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The fitting of an idempotent density matrix to x-ray structure factors is discussed. If the density
matrix is identified with a single Slater determinant of orbitals, then a model wave function can
be recovered, enabling the computation of two-electron properties as well as the usual one-electron
properties derived from the electron density. Hence this approach is potentially superior to the usual
multipole expansion used in charge-density analysis, although the current formalisms are only useful
for molecular crystals of very small molecules. A procedure is described, and applications to one
theoretical example (methylamine) and one experimental example (formamide) are presented.

I. INTRODUCTION pj(rj) = pj,HF(rj) + ) P~imRj~(rj)Yim(rj).

The determination of charge distributions &om scat-
tering experiments on crystals is a growing area of
research. i s Progress has been made in elastic x-ray scat-
tering, which yields total electron densities, and in polar-
ized neutron scattering for spin densities. Developments
in inelastic and Compton scattering have led to determi-
nations of momentum densities. All of these techniques
can in principle be used to find the electron density p(r).
Most methods for analyzing such experiments involve fit-
ting a parametrized model density; if this model is de-
rived &om a model wave function such as a Slater deter-
minant of linear combination of atomic orbitals (LCAO)
molecular orbitals (MO's), the process also gives an esti-
mate of the system's wave function, making possible the
computation of many-electron properties. The work de-
scribed below concentrates on determining approximate
(molecular) wave functions using elastic x-ray scatter-
ing experiments on molecular crystals, although the tech-
nique presented may be more widely applicable.

X-ray scattering is commonly analyzed in terms of the
Bragg structure factor F(s), the Fourier transform of
p(r). A parametrized model of p(r) is chosen, and the
parameters are 6tted to the experimental data by mini-
mizing difFerences between the observed structure factors
and those calculated &om the model. The so-called "mul-
tipole model" ' of a charge distribution has come to be
widely adopted. Two types of multipole model are in
common use, which we might call "deformation models"
and "valence-shell models. " Both share the philosophy
of expanding the density as a sum of "pseudoatomic, "
nuclear-centered contributions: p(r) = P.pj(r). In the
first of these, only the deformation density is described
by a multipole expansion:

Here p~ HF(rj) is the spherically averaged density from
a Hartree-Fock (HF) calculation on the jth atom, Rj& is

a radial function, Yi is a spherical harmonic, and the
multipole populations P~~ are adjustable parameters.
In the second scheme, HF core and valence shell popula-
tions are also adjustable:

pj(r) = Pjcpjc(rj) + K& Pjvpjv(icjrj)

+) K~ P~tmRst(r~ rj)Y(m(r, ). (2)

p(r) = N fV'4' drr drr. . . drrr

In either model, the basis function exponents may be
adjusted by varying the ~'. ,K," parameters in addition to
the multipole populations.

Equations (1) and (2) provide compact descriptions of
p(r), in which the numbers of adjustable parameters are
suKciently small that they can be 6tted to the results
of an elastic x-ray scattering experiment. Experimental
charge densities determined by multipole re6nement can
be in very good agreement with theory, where such com-
parisons are possible. The results of such studies have
been applied in modeling intermolecular interactions
and have helped to elucidate the nature of hydrogen
bonding.

Although an associated wave function is not obtained
in the course of fitting the multipole model, it is always
possible in principle to 6nd a wave function 4 that gives
rise to the 6tted density through
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That is to say, any density is N representable. ' How-

ever, in general many wave functions can be constructed
for a given p(r), so the choice of a suitable wave function
would require further work, over and above the fitting
of the density parameters. One approach to doing this

would be to try to find a wave function which (say) min-
imized the total energy. A more direct approach than
trying to recover a wave function from a multipole model
density such as (I) or (2) is to use a density based upon a
model wave function and to determine the wave function
parameters by a fit to the x-ray data. Of course, since
many difFerent functions 4' may give rise to the same p
via (3), we must choose our model wave function care-
fully: if the set of models contains more than one wave
function corresponding to a given density, we may not
be able to determine the parameters uniquely by a fit to
the data. In practice, we restrict the wave function to be
a Slater determinant of MO's which are linear combina-
tions of a fixed basis set. This will certainly remove any
ambiguity if the products of basis functions are linearly
independent, 22 but even if they are not, imposition of
an idempotency constraint on the density matrix should
lead to a unique fit, as mentioned below.

There are other reasons for preferring model densities
derived from wave functions. It is well known that the
population parameters of multipole models can correlate
strongly with other parameters in the total scattering
model, such as nuclear positions, thermal motion pa-
rameters, and basis function exponents. In particular,
a correlation between anisotropic thermal parameters )9
and multipoles on the same nucleus probably ultimately
limits the accuracy with which the charge density and
thermal motion can be deconvoluted. It seems reason-
able to expect that this problem will be reduced by the
use of two-center products to describe the density.

Here we consider only molecular crystals, and we as-
sume that an expansion of the wave function in Bloch-
type states is unnecessary, i.e., the (molecular) states are
genuinely localized. However, thermal averaging causes
electron distributions &om (solid-state) x-ray diffrac-
tion to differ fundamentally from the Born-Oppenheimer
(BO) p(r) of a &ee molecule. The elastic scattering in-

tensity is given by

~.i~iic(s, &)

2

= ) W (T) J X'(4))F(s, 4i)X (Q)44), (4)

where W (T) is a Boltzmann-type weight for the crystal
normal mode X (Q) at temperature T, Q is the nuclear
configuration, and F(s, Q) is the structure factor. The
charge distribution obtained &om an analysis of (4) thus
refers to an ensemble of vibronic states and p = p(r, T).
As the temperature is lowered, successive p(r, T) con-
verge towards the ground vibronic state average. Al-
though this is still not identical to the BO p(r), it is
widely ass»med that this ensemble density contains the
same pertinent chemical information.

If we model the wave function of the system as an
LCAO Slater determinant, then the density is given by

K

p(r) = ).P' &*'(r) & '(r) (5)

where the y's are the atomic orbital basis functions and
P is known as the density matrix. Furthermore, a neces-
sary and suKcient condition for a density in the form of
(5) to be derivable &om such a Slater determinant is that
P2 = P: the matrix P is then said to be idempotent. ~

(If the basis functions are not orthogonal, this condition
is modified to include the overlap matrix. ) The eigen-
vectors of P, which have eigenvalues of 1 or 0, are the
MO coefficients of sets of occupied and virtual orbitals,
respectively.

So by fitting a model of the form (5) and imposing
idempotency as a constraint, we not only obtain a den-
sity, but also an approximate wave function, with which
we can calculate any desired property. Only a limited
number of interesting properties can be computed &om

p(r) alone —one-electron properties, such as molecular
multipole moments, the electric field, electrostatic poten-
tial, and v2p.

In the absence of the idempotency constraint on P,
model (5) becomes a general expression for p(r) ex-
panded in one and two-center products of basis func-
tions. Various early attempts to determine charge distri-
butions from x-ray structure factors employed this type
of parametrization. These studies encountered prob-
lerns with linear dependence of the basis function prod-
ucts. However, as pointed out by Clinton et al. , the
imposition of idempotency as a constraint considerably
reduces the number of parameters to be determined and
should thus reduce or even eliminate this problem. Ac-
cording to Levy and Goldstein, z2 even in the presence
of linear dependence in the basis set products (y;y~} a
unique Slater determinant can be found if the constraint
is imposed, provided that the number of linearly inde-
pendent products is sufBciently large.

The fitting procedure involves minimizing the average
squared error between the N g, observed and calculated
structure factors

).~.(IF.~.(s) I
—klF-i. (s) I)'

obs

subject to the idempotency constraint. The m, are
weighting factors and k is a scale factor (although it is the
(F )„}which are not on an absolute scale, crystallogra-
phers conventionally scale the (F,~),}).Two approaches
can be distinguished. We might try to impose the con-
straint analytically, for example, by using Lagrange rnul-

tipliers; or we might attempt to construct idempotent
density matrices in the vicinity of some current guess for
P and iteratively choose those with lower values of y
until a minimum is found. The first approach leads to
a pseudoeigenvalue problem of the HF type, except that

is minimized in place of the energy; 3 as in the HP
method, the solution of this problem will be an iterative
procedure. The second approach is the one we adopt
here.

One of the simplest schemes for fitting an idempotent
P to experimental data has been reported by Pecora.
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This involves making changes in the density-matrix el-

ements based on the gradient of y2 and then restor-
ing the matrix to idempotency by an iterative technique
due to McWeeny. Successful applications were made
to some model problems, and to positron-annihilation
data for a Cu-Ge alloy. Clinton, Frishberg, Massa, and
Oldfield have developed a procedure for fitting an idem-
potent density matrix to elastic x-ray scattering data,
with a subsequent experimental application to beryllium
metal. 2s Aieksandrov, Tsirelson, Reznik, and Ozerov2s

have recently presented a variation on this scheme and
applied it to diamond and silicon. To date, we are un-
aware of any application of these techniques to x-ray scat-
tering from a molecular crystal.

In this paper we describe a scheme related to that of
Pecora, and apply it to fit idempotent density matrices to

x-ray structure factors. Two examples are presented: in
the first, the structure factors are computed from an ab
initio wave function for methylamine; the second uses ex-
perimental low temperature data for the molecular crys-
tal formamide.

II. METHOD

Our model wave function is a single LCAO MO Slater
determinant; hence the molecular density is given by (5),
where P is idempotent. %e consider a crystal with one
closed-shell molecule in an asymmetric unit and (Z —1)
symmetry-related molecules in the remainder of the unit
cell. Such a crystal scatters x rays elastically according
to the structure factor

(7)

where T,~~ is the temperature factor for the ijth basis
function product in the kth molecule y;yz and R;~g lo-

cates this product in the unit cell. [If the integral in (7)
refers to an origin at the midpoint of the two basis func-

tion centers, then R;~~ is the position of this point in an
appropriate Cartesian system referred to the unit cell.]
Formulas for the evaluation of the two-center integrals

0;~g over Gaussian-type basis functions are reported by
Stewart. 2 . For one-center products, the temperature
factor is that of the nucleus on which the basis func-

tions are centered. The treatment of temperature factors
for two-center products is more arbitrary; in this work,
we use the mean of the factors for the two nuclei, as jus-
tified for rigid-body molecular motion by Stewart. 2 An

alternative procedure based on the translation-libration
description of rigid molecular motion has been described
by Stevens, Rys, and Coppens.

The squared error (6) is to be minimized subject to
the constraint of idempotency, which takes the form

PSP = 2P,

where S is the basis function overlap matrix. (The fac-
tor of 2 arises from assuming doubly occupied MO's. )
The number of independent density-matrix elements is

p = N(K —N), where N is the number of (doubly) occu-
pied MO's and K is the number of basis functions. For
a unique fit, p must be less than or equal to N~b, .

We take as a starting point the density matrix from an
ab initio self-consistent field calculation, using nuclear co-
ordinates which are assumed known, e.g. , from a neutron
diffraction experiment. Ideally, the temperature factors
will also be predetermined in a neutron diKraction exper-
iment and fixed during the density-matrix refinement.

The optimization strategy proceeds as follows: (i)

Make a small, random perturbation to P, to get P' (ii).
Make P' idempotent. (iii) Compute y2(P') and decide
whether to adopt P' as current best fit density matrix.
(iv) Iterate (back to step 1) until y2 is minimized (P is
converged).

In step (i), random numbers uniformly distributed be-
tween —b and +b are added to each element P;~ of
P, where b is a parameter gradually reduced in size
during refinement. Typical initial and final values are
0.05 and 0.0005, respectively. Step (ii) uses McWeeny's
procedure. Beginning with a non-idempotent matrix P'
(= Po), a sequence of matrices is generated according to

P„=—P„SP„——P„SP„SP„.3 12" " 2" (8)

In the Appendix, we show that this sequence converges to
the idempotent matrix nearest to P', if b is small enough.
In practice, Eq. (8) is iterated until the elements of the
matrix

P„SP„—2P„

Prob = exp( —[y (P') —y (P)]/T j. (10)

At the beginning of refinement, T is chosen so that in-

are all less than some specified cutoH value Pq ~ (0.001
was used).

In step (iii), y2(P') is computed from Eqs. (6) and
(7). This is the rate-determining step, since it involves
a sum over hundreds or thousands of observations. If
y (P') ( g (P), then P' is adopted as the new P If.
y (P') ) y (P), then P' is either rejected ("direct de-
scent optimization") or adopted with some temperature-
dependent probability ("simulated annealing" ) given by
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creases in y are accepted with high probability. T is
lowered during refinement, so that finally only decreases
in y are accepted, leading to minimization. For either
method, the criterion for convergence was that none of
the last Q density matrices generated which gave lower

values should differ &om the current matrix in any
element by more than 0.001 (values of Q varied between
10 and 50).

After choosing a basis set, the obvious starting guess
for P is the ground state density matrix obtained &om
a molecular HF calculation. In fact, only such starting
guesses were successful in the two examples presented
below. Cruder alternatives were tried, including block-
diagonal matrices constructed from the density matrices
of the &ee atoms, but these proved to be so far &om
idempotency that the McWeeny procedure diverged.

The fitted density can be constrained to have the ap-
propriate symmetry by choosing symmetry adapted ba-
sis functions. The basis functions should be symmetry
adapted to reBect the site symmetry of the molecule in
its crystalline environment. Neither system considered
below has nontrivial symmetry elements.

Since our optimization procedure uses no gradient in-
formation it is rather slow —typically tens of thousands
of idempotent P must be sampled. Providing that this
is computationally feasible for a given problem, this ap-
proach has certain advantages. Because of its simplicity
it is easily extended to optimize model parameters other
than the P;~, for example, the temperature factors and
basis function exponents.

III. APPLICATIONS

A. Methylamine

To test the procedure, a theoretical study was first car-
ried out on the molecular crystal methylamine (CHsNH2, '

Z=8; space group D2i&~ —Pcab) Ahypothe. tical crys-
talline density was used, in which each molecule was
assigned a density taken from a 6-311G SDCI (singles
and doubles configuration interaction) ab initio calcu-
lation with GAUSSIAN90. The &actional coordinates
and unit cell were taken &om the experimental x-ray
study of Atoji and Lipscomb. Structure factors were
computed with Eq. (7), ignoring thermal motion, i.e.,
the T,~I, 's were all set to unity. These are then to be
treated as the (F b, j in (6). Two sets of data were
used in the refinements: (i) 221 structure factors, ap-
plying sin(8)/A & 0.5, IF b, I

) 1 and omitting F(000),
and (ii) 845 structure factors, applying sin(8)/A & 0.75,
IF~b, I

) 0.1 and omitting F(000).
Data set (i) might be typical of a routine experimental

data collection, with a relatively low sin(8)/A cutofF, and
with weak re8ections likely to be omitted in the refine-
ment. Data set (ii) is more typical of a charge-density
quality data set, although the sin(8)/A cutoff should be
around 1.0 or better for accurate work.

The basis set used for the fit was STO-3G. With 15
basis functions and 9 doubly occupied MO's, this gives 54
independent density-matrix elements. So even with data

set (i) the ratio observations:parameters is greater than
4, and a unique fitted density matrix should be obtained.
The starting guess density matrix was taken &om an HF
STO-3G calculation.

We first consider the results of direct descent refine-
ment. Approximately 15000 new idempotent density
matrices were considered during the optimization, which
used b values ranging &om 0.025 to 0.003; more than
two-thirds were generated with this smallest b. With
the largest value of b, typically five iterations of Eq. (8)
were needed to restore idempotency to within the spec-
ified tolerance (Pi i = 0.001), whereas one iteration was
sufficient with the smallest b value.

Table I summarizes the values of y2 and the agreement
factor, defined as

).IF.b. (s) I

TABLE I. Direct descent re6nement for CH3NHq.

x'
R

Hartree-Fock
STO-3G

0.215
0.033

Density-matrix
re6nement, STO-3G

Data set (i) Data set (ii) Data set (ii)
0.044 0.0202 0.0026
0.0151 0.0146 0.0104

No idempotency constraint.

The scale factor k is unity in this example, since both
(F b, ) and (F, i,) are on an absolute scale. Compared
to structure factors computed from the relativistic HF
(RHF) Slater-type orbital (STO)-3G density matrix, a
fivefold improvement in y2 is obtained when a density
matrix is fitted to data set (i). The agreement factor also
shows a significant improvement. Figures 1(a)—1(c) are
molecular density difference maps in a plane containing
Nl, t 1 and IIl. Figure 1(a) shows the difference be-
tween the RHF STO-3G density and the exact (6-311G
SDCI) density. Figures 1(b) and 1(c) show how this dif-
ference becomes smaller as the STO-3G density is fitted
to the 6-311G SDCI density. The more extensive data set
(ii) gives the smallest values of y2, R, and the fiattest dif-
ference map. The inclusion of higher-angle scattering in
data set (ii) means that a more realistic representation of
the core electron density can be extracted from the data.
This corresponds more closely to the representation built
into the basis set, so a better fit is obtained.

The Laplacian V'2 p(r) contains information about
where charge is concentrated and depleted. Figures
2(a)—2(c) are Laplacian maps for the exact, RHF STO-
3G and fitted [data set (ii)) densities, in the same plane
as Fig. 1. It is evident that the RHF STO-3G and exact
Laplacians differ considerably and not clear that the fit-
ted STO-3G Laplacian represents an improvement. This
is not surprising, given the well-known limitations of the
minimal basis set.

A critical point (CP) analysis of p(r) (Ref. 31) is a
quantitative tool for comparing the fitted and exact den-
sities. Table II compares several properties evaluated
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at the bond critical points (BCP's): the points where
7'p(r) = 0. The last column of Table II gives the dis-
tance (in bohrs) from the BCP positions in the 6-311G
SDCI density, to the BCP positions in the various STO-
3G densities. The fitting procedure moves all the STO-
3G BCP positions towards the exact ones, with data set
(ii) giving the best agreement. A similar improvement is

seen in the CP density values p„with one exception in
the bond C1-H5. All of the CP Laplacian values V2p,
without exception, are taken further from the exact val-
ues by the fitting procedure. This may be because the
RHF STO-3G density optimizes the total energy, which
depends on the second derivative of the wave function;
the fitted density minimizes y2, which depends only on
the wave function itself.

A direct descent refinement was carried out with Pt ~

set to a large positive number (effectively, no idempo-
tency or normalization constraint). This of course pro-
duced a better fit (in the sense of lower R and y2; see
Table I), but a population analysis of the fitted density
matrix gave only 17.36 electrons instead of the correct
18. Since such fits are neither normalized nor idempo-
tent they are of little interest, except perhaps to indicate
the best possible fit for a given basis set.

Refinements were also carried out with the simulated
annealing method of optimization. Some ten runs all
gave di8'erent fitted density matrices, with final values
of R and y2 which were higher than the direct descent
optimization. So although the technique finds additional
local minima, the lowest minimum is obtained by de-
scending directly Rom the RHF starting guess, in this
particular example.

B. Formamide

/
I 'I

m 1 il i

(c)

Oo

The experimental study di8'ers &om the first in that
the true p(r) is unknown. However, it is often as-
sumed that the electron distribution from a large ba-
sis set RHF calculation on a single molecule (with the
crystalline geometry) gives an adequate estimate of the
true p(r). Thus we might use such a density as a bench-
mark for diferent refinement models. An experimental
charge-density study of formamide has been carried out
by Stevens, 2 although he used only monopole functions
on each nucleus to describe the density. Here we will
compare the results of multipole refinement and density
matrix refinement in some detail.

The statistics R and y alone are insufBcient for com-
paring models with diferent numbers of variables 1V

so we will also use the goodness of fit:

+obs +var

I

I

/N1'r

FIG. 1. Molecular difference densities for CH3NHq. (a)
HF/6-311G SDCI p(r), HF/STO-3G p(r). (b) HF/6-311G
SDCI p(r), fit (i)/STO-3G p(r). (c) HF/6-311G SDCI p(r),
fit (ii)/STO-3G p(r).

For the density-matrix refinements, the contribution of
the density matrix elements to %, is taken as K(N K). —

The collection and multipole analysis of the low-
temperature experimental data for formamide will be
described elsewhere. A multipole refinement of the
data with LsMQL, s4 using a model with 88 variables (no
variation of K' and ic" variables) resulted in R=0.0304,
y =3.061, and S = 1.791.

To investigate the eKect of basis set size on the qual-
ity of ab initio structure factors, three sets (STO-SG,
6-31G, and 6-31G**)of structure factors were computed
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TABLE II. CH3NH2 bond critical point analysis.

Bond
C1-N1
N1-H1
N1-H2
C1-H3
C1-H4
C1-H5

CI
0.229
0.312
0.321
0.245
0.267
0.278

pc
(e bohr )
HF Fit 1

0.242 0.227
0.329 0.309
0.338 0.305
0.254 0.238
0.271 0.261
0.279 0.269

Fit 2
0.229
0.305
0.307
0.244
0.266
0.275

CI
-0.41
-1.07
-1.11
-0.65
-0.78
-0.86

Q2

(e bohr )
HF Fit 1

-0.44 -0.29
-1.19 -0.88
-1.21 -0.60
-0.62 -0.42
-0.71 -0.56
-0.75 -0.58

Fit 2
-0.30
-0.84
-0.65
-0.48
-0.61
-0.65

Fit 2

0.04
0.02
0.02
0.03
0.04
0.05

HF
0.08
0.04
0.04
0.05
0.06
0.06

RCP(HF/CI)-RCP
(bohr)

Fit 1
0.06
0.03
0.02
0.03
0.05
0.05

for the same 1926 refiections used in the experimental
refinement. These were thermally "smeared" with the
temperature factors &om the multipole refinement, so a
direct comparison could be made between the experiment
and theory. The scale factor for the (E, i,) was chosen
to minimize y, i.e., it was found &om

) io(s)l+ b (s)ll+ i (s)l

(13)

The agreement factors obtained in order of increasing
basis size were STO-3G 0.0566, 6-31G 0.0379, and 6-
31G" 0.0366. Evidently the HF structure factors are
relatively insensitive to the addition of d-type polariza-
tion functions for such (isolated) organic molecules. In
crystals, however, the intermolecular interactions present
should lead to larger contributions to p(r) &om polariza-
tion functions.

A direct descent density-matrix refinement was carried
out with the STO-3G basis set, taking fixed anisotropic
temperature factors &om the multipole refinement and
using the same weighting scheme. This resulted in
R=0.0424, y = 6.116,and 8 = 2.521. The scale factor k
from density-matrix refinement was 6.06, which is rather
difFerent &om the 5.90 obtained &om multipole refine-
ment. This is probably due to the limited basis set, espe-
cially in the core region (only three Cartesian Gaussians
per contracted function). Therefore we tried a refinement
in the basis STO-6G (still 18 basis functions, but now six
Cartesian Gaussians per contracted function). This gave
an improved fit: A=0.0406, y = 5.752, and 8 = 2.445,
and the scale factor (k = 6.03) was slightly closer to
the multipole-refined value. A population analysis of the
wave function gave a total of 23.995 electrons.

The description of the scattering used in the density-
matrix refinements incorporated no corrections for
anomalous dispersion, whereas the multipole refinement
had incorporated a correction for core electrons in the
usual way. To check that this correction could reason-
ably be neglected for these first-row atoms-, the multipole
refinement was repeated with the correction terms f' and
f" set to zero. Refinements with and without these cor-
rection terms did not difFer significantly.

Table III compares CP analyses obtained from RHF
6-31G", RHF STO-6G, and fitted multipole and STO-
6G densities. The STO-6G p values show no overall

better agreement with the 6-31G" results after fitting.
Multipole-fitted values of p~ are not in conspicuously bet-
ter agreement with the RHF 6-31G" values than are the
density-matrix-fitted ones. The carbonyl and C-N Cp's
lie further from the 6-31G" positions after refinement,
but the CP's in bonds to H atoms lie nearer. The multi-
pole and density matrix-fitted BCP positions are closer
to each other than to either of the (&ee-molecule) ab ini-
tio densities.

The Laplacian values V'2p in the two heavy atom
bonds show a considerable "improvement" for the fitted
density matrix, with a positive value (characteristic of
ionic interactions between atomssi) in the C-N bond be-
coming negative (characteristic of covalent interactions),
as in the 6-31G" density. The multipole Vzp, values, as
with p„do not agree better on average with the 6-31G"
values. More information about the shape of the electron
distribution in bonds can be derived &om the Hessian
of p(r, ). About half of the the fifteen STO-6G Hessian
eigenvalues move closer to the corresponding 6-31G" val-
ues when the density matrix is refined. The multipole fit
Hessian eigenvalues are, on average, no closer to the 6-
31G" values than the density matrix fit results.

Figures 3(a)—3(d) are maps of —V'2p in the plane con-
taining the C, N and 0 nuclei. The HF and fitted STO-
6G densities [Figs. 3(b) and 3(d)] differ considerably,
with the latter showing a much thinner valence shell
of charge concentration i (VSCC) in the heavy atom
bonds —in fact, the oxygen VSCC no longer connects
with the carbon atom. The multipole density [Fig. 3(c))
also shows this e8'ect, to a lesser extent. It is apparent
that both the experimental (fitted) Laplacians are quite
different to the HF 6-31G" result [Fig. 3(a)].

On the whole, it appears that the STO-6G fitted den-
sity is not more like the HF 6-31G" density than its
HF STO-6G counterpart, but that the two models (mul-
tipole and STO-6G density matrix) fitted to the exper-
imental data give similar results. This is encouraging,
since ox' would hope that the fitted density would not
be too model dependent. It also suggests that the 6-
31G" (&ee molecule) density is an inadequate bench-
mark for the various experimental fits. Stevens has
pointed out that there are rather large difFerences be-
tween experimental gas phase and in-crystal geometries
of formamide, so hydrogen bonding effects in p(r) may
be considerable. The carbonyl and C-N bond lengths in
angstroms are 1.219, 1.352 (&om microwave studiess ),
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TABLE III. (a) Formamide BCP analysis for heavy atoms. d is the distance of the Srst-named
atomic nucleus to the BCP associated with that bond. (b) Formamide BCP analysis for bonds to
hydrogen atoms.

Bond Method
Hessian eigenvalues

(e bohr )

(a)

pc
(e bohr )

+2p
(e bohr ) (bohr)

C=O

N-H1

N-H2

6-31G"(HF)
STO-6G (HF)
Multipole(exp)
STO-6G (exp)
6-31G'"(HF)
STO-6G (HF)
Multipole(exp)
STO-6G (exp)

6-31G"(HF)
STO-6G (HF)
Multipole(exp)
STO-6G (exp)
6-31G '(HF)

STO-6G (HF)
Multipole(exp)
STO-6G (exp)
6-31G"(HF)
STO-6G (HF)
Multipole(exp)
STO-6G (exp)

-1.087
-0.705
-1.116
-0.688
-0.873
-0.491
-0.954
-0.766

-1.359
-1.096
-1.137
-1.133
-1.377
-1.104
-1.132
-1.122
-0.870
-0.648
-0.767
-0.659

-1.015
-0.512
-1.022
-0.492
-0.855
-0.408
-0.845
-0.492,

(b)
-1.285
-1.020
-1.042
-1.115
-1.307
-1.029
-1.076
-1.098
-0.855
-0.628
-0.690
-0.618

1.967
1.999
0.615
1.342
1.066
1.302
0.600
1.342

0.727
0.836
1.209
0.966
0.760
0.838
1.283
1.203
0.448
0.441
0.827
0.585

0.397
0.340
0.410
0.339
0.350
0.290
0.380
0.335

0.347
0.317
0.309
0.306
0.346
0.317
0.307
0.309
0.308
0.269
0.268
0.265

-1.346
+0.782
-1.523
+0.163
-0.661
+0.403
-1.199
-0.409

-1.917
-1.279
-0.970
-1.283
-1.924
-1.295
-0.925
-1.016
-1.277
-0.835
-1.629
-0.692

0.77
0.76
0.87
0.87
0.81
0.79
1.10
1.09

1.45
1.39
1.41
1.45
1.46
1.39
1.42
1.43
1.28
1.25
1.37
1.31
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TABLE IV. Formamide population analysis charges.

Atom
0
N

C
H1
H2
H3

HF /6-31G**
-0.66
-0.87
0.71
0.33
0.34
0.12

HF/STO-6G
-0.29
-0.45
0.25
0.22
0.22
0.05

Fit/STO-6G
-0.29
-0.52
0.39
0.20
0.21
0.01

1.242, 1.319 (&om this study and x-ray multipole refine-
ment), 1.223, and 1.360 (from a free molecule ab initio
MP2 /6-31G" optimizationss).

Table IV lists the atomic charges obtained from a Mul-
liken population analysis of the fitted and HF wave
functions. Since such population analysis charges are
highly basis-set dependent, the absolute values of these
charges mean little. However, as the same basis set
and coordinates are used for the HF calculation and the
density-matrix fit, the differences may refIect the pres-
ence of intermolecular interactions in the latter case. The
data suggest that, in the crystal, the N-C bond is more
polarized by such interactions than the C-0 bond, al-
though the Laplacian maps indicated large difFerences be-
tween (isolated molecule) HF/STO-6G and fitted STO-
6G densities in the carbonyl bond. Hydrogen charges are
barely altered by refinement.

IV. CONCLUSIONS

This is a viable method for fitting idempotent den-
sity matrices, although it is only likely to be useful for
small molecules (say ten or fewer atoms). In the study
with theoretical data, we were able to show a measurable
improvement in the fitted density as compared with the
HF density in the same (minimal) basis. In the exper-
imental study, the evidence that the fitted density was
superior to the HF density (in the same basis) was less
compelling, perhaps largely because the true density is
unknown in this case. A multipole model with 88 vari-
ables (including thermal parameters for heavy atoms) fit-
ted the experimental data rather better in the sense of R
and y2 than the 72-variable STO-6G (idempotent) den-
sity matrix. There are at least three reasons for this; in
probable order of importance: (i) the density matrix fit
is tightly constrained by idempotency; (ii) temperature
factors were not optimized for the fitted STO-6G den-
sity; and (iii) a minimal basis set was used. Temperature
factor refinement should appreciably improve the quality
of the fit in the density-matrix case.

Multipole models frequently include K' and K" vari-
ables on heavy atoms, whereas the LCAO model allows
no such radial variation (or basis function optimization).
It would be a straightforward task to optimize the ba-
sis function exponents simultaneously with the P;~ using
the random perturbation technique. Here we have chosen
to illustrate the results with the simplest, nonoptimized
type of I.CAO model. The multipole model of the density
has the advantage of very accurate HF atomic core func-

tions utilizing STO's, whereas most molecular basis sets
necessarily use Gaussian functions; so basis sets with the
largest possible number of Gaussians per contracted core
function should be used. Since it is only required that
one-electron (overlap) integrals be computed in the cur-
rent fitting procedure, it is feasible to use STO basis sets
rather than the usual contractions of Gaussians. These
should give much-improved wave functions and may be
especially advantageous for modelling x-ray scattering,
which is dominated by core-electron contributions. How-
ever, the usual problems with computing many-center
two-electron matrix elements over Slater-type functions
would remain if any two-electron properties were desired.
But these are problems only of computational practice:
there is no problem in principle.

Based on our limited experience with simulated an-
nealing, it seems that the HF starting guess may be
sufficiently close to the global minimum to make it un-
necessary. This may not be the case with larger den-
sity matrices (larger molecules or basis sets). In cases
N(K —N) ) N b, a nonunique fit may be obtained,
possibly an exact fit. In such cases the usefulness of any
nonunique density matrix is questionable, unless perhaps
some other criteria can be applied to choose between den-
sity matrices with the same y . For example, this might
be the total energy, virial ratio, or Hellmann-Feynman
forces on the nuclei.

The computational effort involved in fitting an idempo-
tent density matrix with this technique is not negligible.
Without refinement of the parameters describing thermal
motion, approximately 12 h on a VAX 4060 workstation
are required for formamide in a minimal (STO-6G) basis.
If the thermal motion is also refined this increases con-
siderably, since the 0;ii, in Eq. (7) must be recomputed
every cycle. In comparison. to multipole refinement, this
is then a factor of 100—1000 times slower. However, we

anticipate that fitting larger basis sets, coupled with op-
timization of exponents and (perhaps) more realistic core
basis functions (STO's), will give a fit competitive with
(or better than) the multipole one. Since the fitted wave
function obtained from this study is of rather low qual-

ity, we have not attempted to evaluate any two-electron
properties from it, but this remains an important aim of
future studies.
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APPENDIX

We want to show that McVVeeny's iterative procedure
finds the closest n x n symmetric idempotent matrix P
to a given symmetric matrix A, provided that A and P
are not too far apart (in the sense of Frobenius norm),
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n n

IIA —PII' = ).).(A;, —P;,)'.
i=1 j=1

then we minimize

We begin by showing that if P, is a matrix such that
IIA —PII2 is a minimum at P = P„ then A commutes
with P, . To show this we use Lagrange multipliers to
minimize IIA —PII2 subject to the constraint that P be
idempotent, that is, P& P;I,Pi,s = P;s for each i, j. (We
assume for simplicity that the basis set is orthonormal. )
Say A;~ is a Lagrange multiplier for the i, jth constraint,

—A;.
I ) P;a,Pao —P;s I

with respect to the elements of P.
Evidently

2(a —P ) —).A' P' —).A P . +A = —2(A —P) —P A —AP +A

where A is the matrix of Lagrange multipliers. Hence

2(A —P.) + PtA+ APt —A = 0.

Multiplying on the left by P„and using the facts that
P = Pt and P, = P, this reduces to 2P, A —2P, +
P,AP = 0. Similarly, multiplying on the right by P, gives
2AP, —2P, + P,AP, = 0, and so P,A = AP, .

It follows that A and P, can be diagonalized simul-

taneously. Since the Frobenius norm is invariant under
orthogonal transformations

IIA —Pll' = ).(a' —p*)'

where a; are the eigenvalues of A (ordered most positive
first) and the p, are the eigenvalues of P, . If P, is of rank
k, then k of the p; equal 1 and the others equal zero. It
follows that

IIA —PII' & ) .(a' —1)'+ ): a,'

Furthermore, we can find an idempotent inatrix which
has precisely this distance kom A, by performing the
eigenvalue decomposition of A and replacing its eigenval-
ues with 1 or 0 appropriately.

All that remains to be shown is that the McWeeny pro-

cedure yields the P, described in the preceding sentence.
The iterative procedure is defined by P„+i ——3P„—2P„,
with Po ——A. Now suppose v is an eigenvector of P„with
eigenvalue A; then

P„piv = (3P„—2P„)v = (3A —2A )v,

so v is an eigenvector of P„+q with eigenvalue 3A —2A .
It follows that if A has the eigenvalue decomposition

C&A&C&, then applying the McWeeny procedure will

generate a sequence of matrices C~AnC& with An+q ——

3A„—2A„and Ao ——A~. The procedure will con-
verge if the sequence A„~i ——3A„—2As converges for

0 —Gyral —ly o ~ o }Go

It is easy to see that the system A -+ 3A2 —2As has two
stable fixed points 0 and 1 (and also one unstable one at
A = 1/2). Thus if the McWeeny procedure converges, it
will converge to an idempotent matrix. Let us suppose
that A is the result of perturbing some idempotent ma-
trix P, where P has k unit eigenvalues and n —k zero
eigenvalues. We suppose the perturbation is so small that
A has k eigenvalues in the range 1/2 to (1+~3)/2 and
n —)'a in the range (1—v 3)/2 to 1/2. Then the procedure
will clearly converge to produce k unit eigenvalues and
its result will be to replace the k largest eigenvalues of A
by 1 and the others by 0. As we saw above, the resulting
idempotent inatrix minimizes IIA —Pll .
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