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First-principles electronic-structure calculations were used to determine the electron-transport prop-
erties of Ru02 in the rutile structure. Our calculations were performed within the local-density approxi-
mation employing soft-core ab initio pseudopotentials and a plane-wave basis. The two independent
components of the tetragonal plasma-frequency tensor, Q~„„, and Q~, were found to be identical
within the calculational errors. The calculated isotropy of the plasma-frequency tensor agrees with opti-
cal and transport measurements. Our theoretical value for the plasma frequency of 3.3 eV is within

5—10% of the experimental value as determined from optical and resistivity measurements. We find that
the experimental resistivity can be fit accurately to the standard Bloch-Gruneisen model with additional
terms representing optical-mode coupling and electron-electron interactions. Previously used models
did not conform to the correct Fermi-surface topology. Our ab initio results demonstrate that the trans-

port properties of Ru02 exhibit "normal" behavior as described by the Boltzmann equation.

I. INTRODUCTION

Ruthenium dioxide crystallizes in the rutile structure
and exhibits metallic conductivities' comparable to the
first half of the transition-metal series. With its low
resistance and high thermal stability, Ru02 has been
shown to be an excellent difFusion barrier between Al and
Si in contact metallizations for use in very large scale in-
tegrated circuits, as an electrical contact material, '

strip-line conductor, " and for thin' and thick' film
resistors in integrated circuits. While the high conduc-
tivity of Ru02 lends itself to many applications in the mi-
croelectronics industry, a fundamental understanding of
the intrinsic conduction mechanism has been lacking.
Our ab initio calculations are intended to provide a better
understanding of the transport properties of Ru02, as
well as other metalliclike transition-metal dioxides occur-
ring in the rutile structure.

A great deal of efFort has gone towards understanding
the electronic-transport properties of transition metals.
These are now well understood in terms of the Fermi-
liquid theory' ' for which a Boltzmann equation ex-
ists, provided that the propagating quasiparticles are
well defined and the electron mean-free-path length is of
sufficient magnitude, i.e., I )&d, where d is the interatom-
ic spacing. ' ' ' For the transition metals, it has been ob-
served' ' that "normal" transport behavior exists for
l & 10 A. While considerable work has been performed
to understand the anomalous transport properties in the
high-temperature superconducting oxides, ' very little

has been performed on the "normal" transport behavior
in transition-metal oxides. ' Traditionally, transition-
metal oxides have been one of the most difficult classes of
solids to perform first-principles pseudopotential calcula-
tions owing to the localized nature of the transition-metal
d and 0 2p valence wave functions. With the recent ad-
vances in techniques for generating soft-core transferable
pseudopotentials, and fast iterative diagonalization
techniques, we are now in a position to handle these
complex systems from a first-principles approach.

The resistivity is defined as the inverse of the conduc-
tivity tensor' '

o' p=(Qsr)~/4n,

where l/r~ and 0 ~ are the tensorial components of
the scattering rate and squared plasma frequency, respec-
tively. The plasma-frequency tensor can be calculated
from a knowledge of the electronic structure of the sys-
tem and is given by

Sm.e Bf„k
+p, aP lr g vnk vnk& ~

~cell nk ~~nb

where V„&i is the cell volume, v„k =R 'Be„k/Bk is the
a

a component of the quasiparticle group velocity at k for
the nth band, e„&=E„&—Ez where Ez is the Fermi ener-

gy, and f„k is the quasiparticle distribution function. A
factor of 2 has been included to account for spin degen-
eracy. The scattering-rate tensor for electron transport
resulting from electron-phonon scattering is given by
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(3)

where the spectral function a„pF(co) is similar to that
used in the Eliashberg theory of superconductivity. ' '

The plasma-frequency tensor depends solely on the quasi-
particle distribution, while the scattering-rate tensor de-
pends upon the electron-phonon coupling. As the tem-
perature of the conduction electrons is much greater than
the average energy from other excitations such as pho-
nons, we can replace the gradient of the quasiparticle dis-
tribution function by a delta function: —c)f„i,/c)e„i,
=5(e„i,). This represents the lowest-order approxima-
tion to the transport coefficients with respect to tempera-
ture. Although the temperature dependence of Qz & has
been explicitly removed, it implicitly remains through
changes in the band structure resulting from temperature
variations in the lattice constants. However, Ru02 exhib-
its an anomalous dependence in the linear thermal-
expansion coefficients for directions perpendicular, a~,
and parallel, a~~, to the c axis. Experimental results
show that with increasing temperature, c decreases while
a increases; the ratio al/aj being approximately —0.3
throughout the temperature range of 20-1200'C. How-
ever, it is not known a priori whether this anomaly will
effect the plasma frequency and the resistivity through
changes in the Fermi-surface topology.

Typically the scattering rate for many metals follows a
Bloch-Griineisen (BG) type behavior which may be ob-
tained by replacing a„pF(co) with its Debye approxima-
ion. 21,27

BG, p (co) 2~BG,up( ~D @~D (4)

where 8 is the Heaviside step function, coD is the Debye
frequency, and A,ao is the transport electron-phonon cou-
pling constant in the BG model. Substituting the above
expression into Eq. (3) and integrating results in the BG
form of the electron-phonon scattering rate:

T
& =8irkp TABG ap „Js(On/T), (&)

ap D

where J5 is a standard transport integral defined by

O~ /g nd
J„(SD/T) =

4 sinh (x /2 )

The BG form of the resistivity given above results in a
temperature dependence which is proportiona1 to T at
low temperatures, and to T at high temperatures.

At low temperatures, the resistivity is dominated by
impurities, vacancies, and various other defects. For low
defect concentrations, these contributions are frequently
assumed to be independent of temperature; the T=O lim-
it being defined as the residua1 resistivity po. The intrin-
sic resistivity, resulting from electron-electron and
electron-phonon interactions, can be written as

p; ( T) =p( T) po. This is gene—rally referred to as
Matthiessen's rule, and assumes that the various

scattering mechanisms are uncorrelated or independent
of one another; a condition typically not met in highly
resistive materials. ' Varying the defect concentration via
different samples would result in a constant shift in the
intrinsic resistivity for materials complying with
Matthiessen's rule. The low-temperature resistivity is
often used to assess sample purity for various growth
conditions as in the case of Ru02 where a majority of the
experimental resistivity measurements have been per-
formed. For T&SD, the primary scattering mecha-
nism arises from electron-phonon interband and intra-
band scattering. This mechanism is the major contribu-
tion to the high-temperature resistivity. The diSculty,
however, in analyzing experimental results lies in the fact
that many scattering mechanisms have the same tempera-
ture dependence. It becomes diScult to distinguish be-
tween two or more competing scattering events over a
given temperature range. This is borne out in the present
investigation, where we show that the standard model
used to interpret the experimental resistivity of Ru02 is
virtually identical to a more conventional model based
upon our electronic-structure calculations and Fermi-
surface topology. The intrinsic scattering, whether
electron-phonon or electron-electron induced, is largely
determined by the Fermi-surface topology which governs
the electron scattering. In the case of RuOi, the Fermi
surface has been experimentally probed by magneto-
thermal oscillations, magnetoresistance, Azbel'-Kaner
cyclotron resonance, and de Haas-van Alphen mea-
surements. With the resistivity studies, Fermi-surface
measurements, and band-structure calculations, we can
assess the major scattering mechanisms to further under-
stand normal transport in transition-metal oxides.

Owing to the tetragonal symmetry of the rutile struc-
ture, the conductivity tensor of Eq. (1) is diagonal in a
principal-axis coordinate system. This results in a diago-
nal resistivity tensor, p =4m. /(Q r), with one com-
ponent perpendicular, p„„, and one parallel, p„, to the
principal c axis. Considering the highly anisotropic na-
ture of the RuOz lattice, i.e., c/a -0.7, one would expect
that p„„&p if conduction was to occur between Ru
atoms, as the distance between neighboring Ru atoms is
much smaller along the c axis. This is not what is found
experimentally. In Fig. 1, we show the single-crystal
resistivity measurements (solid circles) in the [001] and
[100] directions, i.e., p„and p„„. The residual resistivity
from impurity scattering has been subtracted out assum-
ing Matthiessen's rule to hold. Since both components
of the resistivity are shown in Fig. 1, it is evident, within
the experimental error, that the electrical resistivity of
Ru02 is isotropic in the temperature range of 10—1000
K, i.e., p„=p„„. This isotropy implies that (Q~r)„
=(Qzr)„„. Further, as the isotropy occurs over a rather
broad temperature range, one expects Q and ~ to
be approximately equivalent for the xx and zz com-
ponents. This can be rationalized in terms of the typical
Bloch-Griineisen behavior, which describes the
temperature-dependent electron-phonon scattering given
by Eq. (5). Since Q~ p is only a weak function of temper-
ature, one would expect any anisotropy in the scattering



49 ELECTRON TRANSPORT PROPERTIES IN Ru02 RUTILE 7109

200

150

O

100

50

stant, and ksSG is the minimum phonon energy needed
to induce an intraband transition between the two Fermi
sheets. At high temperatures, the same linear depen-
dence in temperatures as the BG form is obtained, while
at low temperatures the resistivity is proportional to T
In Fig. 1, we illustrate a fit (dashed line} to the experi-
mental resistivity using this model. As shown below
however, the Ru02 Fermi surface exhibits no such topol-
ogy, which would indicate such a high degree of inter-
band transitions between Fermi sheets. Previously exper-
imental investigations have been based on this model, il-
lustrating the diSculty in predicting scattering mecha-
nisms based upon the goodness of fit. To stress this, we
show in this figure a fit to the experimental data2 with the
typical Bloch-Griineisen model given by Eq. (5) with an
additional contribution to account for optical-made cou-
pling. This electron-phonon contribution can be ob-
tained by substituting the Einstein approximation for
a„~(ro); this is given by

0
0 200 400 600 800 1000 aE, N =-', NE E, N NE (7)

FIG. 1. Intrinsic electrical resistivity (Ref. 2}, (~}, in the
[001] and [100] directions for Ru02. The solid line represents
the present model with a standard Bloch-GrGneisen (chain-dot)
and an optical contribution (chain-dash) contribution for the
electron-phonon interactions, and an electron-electron T2

dependence (dotted). The dashed line represents a two-band
model for the electron-phonon interactions typically used to fit
to the experimental measurements along with a T' dependence
for electron-electron interactions at low temperatures.

rate, given by A,„~/A,„ for the tetragonal lattice, to be
observable over this temperature range. Typically how-
ever, it is assumed that A.„~is only a weak function of
crystal orientation, ' where any anisotropy is usually ac-
counted for by O~ ~. In some cases however, the anisot-
ropy in Qz & is opposite to that of A,„&yielding approxi-
mately lsotroplc reslstlvlties. 17

For Ru02, the intrinsic temperature dependence of the
experimental resistivity deviated from Matthiessen's
rule, indicating that scattering rates between impurities,
electrons, and phonons are not entirely independent from
one another. However, as seen in Fig. 1, the deviation
from Matthiessen's rule appears to be small considering
that three Ru02 samples are included in the experimental
results. It was further observed that the form of the
resistivity differed signi6cantly from the usual Bloch-
Gruneisen behavior, but could be fit reasonably well to a
two-band model. ' This model describes the electron-
phonon scattering in transition metals with parabolic s
and d bands. An additional term proportional to T was
included to describe the low-temperature electron-
electron scattering. The electron-phonon interband
scattering in this model is based on electrons being scat-
tered from a Fermi sheet with high mobility and low
band mass to one of low mobility and high band mass.
The corresponding contribution to the resistivity is given
by p3T [J3(Oo/T) —J2(OG/T)], where p3 is a con-

which upon substituting into Eq. (3) yields

8E /2T
E"+ sjnh(OE /2 T)

We also have included in our model a term in the resis-
tivity to account for electron-electron scattering as in
the case of previous models. 2 The resulting values of
8& and 8E were found to be 409 and 787 K, and the
corresponding electron-phonon coupling constants
RQ~/Q}i, nG, and A'Qz/'1/ A,E were found to be 9.0 and
5.7 eV, respectively. As seen in this figure, both models
fit the data reasonably well; however, the model present-
ed here is in agreement with the Fermi-surface topology
as shown below.

For transition-metal oxides, the inclusion of optical-
mode coupling is a natural extension to the BG form of
the resistivity, which only describes metals with a single-
atom basis, i.e., acoustical-mode coupling. The addition
of 0 leads to a large number of optical phonons; in the
case of Ru02 there are 15 possible optical modes which
the electrons can scatter from. If the optical-mode fre-
quencies are comparable to the experimentally observed
frequency between scattering events, optical-mode cou-
pling becomes a possible scattering mechanism. The
value of the Einstein frequency, corresponding to the
"dominant" optical mode, from our fit was found to be
547 cm '. While a detailed experimental or theoretical
study of the optical-phonon modes in RuOz is lacking,
zone-center Raman-active (RA) modes have been mea-
sured. Of the four RA modes, the doubly degenerate
Eg mode of 528 cm ' is close to the Einstein frequency
predicted from our model. At room temperature, the es-
timated frequency between scattering events (see Sec. III)
was found to be 416 cm ', which is in the range at which
optical-mode coupling can occur.
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II. METHODS OF CALCULATION

TABLE I. Comparison of the experimentally determined
structural parameters (Ref. 43) for Ru02 in the rutile structure
compared with the present ab initio results.

Property

a {A)
e (A)

Theory

4.56
3.16
0.307

Experiment

4.492
3.106
0.306

The electronic-transport properties of Ru02 were cal-
culated within the local-density approximation employ-
ing the exchange-correlation potential of Ceperley and
Alder. Our ab initio total-energy calculations imple-
rnented a plane-wave basis in conjunction with soft-core
pseudopotentials constructed by the method of Troullier
and Martins and transformed using the separation tech-
nique proposed by Kleinman and Bylander. Plane
waves up to an energy cutoff of 64 Ry were included in
the calculation, while the structural and electronic prop-
erties were calculated with six k points generated by a
Monkhorst-Pack ' (3X3X3) grid with a shift vector of
( —,', —,', —,

' ). We have used the Gaussian broadening scheme
of Fu and Ho to minimize the number of k points need-
ed to sample the charge density. This scheme accounts
for variations in the metal band occupancies near the
Fermi level as a result of charge-transfer oscillations dur-
ing the self-consistency cycle. We found that a Gaussian
width of 10 mRy gave rapid convergence in the total en-
ergy. The above prescription resulted in total energies
which were converged to within 0.05/atom. We have re-
cently shown that the above methodology gives good
results for the static electronic and structural properties
of Ru02 and Ti02.

Here we extend our previous study by examining the
electronic-transport properties of RuOz. The structural
parameters were determined by minimizing the total en-

ergy of the RuOz lattice. In Table I we compare our
present ab initio results with the experimental room-
temperature values of Boman. Our theoretical results
are within 2% of experiment as is typical of local-density
calculations. The resulting band structure is shown in
Fig. 2 along various high-symmetry directions of the irre-
ducible Brillouin zone. Also shown in this figure is the
corresponding electron density of states calculated by the
linear tetrahedron method using 726 k points. The Fer-
mi energy has been taken as the reference energy and is
indicated by the dashed line. A detailed comparison of
the present band structure to previous experimental and
theoretical results has been published elsewhere.

The first 12 bands are predominantly 0 2p in character
while the 0 2s manifold, not shown, is —18-19eV below
Ez. The next ten bands are predominantly Ru 4d in
character. These ten bands can be grouped into two dis-
tinct rnanifolds, which are reminiscent of the splitting of
the Ru 4d states into a triply degenerate t2 and doubly
degenerate e states in the presence of an octahedral field
of 0 ions. In the rutile structure, the perfect 0& sym-
metry at the Ru site is lowered to D21„which subsequent-

RuO

—9
I' X R Z I' M A DOS (arb. units)

FIG. 2. Band structure for Ru02 along high-symmetry direc-
tions of the irreducible Brillouin zone and the corresponding
electron density of states. The energy zero has been taken as the
Fermi energy.

ly causes the t2 and eg states to split into singly degen-
erate states. Since the compression of the octahedron
along its principal axis is only 2%%uo in Ru02, and since a
clear distinction between these two rnanifolds exist, we
have taken the Oz nomenclature for simplicity. The first
six bands above the 0 2p manifold are Ru t2g derived
while the next four are eg derived. The last band shown
is of Ru sp character.

in Ru02, it is assumed that the t2g manifold is divided
into orbitals perpendicular, tj, and parallel, t~~, to the c
axis. The ti~ band is Ru-Ru derived with d ~ ~ (a ) or-

x —y
bital symmetry, while the t~ is composed of Ru-0-derived
n-bonding states with d„, (b3s) and d„, (bzs) orbital

symmetry. The symmetry labels in parentheses are for
the Ru atomic d states in a crystal field of orthorhombic,
D2&, symmetry. The

t~~
bands are typically assumed to be

fully occupied, and therefore do not contribute to the
Ru02 conductivity, which results from the partially occu-
pied tj bands. This is in agreement with the experimen-
tal observations. The anisotropic nature of the c/a ratio
in Ru02 would result in p )p„ if conduction were to
occur via the t

~~

bands as a result of a strong Ru-Ru over-
lap. However, as the Fermi level lies in the tj manifold,
derived from Ru-0 interactions, one would expect that
p„„=p owing to the approximate equivalence of the
Ru-0 equatorial and apical bond lengths, which di8'er by
only 2%%uo. The higher-lying, unoccupied e orbitals are
comprised of Ru-0 o character with d „(b&g ) and
d 2 (ag ) orbital symmetry. In Figs. 3 and 4 we illustrate

these orbitals in various planes of the tetragonal lattice,
using the local Ru and 0 coordinate system of Munnix
and Schmeits, from the wave functions calculated at
ks =(—,',0, —,

' ). These figures illustrate the localized nature
of the 0 Zp and Ru 4d valence wave functions, which
have previously caused difhculties when using traditional
pseudopotentials. Although the charge residing on the 0
atoms in Fig. 3(c) is negligible, a significant amount of
charge is observed in planes not shown. We point this
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out as Figs. 3(a) and 3(c) could otherwise be interpreted
as bonding and antibonding states resulting from a split
in the Ru-Ru-derived bonding band. Such behavior
would indicate a propensity for the Ru02 lattice to trans-
form to a distorted variant of the rutile structure. These
transformations are commonly found in other transition-
metal dioxides, e.g., VO2, in which metal-atom pairing
occurs along the c axis, causing a split of

t~~
into bonding

and antibonding bands.

III. ELECTRON-TRANSPORT PROPERTIES

Fermi-surface properties were calculated using the
Fourier interpolation scheme proposed by Pickett,
Krakauer, and Allen to fit to e„z using a grid of 726 k
points in the irreducible Brillouin zone (BZ) and 1548
star functions in the expansion. The resulting Fermi sur-
face was virtually identical to our previous results.
Specifically, the fifth t2s band forms a spherically distort-

Ru

(a)

(e) O 0 n~ ~a&i

FIG. 4. Pseudocharge density contour plots of the eg (a) d~
(b&g) in the (110) plane, and (b) the d 2(ag) orbital in the (002)

plane of the tetragonal Ru02 lattice. Contours of constant
charge density are separated by 1.5e/Vp.

Re Q
C)

0 Ru

(a)

Re
CO
Q

CO
0 Re

FIG. 3. Pseudocharge density contour plots of the t~~ (a)
d 2 2(ag) in the (110)plane, (b) d„, (b2~) in the (002) plane, and

(c) the d~ (b3g) orbital in the (110) plane of the tetragonal
RuO& lattice. Contours of constant charge density are separated
by 1.5e/Vo.

ed electron sheet e& centered at I'. The fourth tz band
forms a hole sheet h4 with arms in the I 110j planes. The
third t2s band forms a hole sheet h 3 centered at Z. While
a detailed mapping of the Fermi surface for Ru02 has not
been previously performed, our results are in good agree-
ment with the empirical model proposed by Graebner,
Greiner, and Ryden based on experimental magneto-
thermal oscillations.

The plasma-frequency tensor, defined by Eq. (2), was
transformed to a surface integral which was numerically
evaluated using the linear tetrahedron method. Band
energies within the t2g manifold were calculated from the
Fourier interpolation scheme using 2176 k points in the
irreducible BZ. The corresponding values of Qz„„, and
Q were found to be identical with a value of 3.3 eV.
To test the convergence in Q, calculations were per-
formed with 726 k points. The corresponding values of
Q „,and Q were found to be 3.3 and 3.2 eV, respec-
tively. In Fig. 5, we illustrate the energy dependence of
Q „„,and Q in the vicinity of the Fermi energy. As
seen in this figure, Q&„„, and Q track each other
throughout the tzg manifold with the perpendicular com-
poagnt on average being somewhat higher. The plasma-
frequency components vary rapidly in the vicinity of the
Fermi energy with dAQ/dE being approximately —6, re-
sulting in an estimated accuracy of +0. 1 eV for the
plasma-frequency components.

Two characteristic features of a plasmon mode are
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4

Re[a(Q~ )]=0, where e(ro) is the complex dielectric func-
tion, and a pole or resonance in the energy-loss function
at the plasma frequency. Electron energy-loss spectros-
copy (EELS) often provides the most direct determina-
tion of the plasma energy for metals displaying free-
electron-like behavior. The loss function can also be
determined from refiectivity measurements and is propor-
tional to —1m[1/e]. DiSculties arise however, when in
terband transitions occur at energies lower than the plas-
ma frequency. These interband transitions result in
Drude-like plasma frequencies which are higher in energy
than those that would be predicted by the roots of Re[a].

Examination of the experimental e, curves for Ru02
shows strong interband transitions with a threshold much
lower than the plasma frequency. The fact that these in-
terband contributions do not result in e&=0 indicates
that the transition are too low in energy to mediate a
crossing efi'ectively. This is in fact shown by our
present calculations where we find interband transitions
down to 0.07 eV. In Fig. 6, we illustrate the energy-loss
function, —Im[l/e]=e2/(e, +ez), determined from the
experimental values of e, and ez. The low-energy peaks

0.5

0.4
RIIO,

0.3

0.2
I

0.1
ic

0.0 I I I

4 6

Energy (eV)

10

FIG. 6. Energy-loss function —1m[1/e j determined from ex-
perimental reflectivity measurements (Ref. 48).

E(e
FIG. 5. Theoretical plasma energies for directions perpendic-

ular, AQ~„„(solid), and parallel A'Q~„(dashed) to the c axis.
The energy zero has been taken as the Fermi energy.

—=2@i,„k Tii(1 I (co )„/—12ksT + ), (9)

where (co )« is a weighted mean-square phonon frequen-
cy. The above equation is valid for T&8& and is accu-
rate to within 1% of highly converged solution to the
Bloch-Boltzmann integral equation. ' At temperatures
T ~ SD /2 the first term in Eq. (9) is sufiicient for -10%
accuracy. ' Given the isotropic nature of the (Q~~) &

tensor, we can write the resistivity for Ru02 as
p=4~/Qzv. Including only the first term in Eq. (9), and
taking the derivative of the resistivity allows us to esti-
mate the plasma frequency from the relation

' —1

(iriQ ) =8m A,„trike
dp

L

(10)

which is equivalent to what one would obtain with the
Bloch-Griineisen form for the high-temperature resistivi-
ty. The experimental values ' of fiQ~/QA, „for sin-

gle crystals using the above equation were found to be in
the range of 4.3 to 4.9 eV. Although Ryden, Lawson,
and Sartain have indicated that Ru02 deviates from
Matthiessen's rule, the small spread in the RQ~/QA. „
values from different investigations indicates that the de-
viation is not significant enough to affect the magnitude
ofQ .

Allen and co-workers' ' have shown for many met-
als that the electron-phonon enhancement factor for
transport, A,„,is very similar to the electron-phonon mass

occurring at 1.8 and 1.9 eV for the perpendicular and
parallel components, respectively, are the experimental
roots of e&. These peaks are interpreted as a result of in-
terband transition, while the higher resonance peaks,
occurring at approximately 3.7 eV, are interpreted as the
plasma frequency. This value is in good agreement with
our theoretical result of 3.3 eV.

Experimental electron energy-loss spectra reveal a
prominent loss feature at an energy of 1.78 eV. This
feature was subsequently assigned to a surface plasmon
feature of RuOz. Although difficult to observe due to the
experimental resolution, a higher-energy feature at ap-
proximately 3.4 eV is seen in the high-energy EELS spec-
tra. This higher-energy feature is indicative of a bulk
plasmon as the feature disappears on lowering the elec-
tron energy. The lower-energy feature we attribute to in-
terband transitions rather than a surface mode. This type
of behavior in which interband transitions dominate the
EELS is common among other transition-metal oxides.
The above interpretation of the experimental EELS re-
sults in a plasma frequency which is in excellent agree-
ment with our theoretical results.

One can also infer a value of the plasma frequency in-
directly using the limiting behavior of the electrical resis-
tivity at high temperatures. At high temperatures we
have shown that the models predict a linear temperature
dependence in the electrical resistivity. This type of
behavior can be shown ' to be model independent where
the scattering rate, given by a high-temperature expan-
sion of the lowest-order variational solution to the
Bloch-Boltzmann equation, is given by
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enhancement for superconductivity, A,, and that deter-
mined from specific-heat measurements, A,r. Estimates of
A,„are better approximated by A, as determined from su-

perconductivity measurements than those predicted from
heat-capacity measurements. ' ' However, supercon-
ductivity has not been observed for RuOz down to a tem-
perature of 4.2 K. The electron-phonon mass-enhance-
ment factor may be calculated from the experimental
electronic specific-heat coefficient, y,„p, through the rela-
tion

Xexp/7'theory= 1+ ~y

where the theoretical value of y,h«~ is determined from
the Sommerfeld approximation: y,he»=&k~Dt Ez }/3.
Using our theoretical D(Ez } value of 1.7
states eV ' cell ' spin ' we find y,h„~ =3.98
mJmol 'deg '. Using the experimental value of 5.77
mJ mol ' deg ' for y,„yields an electron-phonon mass-
enhancement factor of 0.45. Using this value for A,„in

Eq. (10},we find an experimental plasma frequency in the
range of 2.9 to 3.3 eV which is in good agreement with
our theoretical value of 3.3 eV.

We have also determined the electron-phonon
enhancement factors from our present model. Assuming
Matthiessen's rule to be valid, the electron-phonon cou-
pling constant will be the sum of both optical- and
acoustical-mode contributions. Using the results from
our fit to the experimental data) we obtain an average
RQ /&(A, ) value of 4.8 eV. The corresponding
electron-phonon coupling constants were found to be
0.14 and 0.33 for AaG and A,z, respectively, the total
electron-phonon coupling contribution, (A, ) =A,aG+A, z,
being 0.47. This value is in good agreement with the ex-
perimental A,r determined from heat-capacity measure-
ments, and provides a self-consistent check on the va-
lidity of our model. With the values of A,ao and A,z we
can also estimate the superconducting temperature T,
from the modified McMillian equation. Using a value of
irttoi«/k& =600 K, ~h~r~ Wi«/k& =exp[(k&G(in~& /
kz —

—,
' }+A,zlnkcoz/k~ }/A, ] for the present model, and a

value of p' =0.1, we estimate T, -5 K. While supercon-
ductivity has not been observed down to 4.2 K, it would
be interesting to address this possibility at lower tempera-
tures.

The validity of the Boltzmann equation in describing
the electron-transport properties of Ru02 can be deter-
mined from the mean-free-path length l. Using experi-
mental results and our band-structure calculations, I may

be calculated from the relation: l=(v )~~ r„where
(v~)z~ is the root-mean-squared velocity, averaged over
the Fermi surface, and can be obtained from our plasma-
frequency calculations where Qp ~=8n e D (E~}( v v& )z
with (v )+=2(v„)z+(v, )z for the tetragonal lattice.
Using the values from our band-structure calculations re-
sults in a value of 0.28 X 10 m/s for ( v2) z~~. An average
time between scattering events can be obtained from the
experimental resistivity measurements where
~=4~/pQp. Using the experimental room-temperature
resistivity 35.2 pQ cm yields a 7 value of 1.3 X 10 ' s re-
sulting in a value of 36 A for 1. This value is much
greater than the Ru-0 apical bond length of 1.94 A and
insures the existence of a Boltzmann equation in describ-
ing the electron transport in Ru02.

IV. SUMMARY

We have calculated the electronic-transport properties
for Ru02 in the rutile structure using first-principles
electronic-structure calculations performed within the
local-density approximation. Our ab initio pseudopoten-
tial calculations employed a plane-wave basis in conjunc-
tion with a fast iterative diagonalization technique. The
calculated plasma-frequency tensor is isotropic in agree-
ment with optical and transport measurements. Our ab
initio value for Qp „,and Qp of 3.3 eV is within 5-10%
of the experimental value determined from resistivity
measurements. We find that the experimental resistivity
can be fitted accurately to the standard Bloch-Griineisen
model with additional terms representing optical-mode
coupling and electron-electron coupling. We have shown
that the experimental resistivity can be described by the
standard Bloch-Griineisen model with an additional con-
tribution resulting from optical-mode coupling. This
model is shown to give identical results to a previous
model which is based on an incorrect Fermi-surface to-
pology. Our results show that the ab initio transport
properties in RuOz are explainable in terms of "normal"
transport behavior based upon a solution to the
Boltzmann equation.
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