDING MODELS FOR SILICON

In the tight-binding molecular-dynamics (TBMD)
scheme, the Hamiltonian governing the atomic motions
for 1V„atoms is

The first term is the kinetic energy of the ions, the
second term is the electronic energy calculated by sum-
ming eigenvalues of filled states from a tight-binding
Hamiltonian HTz, and E„is a repulsive potential
representing the ion-ion repulsion and correcting for the
double counting of the electron-electron interaction of
the second term. Eo is a constant energy shift per atom.

In early approaches, Chadi used the minimal basis of s
and three p orbitals per silicon atom and enforced a
(1/d ) dependence of the tight-binding hopping matrix
elements with bond length d. The atomic energies E„
E, and strengths of the hopping matrix elements Vsso. ,
Vspo. , Vapo, and Vpp~ were inferred from fits to the sil-
icon band structure. The parameters of the repulsive pair
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potential were extracted by fitting to the crystal-silicon
lattice constant and bulk modulus. This approach was

very successful in dealing with small distortions of c-Si
and surface reconstructions on Si(100). By an alternative
method of fitting P(r;~) to local-density approximation
(LDA) calculations of the total energy of silicon' as a
function of bond length, this model provided accurate
anharmonic properties such as temperature-dependent
phonon frequency shifts and phonon linewidths, " and
thermal expansion of Si.'

While this approach is very successful in a variety of
applications, it is difFicult to perform molecular dynamics
with the slow 1/d scaling of TB matrix elements. The
values of the matrix elements are non-negligible near the
second-neighbor distances in silicon, yet incorporation of
neighbors other than the first-neighbor shell in c-Si would
lead to inaccuracies. This implies using a cutoff r, be-
tween the first- and second-neighbor distances, ' al-
though the values of the TB matrix elements h (r,, } and

P(r,") would be nonzero at this cutoff. This discontinuity
in the Hamiltonian at r, would be impractical for molec-
ular dynamics of general structural configurations.
Another difficulty with this approach is its transferability
to structural configurations that are very different from
diamond structure c-Si, especially the need to model the
phase diagram of silicon and defect energies in c-Si with
the same parameter set.

A very important development toward both of these
problems was made by Goodwin, Skinner, and Pettifor, '

who proposed short-range scaling functions
n

rp
h (r)=h (ro)

r

the condition that all crystalline structures of Si have
only nearest-neighbor interactions. When this model is
used for simulating a liquid a unique cutoff distance is re-

quired, which was found to be about 3.60 A—a value be-
tween the first- and second-neighbor distances of the dia-
mond structure. This choice of cutoff does not alter the
energy curve of diamond [Fig. 1(c) of Ref. 15]. However,
when we do use this cutoff distance of 3.60 A, notable
effects are found on the metallic structures which are
shifted to higher-energy values. The phase diagram [Fig.
1(c}of Ref. 15] becomes significantly poorer.

III. DEVELOPMENT
OF NE% TIGHT-BINDING MODEL
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Here, a denotes the four tight-binding overlaps. The
two-body energy is a sum of a functional f of the repul-
sive pair potential P(r, ), simila"r to expressions in the
embedded-atom approach and in recent TB models of
carbon, ' and is given by

In this paper we address the problem of model of
Goodwin, Skinner, and Pettifor by examining alternative
scaling forms that can be used with a single unique cutoff
in molecular dynamics that provides a good phase dia-
gram for silicon.

We have used the scaling form for the TB matriX ele-
ment
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Here h (r) represents the distance-dependent tight-
binding overlaps, with a denoting the four tight-binding
overlaps (sscr, spo, ppo, and ppn). The atomic interac-
tions are short ranged and decay more rapidly than sim-
ple exponentials. r, controls the range of the interac-
tions, and n, and m, the decay of the scaling forms. rp is
the nearest-neighbor separation in the equilibrium dia-
mond structure. Goodwin, Skinner, and Pettifor found
values of n =2 and m =4.54. The parameters of this
model were found' by fitting to the phase diagram of sil-
icon including energy as a function of bond length for di-
amond, and fcc structures from first-principles local-
density approximation (LDA} calculations.

The Goodwin, Skinner, and Pettifor' model repro-
duced the bulk phase energies of silicon [Fig. 1(b) of Ref.
15] when the TB parameters were restricted to the first-
neighbor shells of all the structures. ' However, it is im-
possible to choose a unique cutoff distance that satisfies

Our basic strategy was to start with the Goodwin,
Skinner, and Pettifor (GPS) tight-binding model and al-
low greater functional freedoin to provide a better fit to
the bulk silicon crystal structures and to model better de-
fect energies. For each set of tight-binding parameters
(h, n, , r, , and n) the energies of the bulk phases of sil-
icon were fitted with a nonlinear least-squares fitting rou-
tine to extract values for the two-body functional param-
eters (m, m„d„andC;). The resulting tight-binding
model was tested for elastic constants, phonon frequen-
cies, Gruniesen constants, and defect formation energies
(vacancy and interstitial energies}.

We then examined variations of the tight-binding pa-
rameter set h, n, , r, , and n. We first considered the
requirement that the s-wave function is shorter ranged
than the p-wave function, implying a successively increas-
ing range of the overlaps sscr, spa, ppo. , and ppm. We
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modeled this requirement by having a higher value of n,
and a lower value of r, for sso. and spa than the ppcr
and pp~ overlaps, which we took to have the same radial
functions.

We then varied by small amounts values for each of the
tight-binding overlap strengths h (ro) for the ssrr, spo,
and ppcr, and ppm overlaps and the s-p energy splitting
E,-E . Only a single parameter was changed at one time
and the fits were redone. If improvements were found,
were found, another value of the electronic tight-binding
parameter was adopted and the variation of the next pa-
rameter was considered. We found this strategy to be
especially important in improving defect energies and
maintaining the correct ordering of these defect energies.
The tight-binding model parameters for our best fit are
displayed in Table I, with the radial dependence of the
overlaps plotted in Fig. 1. The repulsive pair potential
P(r} and the embedding energy f (x} for our model are
plotted in Fig. 2. We found that maintaining the same
value of n (n =2}was necessary for physically reasonable
results.

In addition to the GSP functional form [Eqs. (4) and
(7)], we attempted a limited exploration of the large space
of functional forms possible for the tight-binding over-
laps. One such form enforced the condition that the spcr
and ppa interactions should not be infinitely strong at
short distances, but should saturate and approach con-
stants at short distances. We used simple algebraic func-
tions' that enforced this behavior instead of the (rolr)"
polynomial in the tight-binding overlaps. Such function-
al forms provided accurate phonon frequencies together
with a good fit of the phase diagram, but revealed nega-
tive or unphysically small Gruneisen parameters and
were consequently not considered for further work.

We note that a difFerent family of radially decaying
functions (of the form [I+exp(r r, }/p] ') has b—een

developed in a tight-binding model by Sawada. ' A
modified version of Sawada's method has also been pro-
posed by Kohyama. ' A related functional form has also
been employed by Mercer and Chou for tight-binding
models of Si and Ge.
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FIG. 1. Radial dependence of the tight-binding hopping rna-

trix elements as a function of separation, as described by Eq. (4).

TABLE I. Parameters for the silicon tight-binding model as
defined in Eqs. (4)-(7). ro =2.360352 A, n =2, E, = —5.25 eV,
E~ =1.20 eV, and Eo =8.739 3204 eV.

(a) Electronic parameters
$$ CT sPo. PPa
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5.0-
h (ro) (eV)
n,„a
r„a(A)

—2.038
9.5

3.4
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8.5
3.55

2.75
7.5
3.7

—1.075
7.5
3.7
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FIG. 2. (a) Radial dependence of the repulsive pair potential
P(r) as a function of separation r between atoms, as given by Eq.
(7). (b) The embedding energy function f(x) plotted as a func-
tion of x [Eq. (6)]. x is the sum of the pair potentials from the
neighbors of an atom [Eq. (5)].
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The best-fit tight-binding model of Table I provided
the bulk crystal structures of silicon (Fig. 3) which
displays very good agreement with the LDA calculations
for diamond and the metallic phase energies and bond
lengths. The bulk moduli of the metallic phases is also
reproduced very well. Although not shown in Fig. 3,
wurtzite is about 0.02 eV above the diamond energy.
Generally, the fit to the phase energies exceeds the quali-
ty of the fit from classical models.

In calculations of the phase diagram (Fig. 3) there is no
ambiguity in the number of neighbor shells to be included
as in the previous model' that used only the first-
neighbor shell. All neighbor shells up to a distance of
4.16 A were automatically included for the structural en-
ergies. As used in recent TB models of carbon' and for
the convenience of molecular dynamics, we require the
scaling function h (r) and potential P(r) to go smoothly
to zero at the designated cutoff distance r,„with a cubic
polynomial:

P(r) =bo+b t(r r t
)—+bz(r r t ) +b3(r—r i )—

for rt &r & r,„(8)
with similar expressions for the scaling functions h (r).
The four coefficients in (8) are determined by requiring
that P(r) go smoothly to zero at the cutofF distance r,

„

(4.16 A), and that the P(r} function in (8) smoothly join
the scaling form (7) at the distance r, (4.0 A). Alterna-
tivelp, a fixed truncation of the functions between 4.1 and
4.2 A produces similar results as using (8).

In addition to the range of structural geometries con-
tained in the bulk silicon crystal structures, it is necessary
to extensively test the tight-binding model for as many
physical quantities for which experimental or ab initio re-
sults are known, to ensure the transferability of this mod-
el to any general structural geometry. For this purpose
we have tested the tight-binding model for elastic con-
stants, phonon frequencies, and Gruniesen constants of
diamond silicon (Table II), and energies of defects in vari-
ous sized supercells (Table III), including comparisons

TABLE II. Values of the bulk modulus, elastic constants,
phonon frequencies, and Gruneisen parameters of c-Si calculat-
ed with the present tight-binding Si model (TB},local-density-
functional calculations (LDA), and the Stillinger-Weber Si po-
tential (SW), compared to experimental results (Expt).

TB LDA SW Expt.

B(10» erg/cm )

C» -C»(10» erg/cm')
C44(10» erg/cm')
C44(10» erg/cm')

8.76
9.39

19.85
8.90

9.20
9.80

11.10
8.50

10.14
7.50

5.64

9.78
10.12

7.96

vLTo(p) (THz)

vTA(x) (THz)

vTo(x) (THz)

+LQA(x) (THz)

21.50
5.59

20.04
14.08

15.16
4.45

13.48
12.16

17.83
5.96

15.53
4.49

13.90
12.32

ALTO(I )

7TA(X)

/TO(X)

YLOA(X)

0.81
—0.51

0.90
0.61

0.92
—1.50

1.34
0.92

0.80
—0.04

0.89
0.83

0.98
—1.40

1.50
0.90

TABLE III. Calculated formation energies for point defects
in c-Si with the present tight-binding model for 64- and 216-
atom supercells, compared with values from first-principles
local-density-approximation (LDA) results. The values in the
parentheses are formation energies of unrelaxed defects. All en-
ergies are in eV. T and H refer to the tetrahedral and hexagonal
interstitial. The split interstitial was along the 110axis.

Defect 64 atoms 216 atoms LDA

with LDA, experiment, and available results from the
Stillinger-Weber classical Si model. '

Tables II and III illustrate the strengths and possible
limitations of our present model. Elastic constants agree
very well with experimental values to within a 12% accu-
racy. The present model is a distinct improvement over
the Chadi model, which had soft elastic constants
(C»-Ct2=7. 1,C44=10. 19 and C44=6. 17, in units of
10"erg/cm3 for the Chadi model). Our value for the C44
elastic constant, including internal strain rearrangement,
is particularly notable.

A limitation on the present model is that the phonon
frequencies for the optic mode [LTO(I ) and TO(X)] are
35—45% higher than experimental values. This arises
from the steep slope of the two-body potential at the
equilibrium diamond bond length which is a measure of
the bond stretching force constant. The high value of
m =6.8755 in the two-body part leads to artificially high
optic mode frequencies. In contrast, the Chadi model
with m =2 has 16.95 THz for LTO(I') and the GSP
model with m =4.54 has 18.31 THz for LTO(l ), illus-
trating the trend with the m parameter.

It appears that globally modeling the energies of a wide
variety of stre. ctural geometries, with a range of bond

FIG. 3. Cohesive energy as a function of nearest-neighbor
distance for several bulk phases of Si. The points are the LDA
calculations (Ref. 10), and lines are from the present tight-
binding model.

Vacancy
T interstitial
H interstitial
Split interstitial

3.46(4.72)
3.61(4.12)
4.75(5.92)
3.52(4.24)

3.93(5.57)
4.42(4.91 )

5.13(6.36)
3.84(4.71)

3.6-4. 1

4.3-6.2
5.0-6.0

3.3
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lengths and coordinations, is not fully compatible with
accurately modeling some of the local properties of the
diamond silicon structure. We anticipate that the present
tight-binding model will not be used for calculations of
phonons for which several other suitable models such as
the Chadi model and Keating force-constant model ' are
available. Instead we anticipate using the present tight-
binding model for general molecular dynamics of silicon
for which several of the previous tight-binding models
were inadequate. As described in Sec. V, the melting
properties are not dependent on this stiff optic mode fre-
quency.

The acoustic-phonon branch is much better represent-
ed in the present model than the optic branch. The elas-
tic constants and bulk modulus are directly related to the
acoustic branch rather than the optic modes. The
Gruneisen parameters (Table II) are all systematically
smaller than experiment, but have the right relative mag-
nitudes and produce the negative Gruneisen parameter
for the TA(X) mode.

Important criteria in transferability of the tight bind-
ing models are the formation energies of vacancies and
interstitials (Table III). All the defect formation energies
require larger supercells, indicative of the long-range
structural relaxations involved. A particularly notable
feature is the prediction of LDA calculations that the
split interstitial defect is the lowest energy defect, a
feature reproduced by our model (for the N =216 atom
supercell). The split interstitial may be the most favored
native defect in Si, ' and consists of a pair of two bond-
ed silicon atoms, oriented along the 110 direction, occu-
pying a single lattice site. The bond lengths at the split
interstitial are substantially distorted from c-Si with ap-
proximately four bonds for the atoms of the pair (2.37,
2.40, 2.48, and 2.48 A) somewhat longer than the 2.36 A
bond length for the ideal diamond structure. The N =64
atom supercells appear poorly converged (Table III) due
to two sources of inaccuracy: (i) poor k-point sampling,
since we only use k =0 in the calculation of electronic en-
ergies; and (ii) the interaction between defect levels in the
finite-size periodic supercells. Both sources of inaccuracy
are reduced for larger cells. In fact, defect formation en-
ergies previously calculated with the 6SP model
showed little difference between 512- and 216-atom su-
percells, suggesting that the present 216-atom defect for-
mation energies should reasonably be converged.

The increasing energies of the vacancy, T interstitial
and H interstitial agrees well with the LDA values. The
vacancy energy shown in Table III includes a small
Jahn-Teller distortion that leads to pairing of atom pairs
around the vacancy, and an energy lowering of about
0.02 eV from the symmetrically relaxed vacancy struc-
ture. In all the interstitial structures, there is a range of
neighbor distances between 2.7 and 3.5 A, between the
first- and second-neighbor shells of diamond. Such neigh-
bor distances are present in the metallic phases indicating
an implicit relationship between the structures of the Si-
phase diagram and those at defects, and emphasizes the
importance of modeling the Si-phase diagram correctly.
For this tight-binding model, diamond structure has a
minimum indirect gap of 0.78 eV occurring between I

and L. The minimum of the conduction band occurs at
the L point, as is common in several tight-binding mod-
els. The direct gap at the zone center is 1.62 eV and is
much larger than the indirect gap. The conduction bands
are generally not well modeled by a superposition of
atomic states but are more free-electron-like. However,
the conduction-band properties or unfilled states are less
important for determining energies of bulk silicon struc-
tures.

V. MELTING OF SILICON
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~~ -4.2
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-4.4—

Liquid Q
Q

Crystalline

I

Q

-4.6
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Temperature (K)

FIG. 4. Total energy (per atom) as a function of temperature
for crystalline and liquid Si phases obtained by molecular dy-
namics with this tight-binding model. A 64-atom cell with
periodic boundary conditions was used.

An important comparison of the tight-binding model
with both experiment and ab initio calculations is then
melting of silicon. Accordingly, we performed constant-
volume and constant-temperature molecular-dynamics
simulations on a 64-atom silicon cell with periodic
boundary conditions (Fig. 4). The time step used was
1.07X10 ' s, and the density of the sample was set to
the experimental density at the triple point, i.e., 2.53
g/cm3 26, 27

The simulation was initiated in the diamond-Si struc-
ture with the temperature raised in steps of about 300 K.
At each temperature 1000 time steps are performed for
equilibration of the configuration, followed by another
2000 time steps for calculation of the average energies
and other statistical features of pair correlations and
bond-angle correlations.

Due to the finite size of the cell and the short simula-
tion time ( -3.2 ps), there is a substantial superheating of
the cell, and the crystal melts higher than the experimen-
tal temperature of 1685 K. Similarly, there is a substan-
tial undercooling of the liquid. The liquid configuration
at 2900 K was obtained on heating, whereas all the liquid
configurations below 2900 K were obtained by successive-
ly cooling the 2900 K liquid configuration.

The shape of the solid and liquid curves agree well with
those from other methods. From the energy gap be-
tween the two branches we observe a latent heat of about
0.4 eV that is close to the experimental value of 0.47 eV
at T=1685 K. From the slope of the total energy per
atom of c-Si as a function of temperature (Fig. 4) we find
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1 3k asa speci c ea'fic heat per atom that is approximate y
Deb ewould be expected for the classical limit above the e ye

temperature of Si (625 K).
The calculated radial distribution function g(r) for

liquid si icon ad 1' t 1740 K is compared with results from the
ab initio Car-Parrinello simulation in Fig. 5. To ensure
greater statistical accuracy, 20000 steps of equilibration
were performed at 2000 K, followed by 20000 equilibra-

t 1740 K and 1000 more steps over which
over 40time averaged g(r) and g3(e) were computed over

configurations for Figs. 5, 6, and 7. The position of the
first peak of g (r) (2.57 A) is slightly larger than the Car-
Parrinello result. The Car-Parrinello g(r} is shifted to-
ward smaller separation, partly because the liquid was at

density of 2.53 gem . Overall the TBMD g(r} is nar-
rower and larger in peak height than the Car-Parrinello
result. The larger number of neighbors at short separa-
tions (r &4.5 a.u. ) in Car-Parrinello is compensated or
by a larger number of neighbors in the TBMD for larger
separations (4.75 a.u. & r & 5.25 a.u.}on the higher side of
the first peak. The average nearest-neighbor distance in

the Car-Parrinello simulation, 2.50 A obtained by Vir-
kunen, Laasonen, and Nieminen, and the experimental
value of 2.50 A ' The average number of neighbors

' h' th fi t eak of g(r) is -6.47 for integration up
to 3.1 A, comparable to the Car-Parrinello resu t o
and the experimental value of 6.4. ' Notably the coor-

ber in our model and experiment is substan-
t' ll smaller than the 8.07 value predicted by t e
Stillinger-Weber (SW} potential, and the value of 7.1

1 7
from the GSP model for liquid Si.'

The bond-an le distribution using bond-length cutolfs
of 3.1 and 2.51 A is shown in Fig. 6, together with a com-
parison of Car-Parrinello results. For the bond-length
cutoff of 3.1 A, corresponding to the first minimum of
g(r), the bond-angle distribution shows a broad peak
around 90'-100' and a narrower peak at 50'-60', with
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Ref. 6.
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In both cases a cutoff of 3.1 A [corresponding to t e rs
minimum of g (r }]was used to define the bonds.
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very good agreement between the present TBMD and ab
initio results as illustrated in Fig. 6(a). This double-peak
feature arises from the contribution of the tetrahedrallike
bonding and the higher coordinated metallic bonding, re-
spectively. Using a shorter cutoff of rb -2.51 A reduces
the strength of the 50' —60' peak supporting this interpre-
tation of the 60' peak as arising from higher coordinated
atoms with longer bond lengths. In both TBMD and ab
initio results one is left with a broad feature peaking be-
tween 90' and 100', as shown in Fig. 6(b), where the
agreement between TBMD and ab initio methods also is
very good. Notably the SW potential' fails to predict the
second peak at 60'—a qualitatively different feature be-
tween classical simulations and the quantum-mechanical
simulations of TBMD and ab initio methods.

The time-averaged coordination counts for TBMD and
ab rnitio 'methods for liquid Si are illustrated in Fig. 7,
which shows a very good agreement for the distribution
of atoms with different coordinations in both methods.
The same cutoff bond length of 3.1 A was used in both
cases. TBMD provided an average coordination of 6.47
compared to 6.5 for ab initio.

The TBMD simulations also provide information on
the electronic properties for liquid Si (Fig. 8), a feature
not present in classical model simulations. The absence
of the gap in the electronic densities of states (Fig. 8), il-
lustrates that liquid silicon is metallic.

The good agreement with liquid-Si properties indicate
that the stiffer optic phonons do not play a crucial role in
liquid-Si properties. Instead, the liquid properties and
melting may depend more on the acoustic phonons, de-
fect formation energies, and energies for bulk Si crystal
structures.

cases examined (3~N~5) the TB model agrees well with
the lowest-energy configurations found from the ab initio
calculations. ' ' The cohesive energies are usually slight-

ly lower than the ab initio results.
For Siz, our TB model predicts a dimer with a bond

length 2.45 A and a cohesive energy 1.60 eV/atom. For
Si3, we found an isosceles triangle with a bond length 2.42
A, an apex angle of 74.7' (Fig. 9), and a cohesive energy
of 2.51 eV/atom to be the favored structure, in agree-
ment with ab initio results. The linear chain had higher
cohesive energy at 2.21 eV/atom. For Si4, the lowest-

energy configuration is a rhombus (Fig. 9) with four
bonds at 2.48 A, one bond at 2.56 A and a cohesive ener-

gy of 3.21 eV/atom. In contrast, the tetrahedron and tri-
gonal bipyramid had a lower cohesive energy of 2.83
eV/atom. For Si~ we find that the trigonal bipyramid
with cohesive energy 3.18 eV/atom to be favored, in
agreement with ab initio results. ' ' There are six bonds
with a bond length 2.48 A, whereas separations between
base atoms are 3.59 A, and those between the vertices are
2.74 A. The square pyramid (3.13 eV/atom), pentagon
(3.04 eV/atom), and tetrahedron (1.82 eV/atom) were
found to be higher-energy configurations.

A general result is that the bond lengths of the clusters
with the TB model are longer than those from ab initio
calculations. The lowest-energy structures from the TB
model agree well with the ab initio calculations, * ' sug-

VI. SILICON CLUSTERS

We have explored a limited number of small silicon
cluster configurations to assess the applicability of the
present TB model to silicon clusters. The small ¹ tom
silicon clusters are a particularly stringent test since
quantum-mechanical bonding effects dominate for N ~ 10
atoms. For ¹tom Si clusters (N ~ 5) we have examined
the lowest-energy configurations predicted by first-
principles quantum-chemical calculations. * ' In all
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-20 -15 -10 -5

E (ev)
0 5 10

FICx. 8. Electronic densities of states for liquid Si at T =1740
K for the present TBMD model.

FIG. 9. Lowest energy structures found for N-atom silicon
clusters for N =2, 3, 4, and 5. The figures were computer gen-
erated. Bond lengths and cohesive energies of these structures
are described in the text.
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gesting that our tight-binding model could be utilized for
further Si-cluster work. Simulated annealing of Si clusters
is also an aspect for further work.

UII. CONCLUSIONS

We have developed a transferable tight-binding model
for silicon that should be transferable to a wide range of
structural geometries. The model was developed by fits
to energies of the crystal structures of Si from first-
principles LDA calculations by fitting short-range func-
tions describing the tight-binding overlaps and repulsive
potential. DifFerent radial ranges are used for the sso,
spo, and ppo (or pptr)l interactions. The radial functions
in the tight-binding model smoothly go to zero, enabling
molecular-dynamics calculations to be performed without
ambiguities of cutouts present in earlier models. The en-

ergy of any structural configuration does not require a
truncation of the model to a nearest-neighbor shell, but
calculations over all neighbor pairs within the range of
the model is necessary.

This tight-binding model for silicon reproduces very
well the energies of different crystal structures for silicon,
the elastic constants, and the formation energies of va-
cancies and interstitials in diamond-silicon. In good
agreement with first-principles calculations, the model
predicts that the split interstitial is the lowest-energy de-
fect in crystalline silicon.

The melting of silicon has been simulated. There is

good agreement for the latent heat at melting with the ex-
periment value. The radial distribution function and the
bond-angle distribution for liquid Si compare very well

with ab initio Car-Parrinello simulations, including the
prediction of a double-peak structure for the bond-angle
distribution. Small Si clusters have been examined, and
the low-energy configurations of Si3, Si4, and Si5 agree
well with ab initio calculations.

An underlying assumption of the tight binding model

is the use of the minimal sp basis. The validity of this
assumption becomes weaker as we go down the group-IV
column of C, Si, Ge, and a-Sn, and the energy gap de-
creases. The sp basis set works very well for C, as illus-

trated by the very successful tight-binding models for C.
In going to Si and then to Ge, the higher d states do
come down in energy and lead to a small mixing into the
filled valence-band states. This d-state contribution may
be more important for the metallic higher coordinated
crystal structures. While the sp basis may work we11 in
practice for Si, it may be much less adequate for Ge and
certainly a-Sn. Investigation of d-state contributions is
clearly an aspect for further work.

We anticipate the tight-binding model to be easily used
in molecular-dynamics simulations, particularly for prob-
lems where electronic information is essential, including
properties of amorphous structures, epitaxial growth, and
surface diffusion.
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