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Quasidiffusion of phonons in Si

Sergei E. Esipov
Department ofPhysics, University of Illinois at Urbana C-hampaign, 1110West Green Street, Urbana, Illinois 61801

(Received 21 May 1993; revised manuscript received 19 August 1993)

%e show that frequency-down conversion and elastic scattering treated as quasidiffusion can explain

quantitatively the recent experimental results by Shields et al. and Monte Carlo simulations by Tamura.
The ballistic component is demonstrated to be negligible in forming the exponential decay of the phonon

signal observed experimentally. The decay is governed by the special bottleneck at some frequency co

which depends upon the boundary conditions and belongs to the quasidiffusive region of the phonon

spectrum. The bottleneck frequency separates the phonons which decay (~)8) and those which diff'use

to the detector (co (co).

We still lack a quantitative comparison between experi-
ment, simulations, and analytic work on phonon propa-
gation in semiconductors. This work is devoted to one of
the most interesting modes of propagation-
quasidiffusion —which it is necessary to understand for
applications, in particular for particle detectors.
Quasidiffusion is somewhat analogous to cosmic showers:
phonons scatter elastically and multiply by frequency-
down conversion. The cascade slows down with time and
therefore quickly enters the similarity stage which has
been studied by Kazakovtsev and Levinson. The
frequency-down conversion, or anharmonic decay, occurs
with the rate r, (co), and the elastic scattering with the
rate r, (co) (the latter is larger for Si). The similarity

solution implies that a characteristic frequency can be
found from ~, (to) = t which gives to(t ), and the space ex-

pansion is on the order of the lifetime diffusion length
l (t) -s I r, (co( t) )r, (co(t) ) ]'~ . For low-frequency pho-
nons the conventional approximation is ~, '(co) —to,
r, '(co)-co, and we get l(t) ti' . S-uch sublinear ex-

pansion was observed by Bron, Levinson, and O' Connor
in heavily doped A1203. The phonon signal had a
diffusive shape with a maximum at some intermediate
time.

However, attempts to find quasidiffusion in classic

semiconductors, for example in Si, have met with

significant diSculties. Liquid He, if it is present close to
the excitation point, quickly absorbs most of the phonons
and the time trace consists of ballistic phonons which es-

caped at the very beginning of the cascade. If liquid He
is eliminated from the vicinity of the excitation point by
means of a special seal then the input power should be

quite low in order not to excite electron-hole droplets; ''

at these powers the phono+ signal is weak and data accu-
rnulation is required. The phonon signal has its rnax-

imum at about the TA-phonon ballistic time, tb, and is

followed by an exponential tail with the relaxation con-
stant 3.6tb for the sample size used in Refs. 6 and 8. The
average travel duration is then approximately 4.6tb, and

it has been unclear to what extent quasidiffusion is appli-
cable. Monte Carlo (MC) simulations have been done by
Tamura, which showed the exponential behavior and al-

lowed a fit of the relaxation constant 3.6tb under specific
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Here D is the diffusivity.
Let us consider the elastic scattering and mode conver-

sion. In Si elastic-scattering conversion between LA
and TA phonons distributes the phon ons among
branches in accordance with their density of states
(0.531:0.376:0.093 for slow, fast transverse and longitu-
dinal phonons). Given the value of r, '(to)
=2.43 X 10 (co/2m. ) s' (Ref. 11) and the value of
the anharmonic decay rate r, L (co) = 1.2 —1.8
X 10 5 (cv/2~) s (Refs. 9 and 12—14),

choice of decay parameters ' when the decay of both
transverse modes is not allowed.

This work is devoted to analytic explanation of the sig-
nal shape. We first discuss the diffusion approximation
for a finite sample. After that it is shown that a one-
branch model of the phonon spectrum is effective if the
elastic scattering is quick enough. The kinetic equation
for this model leads to an integral equation for the first
eigenfunction. The relaxation constant is the smallest ei-

genvalue and can be found analytically.
At low enough frequencies phonons can travel ballisti-

cally through the sample. Such phonons are not de-

scribed within the diffusion approximation and require
special care. The ballistic phonons escape from the sam-

ple quickly, in time tb. Since the signal relaxation is pro-
longed, the bottleneck of the process is not due to the es-

cape of ballistic phonons. In order to find the bottleneck
we need to consider higher energies, where escape be-
comes comparable to the anharmonic decay. In this case,
the frequency appears to be high enough to justify the
diffusion approximation.

When particles diffuse in a given region with absorbing
boundaries, their concentration at late times decrease ex-

ponentially. For the case of a sphere of radius L the re-
laxation constant is

rL' = tt D /I.

and for a rectangular parallelepiped with half-sides L„,
L, L,
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r, F'T(co) =0.66X 10 (co/2m) s (Refs. 12—14) with the
mode-averaged rate 0.41 X 10 (co/2m ) s, one can
check that for phonons with frequency co/2' & 2.5 THz,
the elastic mode conversion dominates. This implies that
equilibration between modes proceeds faster than
frequency-down conversion, and that the one-effective-
branch model is a reasonable approximation. However,
the precision of this approximation may be insufficient at
some level. We note that the direction of motion and
mode of a phonon before and after the isotope scattering
are correlated, " and the process becomes non-
Markovian. Three distinct phonon modes have to be
considered and the anisotropy of the anharmonic de-
cay' ' is to be taken into account. Thus the simulation
of the full Boltzmann equation can no longer be avoided.
Note that all the mentioned complications are controlled
by the same paramener sr, /L and should be taken into
account simultaneously.

Summarizing what has been written, we arrive at the
kinetic equation (cf. Ref. 3}

D(co)V' —+a 1
N(co, r, t )

c)t r, (co)

= f dco'p(co')N(co, r, t)P(co'~co), (3)

1
N, (co, t)

TL co

=f dco'p(co')N, (co, t)P(co'~co) . (5)

It is now easy to get the value of the phonon signal at
late times. We shall give the formulas for the case of
sphere (1); the obvious modifications are to be made in
other geometries. The signal

S(t)= f dcop(co)coN, (co, t)rL '(co) (6)
0

has the same exponential time dependence as the slowest—f /todecay of NI (co, t ), i.e., e

where D(co)=((sn) )r, (co) is the averaged diffusivity,
P(co~co') describes averaged anharmonic decay distribu-
tion, which is normalized as

f dco p(co )co P(co~co ) —co/r~(co) . (4)
0

p(co) is the combined density of states, and ~, (co) is the
mode-averaged decay rate. The diffusivity is diagonal (we
assume the symmetry of a cubic crystal} and is calculated
with the help of mode- and angle-averaged square projec-
tion of the phonon group velocity, n parallel to one of the
main axes is the vector. For Si the numerical value of
((sn) ) can be obtained by using Every formulas' and is

equal to ((sn) ) =1.16X10"cm /s2.
Equation (3) is considered in a finite sample with the

boundary condition N(co, L, t)=0 meaning that phonons
that have escaped from the sample into liquid He cannot
return. The longest relaxation is experienced by the first
Fourier mode [r 'sin(n. r/L) in the case of a sphere], and
its amplitude N, (co, t ) obeys the integral equation

=min
CO

1 1

r, (co) rt (co)
(7)

The two terms in (7) are proportional to co and co, re-

spectively, and their sum has a minimum at

~icoo
& ((sn) ),( ),(co )

L 2 (8)

this expression is independent upon the arbitrary fre-
quency coo. The numerical factor P& is equal to ( —', )'

For the slowest rate to ' we get

to 1 r~ (coo) L sF
4 &/9 1/9

P 10/9 5(~ ) ( (sn)2 )5/9 (9)

with P=(P, +P, ) '=1.9877, and srT is the velocity of
the prompt phonons. A formula related to (9} namely,
to/tb-(~, L/r, s)'/ can be found in Ref. 3. As expect-
ed, the bottleneck is situated quite high on the frequency
scale, higher than the mean frequency of the detected
phonons.

Let us discuss the validity of Eq. (9). We have not
specified the form of the scattering distribution
P(co~co' ), which may be of importance. Indeed, if the
majority of phonons down-convert missing the frequency
co, the relaxation constant to would be smaller. Such a
phenomenon may occur if the source in Eq. (3) is mono-
chromatic and the function P(co +co') is —strongly peaked
at, say, co'=co/2. It is convenient to choose the parame-
ter P entering (9} to be dependent upon the selected form
of P(co~co') and therefore upon the source frequency co'.
To investigate this dependence we solved Eq. (5) numeri-
cally and investigated the "apparent" value of P as mea-
sured over experimentally accessible times of order of 1
—2to. We found that while the 5-functional P(co~co' )

indeed results in oscillations of P with the logarithm of
source frequency (period is ln2, and 2 &P &4), the other
more realistic profiles of P(co~co') -co'"(co—co')",
2 n&&8, provide less sensitive values of P. We think
that the special computed profile by Tamura should also
belong to this broad class. To conclude, we do not expect
an error of more than 5% comparing the simple formula
(9) and the measured "apparent" relaxation constant.
This precision is comparable with the experimental error
reported in Refs. 6 and 8.

Tamura has compared our Eq. (9) with the special
one-branch MC simulations ' where the Debye sound
velocity was used and found that for a 0.55-cm spherical
sample and 0. 12X10 (co/2ir) s effective decay rate
Eq. (9) gives to =3.01 t&, while the MC result is to =3. 1

tb. If there is indeed a discrepancy, then in addition to
the above-mentioned influence of the P(co~co') form fac-
tor and correlations in elastic scattering one may attri-
bute it to the fact that Eq. (3) possesses a whole set of
time-dependent relaxation modes among which (7) is the
slowest. However, the mode spectrum is continuous
and we deal with an integral of the type

f dco exp[ (co +co )t ], which g—ives a power-law prefac-

tor -t
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FIG. 2. The bottleneck frequences for the two curves shown
in Fig. 1. For the notations and the parameters see Fig. 1.

FIG. 1. Dependence of the relaxation constant to in units of
tt, upon the strength of the mode-averaged anharmonic decay
rate. Curve (a) is computed using Eqs. (2) and (7), the extra fac-
tor 1.41, and the parameters given in the text for the experimen-
tal sample (Ref. 6). The experimental value of to and the corre-
sponding estimates for the decay rate are depicted by the rec-
tangle to show the experimental error. Curve (b) is computed
using Eq. (1) for a sphere of radius 0.55 cm to make the compar-
ison with MC simulations. Circles are the MC results by Tamu-
ra (Refs. 9 and 10) for the branch-averaged model, and the tri-
angle corresponds to three branches with angle-averaged anhar-
monic decay (Refs. 8—10).

Having established an agreement between analytical
and numerical treatments we now return to the experi-
ment. The sample used in Refs. 6 and 8 is a paralleli-
piped with dimensions 0.55X0.6X1.0 (in cm), one side
of which (0.6X1.0 side) was sealed from liquid He. If
the entire side had been sealed we might have used Eq.
(2) with parameters L„=0.55 cm, L =0.3 cm, L, =0.5

cm. However, the seal had a circular shape with diame-
ter of 0.3 cm and was attached to the center of the sample
side. ' We have solved the model diffusion problem with

such a boundary condition and found that the decay rate
(2) acquires an additional factor of 1.41. We can see in

Fig. 1 that the reported decay rates are not in accord
with experiment, and we would rather suggest the value
of (0.036+0.01)X10 (co/2n)' s as an effective decay
rate. Figure 2 shows the relevant bottleneck frequences.
One may see that the frequencies are high enough to
question the low-frequency approximation. We note that
in addition the phonon spectrum at 2 THz may deviate
by more than 25% from the low-frequency linear disper-
sion. ' Apparently, to improve significantly the precision
of the result (9) one has to take into account many fac-
tors. For example, Tamura has found that including the
three phonon branches while keeping the isotropic ap-
proximation for the anharmonic decay may give a change

of 20%, ' see Fig. 1. From the experimental point of
view the bottleneck-frequency co dependence (8) upon the
size of the sample co-L provides some opportunity
to access the effective decay rates at different frequences,
and measure corrections to ~, '-cu . To give an extreme
example, we note that if, say, this fifth power is to be re-
placed by the fourth, co, there would be no size depen-
dence of toltb, such a regime has been suggested for
GaAs, ' where mode conversion is slow.

To conclude, we have found a quantitative agreement
between the one-branch quasidiffusion model by Kaza-
kovtsev and Levinson as applied to a finite-geometry
boundary-value problem and MC simulations of the same
process. The geometry of the experiment is important
and can be used to check the model. To fit the relaxation
constant 3.6th we have to use the anharmonic decay rate
(0.036+0.01)X 10 (co/2m. ) s, which is three times less
than the value used by Tamura, ' and ten times less
than the value by Berke, Mayer, and Wenner. ' ' Along
with the mentioned factors which can inhuence this esti-
mate, one has to take into account finite reflectivity of the
Si-He interface.

The general picture of three frequency regions of de-

caying, diffusing, and ballistically moving phonons, dis-
cussed by Maris' applies to the theory presented. It ap-
pears that the slowest phonon path in phase space does
not go through the very last region of ballistic motion.
This allows us to show that the tail of the phonon signal
is due to quasidiffusive phonons.
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