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A problem of the irreversible entry of the Abrikosov vortex ring, induced by the self-field of a trans-
port current, into a long type-II superconductor cylinder of arbitrary radius R is solved exactly in the
London approximation. The magnetic field and current distribution for the toroidal vortex inside the
cylinder are evaluated. The Gibbs free energy of the system is calculated when the transport current is
applied. The critical current j, of a spontaneous vortex penetration into the superconductor through a
surface Bean-Livingston barrier is found to be independent of the radius of the cylinder and close to the
depairing current. However, the dependence of the width of edge barrier on the transport current in a
thin cylinder is found to differ qualitatively from that in a thick cylinder. As a result of this, in the first
case there is no characteristic current but j., while in the second case a characteristic current jc1 =j. /K

arises (« the Ginzburg-Landau parameter) at which the barrier width drops down to values of the order
of the magnetic-field-penetration depth A, which allows for vortex entry on the surface defects of the size
of A. The latter result is discussed in reference to the high-critical-current observations on the micro-

bridges of high-temperature superconductors.

I. INTRODUCTION

Resistivity onset in superconductors at currents small
with respect to the Ginzburg-Landau depairing current
JgL is believed to be connected with the motion of mag-
netic flux in them.! ™3 In the absence of an external mag-
netic field, the resistivity is provided by processes of two
kinds: (i) penetration into the superconductor of the vor-
tices of the self-field of the transport current (in the case
of type-II superconductors! ~*) or of the normal domains
carrying the magnetic flux (in the case of type-I supercon-
ductors®) and (ii) nucleation and the consequent expan-
sion of vortices of vorticity opposite to that of the self-
field of the current. ™8

Both mechanisms predicts a rather high value of the
critical-current density j, ~10° A/cm? for a perfect su-
perconducting sample.

Some experiments on a high-quality microbridges of
high-T, superconductors have demonstrated a very high
current-carrying capacity that seemed to increase when
the transverse size of bridges decreased.”!® A current
density as high as 1.3X10° A/cm? was achieved in Ref.
10. This magnitude as well as the dependence on size ob-
tained in Ref. 10 is consistent with the Onsager-Feynman
vortex-ring-creation mechanism® as was discussed in Ref.
10, which is in favor of dissipation process (ii).

The possible relation of mechanism (i) to the results of
Refs. 9 and 10 is so far questionable. A correct account
of the edge-barrier effect on the magnetic-flux penetration
into the sample may lead to a critical current of the same
order. In fact, the theory of flux entry into type-I super-
conductors advanced by Clem and co-workers® allows
one to estimate the critical current for type-II supercon-
ductors too. The main results of Ref. 5 was that the criti-
cal current of a long strip is considerably enhanced above
that calculated using Silsbee’s rule.!! The latter states
that the onset of electrical resistance occurs when the
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self-field produced by the current first attains the critical
value of H,, the thermodynamic critical field, at the sur-
face of the specimen. Another important result of Clem
and co-workers® was in the increase of the value of the
critical current with the growth of the transverse size of
the sample that takes place due to the contribution to the
energy from the out-of-specimen change in the field. This
result is likely to be in direct contradiction with experi-
ment. 1°

1t should be taken into account, however, that an out-
of-specimen change in the field vanishes provided the flux
lines are closed inside the sample, as it may be for circu-
lar cross sections (see Ref. 5). Another essential point is
that the calculations in Ref. 5 were carried out only for
the case of a large specimen with characteristic lengths
much greater than A, the magnetic-field-penetration
depth. In type-II superconductors, the edge-barrier
width in a wide-field range is of the order of A. Thus, for
a sample cross-section size of the order of A, the process
of flux entry may differ from that in large samples.
Therefore, to discern between the two above resistivity
mechanisms, it is interesting to consider the self-field
magnetic-vortex entry into a type-II superconductor sam-
ple of arbitrary transverse size.

In the present work vortex-ring penetration into a long
cylindrical sample of isotropic type-II superconductors is
considered. The structure of the vortex inside a cylinder
is found exactly in the framework of the London ap-
proach for an arbitrary cylinder radius R >>£. We have
calculated the Gibbs free-energy barrier against irreversi-
ble vortex entry into the current-carrying superconduc-
tor, the barrier width dependence on the cylinder radius
R, and the critical-current density on the sample surface
at various R.

The paper is organized as follows. In Sec. II we intro-
duce the London equation for a closed magnetic vortex in
a superconducting cylinder and outline the solution to it.
We give exact expressions for the magnetic field, current
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distribution, and magnetic flux flowing through the vor-
tex. In this section we calculate also the free energy of
the vortex ring in an exact form and approximations for
the case of thin and thick cylinders. In Sec. III the Gibbs
free energy is found for the case when the external trans-
port current is applied to the cylinder. Making use of the
exact expression for the Gibbs energy, we consider the
problem of the irreversible entry of the self-field vortex
ring into the superconductor against the edge Bean-
Livingston barrier. In this section we evaluate the barrier
width dependence on the transport current for different
values of the cylinder radius and stress the qualitative
difference in barrier behavior of thick and thin samples.
We determine the critical current for the spontaneous en-
try of self-field vortices as one at which the edge barrier
vanishes. For the case of thick wires, one more charac-
teristic current is shown to arise that determines the vor-
tex entry on the surface defects. Finally, in Sec. IV we
discuss the obtained results in the context of high-T, su-
perconductors.

II. STRUCTURE OF THE MAGNETIC VORTEX
RING IN SUPERCONDUCTING CYLINDERS

A closed Abrikosov vortex with a ringlike core region
may be described by means of the London equation with
a special right-hand side.'? In view of the symmetry of
the problem, the equation is convenient to perform in cy-
lindrical coordinates (p,,2z), where the z axis coincides
with the axis of a cylindrical sample of radius R. Taking
into account that in the toroidal vortex only the azimu-
thal component of the magnetic field h=(0,4 (p,z),0) is
present, one gets
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where @ is the unit flux quantum and r <R is the radius
of the vortex loop lying in the z=0 plane. The solution
of Eq. (1) for an infinite bulk superconductor was ob-
tained in Ref. 12.

Looking for a solution of Eq. (1) in an infinite cylinder
of radius R, one should require the field h to be continu-
ous on the boundary of a cylinder »r =R and to vanish at
p— o and |z|—>.> Boundary conditions may be,
though, simplified by taking into account the well-known
fact that an ideal solenoid does not create a field in outer
space. Being the superposition of ideal toroidal current
solenoids, the closed magnetic vortex as a whole does not
create a magnetic field out of a superconducting cylinder
including its surface.>!* Then one may solve Eq. (1) with
boundary conditions & (p=R,z)=0. It will be seen subse-
quently that the solution obtained is really continuous in
all space.

To solve Eq. (1) with zero boundary conditions, it is
convenient to make use of the finite Hankel transforma-
tion,'* which presents a solution in the form of a
Fourier-Bessel series:
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where J, , are Bessel functions of order 1 and 2 and y,
are positive solutions of the equation J,(x)=0. It is easy
to check that solution (2) vanishes continuously at p=R.

Let us note that solution (2) cannot be presented as a
superposition of the free vortex field'? and some of its im-
ages as is possible in the case of a flat boundary. It is
connected to the fact that the three-dimensional (3D) La-
place operator is not invariant with respect to inversion
in cylindrical coordinates and the image in the cylindrical
mirror does not exist.

From h(p,z), various other quantities, such as the
current density j, can be calculated directly. Indeed, j is
given by the Maxwell equation j=c roth/4m and has
both radial and z components,

i=0i,(p,2),0,j,(p,2)) , (3)
where
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Expressions (2)-(5) suggest an exact and thorough
description of the structure of the vortex ring embedded
in the coaxial superconducting cylinder.

The free energy of the vortex may be found using the
conventional definition! 3

1 2492 2
= J R+ X 2roth Jav . (©6)

Although strictly speaking the field (2) diverges loga-
rithmically at the axis of the vortex, z=0, p—r, in the
London approximation, as it takes place in the case of the
usual linear vortex too, > the actual field saturates at r =R
within the scale of £.!7% Excluding the region of size &
near the vortex axis from the integration domain, one can
find the free energy of the vortex ring in a cylinder (for
details, see Appendix A),
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The vortex ring carriers a magnetic flux that may be
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calculated by the integration of the field (2) over the half-
plane (i.e., over z from — o to + « and over p from 0 to
) and equals

2R & Jilyer /R 1=Jo(y)]

. (8)
A2 k§1 i+ R /APy Oy,

D(r)=,

@ vanishes at »r =R when the vortex ring merges with its
image and at »=0 when it contracts down to a point (Fig.
1).

Although expression (2) presents an exact solution of
the problem, the summation of the series (2,4,5,7,8) is
problematic. Let us find the free energy (7) in the limit-
ing cases of thick (R >>A) and thin (R <A) cylinders.
The series in (7) converges rather slowly, which allows
one to use asymptotic expressions of Bessel functions for
summation. Then one can find for R <A (for details, see
Appendix A),

F=2enriln %’—ﬂ %_E cos 2R
+sin —2’% In |2sin [ 2= +% )
and, for R >>A,
F =2enr ln(K)——~——Sin2[(21({R_:;/){k]
+Ci[2(R —-r)/)»]—C+% (10)

where £ =(®,/4mA)? is the electromagnetic energy of the
linear vortex line per unit length, «=A/f is the
Ginzburg-Landau parameter, Ci(x) is the integral
cosine,'* and C=0.577 is Euler’s constant.'* The last
term in the brackets in formulas (9) and (10) is not con-
tained in (6) and presents an energy of vortex-core
creation equal to (H?/8m)m&22rr.

The logarithmic divergency at r — R, contained in (9)
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FIG. 1. Magnetic flux (in units of ®,) flowing through the
vortex ring embedded inside the superconducting cylinder of ra-
dius R vs the ring radius r. The upper curve corresponds to the
thick cylinder (R =20A). The lower curve relating to the thin
cylinder (R=0.51) is enlarged by a factor of 20 to make it com-
parable with the first one.
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FIG. 2. Free energy of the magnetic vortex ring (in units of
®3/A) contained inside the superconducting cylinder of radius
R vs vortex ring radius . Upper and lower curves correspond
to the cases of thick (R =20A) and thin (R =0.51) cylinders,
respectively. To be comparable with the upper curve, the lower
one is magnified 40X.

and (10), is of the same nature as the field divergency at
the vortex axis, discussed above when deriving the formu-
la (7). It is connected to the vortex interaction with its
image close to the cylinder surface, which may be real-
ized at R —r<<R. The energy (7) vanishes at
r =R —£/2, which gives a natural restriction on the va-
lidity of the London approximation.

The free-energy dependence on the vortex-ring radius
shown in Fig. 2 shows that in a thick wire (R >>A) this
function is linear in almost the entire region 0<r <R,
unless the vortex is very close (within a distance A) to the
sample surface, and may be simply estimated as the usual
energy of the linear vortex per unit length® multiplied by
27r. The free energy of the vortex ring in a thin cylinder
(R <A) is not linear in any region and does not contain A
as a characteristic length at all.

The magnetic vortex ring, provided it appears in a
cylinder wire, that is to say, due to thermal fluctuations,
is not stable at any position. It is attracted to the surface
where it annihilates with its image or contracts down to a
point on the cylinder axis. From this point of view, there
is no lower critical field H,, for the entry of the vortex
ring since its entry and consequent contraction is always
favorable as well as in the films,*" but the surface Bean-
Livingston barrier prevents vortex penetration into the
sample. In the absence of a transport current, the width
of the barrier is of the order of the cylinder radius as is
seen from Fig. 2.

III. GIBBS FREE ENERGY
OF A CYLINDER WITH A VORTEX RING

To study the problem of the energy barrier against
magnetic vortex entry into current-carrying supercon-
ductors, one should evaluate the change in the Gibbs free
energy of the system, AG, arising from the vortex
penetration when an external transport current is ap-
plied. The quantity AG may be calculated, as in the spirit
of Ref. 5, as

AG=F —AW, , (11)
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where F is the self-energy contribution from inside the su-
perconductor, evaluated in the preceding section, and
AW, is the work done by the source of the transport
current. Let us note the absence of a self-energy contri-
bution from the magnetic field outside the superconduc-
tor. In our linear problem, this field may be found by su-
perimposing the field excited by the transport current and
the one determined by the vortex presence. But the latter
field equals zero in the case of a circular cross section of a
cylinder, as was discussed in the preceding section (see
also Ref. 5), and hence the outside field is fixed by the
transport current value.

To find the work done by the source of the transport
current as the vortex ring is introduced, AW, let us note
that the final result must be independent of the position
of the conductor returning to the source of the current I,
which is supplied to the specimen. Let us compute AW,
by supposing that the return conductor has coordinates
(x,y)=(— =,0) as is schematically shown in Fig. 3.

When the vortex ring moves toward the cylinder axis,

FIG. 3. Schematically shown is the magnetic vortex ring in-
side an infinitely long superconducting cylinder with the z axis.
The ringlike vortex core lies in the plane z=0 and has cylindric
coordinates p=r. The current source circuit is indicated by the
dashed line. The conductor returning back to the current
source has coordinates (x,y)=(— «,0). The transport current
I flows in the positive direction of the z axis. The inset sketches
the equivalent circuit obtained by imaginary division of the
cylinder into two parts along the plane x=0. &' measures the
magnetic flux leaving the source circuit by entering the left edge
of the cylinder x =—R. ®"=—®’ is the flux entering simul-
taneously the right edge of the cylinder x =R from the outside.
I, and I, are the currents flowing in the branches of equivalent
circuits.
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the flux ®' flowing upward through a source circuit
(shown in Fig. 3 by the dashed line) changes with time,
producing a back emf of E;=(—1/c)(d®’/dt). The
source of the current I then will have to provide the emf
of the same magnitude but opposite sign, E'= —E;, in or-
der to maintain the current I constant.’

This process in our geometry seems a bit complicated,
for when the flux &' enters from the left edge of a
cylinder moving to the right, from another edge of the
cylinder the magnetic flux of the same magnitude but op-
posite sign, ®"’=—®’, moves to the left, as is shown in
Fig. 3. One can circumvent the difficulty as follows.

For the case considered here, the current-flow lines as
well as excited electric-field lines never cross the axis of
the cylinder (z axis). That makes it possible to imagine
the cylinder to be divided along the yz plane and present
the source circuit in the equivalent form shown in the in-
set in Fig. 3. Then the work done by the source of the
current reads

AW,= [dt(E'l,+E"I,), (12)

where the two terms in the integrand stand for the work
done in the two branches of equivalent circuits, /; and I,
are the currents flowing in the left and right branches of
the circuit, respectively, and integration is carried out
over the time of vortex motion from the edge of cylinder
to the position with some radius . In the above expres-
sion E'=c ~'d®'/dt is the emf applied to the left con-
ductor by the source of the current when the magnetic
flux @’ leaves the contour shown in Fig. 3 by the dashed
line, crossing the left edge of the cylinder, and
E'"=c~!'d®" /dt is the emf arising in the right branch of
the circuit when the flux ®'’ enters the right edge of the
cylinder. Since ®"'=—®’ and moves in a direction oppo-
site to that of @', it is obvious that E'=E"’. Taking into
account that I, +1,=1, one gets

AW, = [E'Tdt=L1000n), (13)
4

where the quantity A® measures the magnetic flux leav-
ing the source circuit when the vortex ring moves from
the edge of the cylinder to a position with radius r. The
latter formula reduces the problem of finding the Gibbs
free energy to that of finding the magnetic flux leaving
the source circuit in the course of vortex motion.

The value of AP can be defined as the change in the to-
tal magnetic flux flowing through the source circuit. The
latter is equal to the integral of the magnetic field over
the left half-plane,

o,(n=["ax [CaAhpl=F Adl, (4

where the integration on right-hand side is over the path
shown by the dashed line in Fig. 3.

As we are interested in the change of ®, only, the
infinite constant contribution to the integral (14) from the
transport current field may be omitted. Then one can
substitute into (14) the vector potential induced by the
vortex ring presence only. The vector potential A is con-
nected to the current j by a generalized London equa-
tion>13
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j= ¢ S(S—A), (15) down to a point on the cylinder axis, but the large height
4 of the energy barrier prevents the vortex penetration.

where S is a source function defined in such a way that
rot(S) is equal to the right-hand side (RHS) of Eq. (1).
Taking into account that A vanishes as p or z goes to
infinity, the path of integration in (14) reduces to the left
edge of the cylinder x = —R. The S function in (15) does
not contribute to the integral in (14) since correspondent
6 function in the RHS of Eq. (1) is centered beyond the
contour of integration. Finally, one finds

472

®,(n)=—="

[ Tdzjp=R2), (16)

where j, is defined by formula (5). Then the quantity of
interest A®(7)=®,(R)—®,(r). Upon substitution of Eq.
(5) into Eq. (16) and taking the integral, one gets
r b yk"l ( Yk r/R)

R (2 Ly vk +R?/A%)

AD(r)=d; |1—2 (17

Let us stress out that the quantity A®(r) has nothing
to do with the flux @ flowing through the vortex itself
[Eq. (8)]. AD(r)=0 at r =R, but goes to ¥, at r=0, con-
trary to ®. That means that the single vortex ring entry
and the subsequent contraction down to a point provide
an exit out of the source circuit of the single flux quan-
tum.

The Gibbs free energy, resulting from (17), (13), and
(11), of the long superconducting cylinder of radius
R =204, containing the magnetic vortex loop of radius 7,
is plotted as function of r for various values of the exter-
nal transport current I in Fig. 4. The dependence G (7) is
of the same character for any sample radius R: At /=0,
G =F and the edge barrier width is equal to R. Since
F(r=0)=0, the lower critical field with respect to the en-
try of the vortex ring, H,,, strictly speaking, is equal to
zero as well, as was discussed for thin films.*> At any
finite 7, it is favorable, in a thermodynamic sense, for the
vortex ring to arise deeply in the sample and contract

G
a
0
b
_‘01 C
d
—0.2
0 r R

FIG. 4. Gibbs free energy of the cylinder containing the mag-
netic vortex ring vs the ring radius » when the transport current
I is applied. The curves a, b, ¢, and d correspond to the cases
I=0, 0.11,, 0.21_, and I, respectively, where I. is the critical
current of the spontaneous entry of the vortex rings from the
edge, at which the surface barrier vanishes.

When I exceeds some (presumably size-dependent) criti-
cal value I_(R), the barrier vanishes and spontaneous nu-
cleation of the vortex rings occurs.

Let us estimate the critical current value in the cases of
thin (R <A) and thick (R >>A) samples. Taking ap-
propriate limits, one finds (for details, see Appendix B),
for R <A,

AD(r)=®,[1—(r/R)?] (18)
and, for R >>A,
AD(r)=dy{1—exp[ —(R —r)/A]} . (19)

Formulas (18) and (19), upon substituting them into AG
of expression (11), enable one to estimate the critical
current for the spontaneous entry of vortex rings, using
the criterion, 3G /dr|,_, x =0, corresponding to the van-
ishing of the edge barrier. Because of the logarithmic
divergency of the free energy (6) at the edge of a cylinder,
the derivative should be taken at » =R —&£/2, where the
free energy (7) vanishes. Then, taking into account that
the current is distributed homogeneously over the cross
section of a thin conductor, one finds

jo=2ec/PE=jy - (20)

At this current the self-field on the conductor surface
achieves

H,=2j.mR*/cR~H.R/A . (1)

In the case of a thick sample, the current flows in the sur-
face layer of thickness A and one gets for the critical-
current density on the surface exactly the same value
(20). The self-field on the surface in this case equals

H,=4j,m\/c=H, . (22)

Thus the resistivity arises in thick type-II superconduc-
tors with the ideal cylindric surface at such a current at
which the thermodynamic critical field is achieved at the
surface, in accordance with Silsbee’s rule and contrary to
statements of Refs. 1-3, where this process was suggest-
ed to begin at H =H_ =H_ /k.

The critical-current density value with regard to the
surface barrier effect turns out to be the same for both
thick and thin samples and, hence, is size independent.
Its value being as great as the critical current of depairing
means that, in the ideal cylinder case, the flux-flow mech-
anism of resistivity may not take place at all, being ex-
ceeded by the direct depairing process. !°

There are, however, some qualitative differences in the
process of vortex entry into the thin (R <A) and thick
(R >>A) samples. Comparing formulas (18) and (19), one
sees that the characteristic length of the change of A®(r)
is essentially A in the case of thick cylinders, while in the
case of thin samples no characteristic length is present
but the radius R. The same is true for the free energy
[see formulas (9) and (10)]; therefore, no characteristic
current value arises in the current-dependent barrier
width of the thin sample [Fig. 5(a)]. On the contrary, in
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W/R
®

0 3/3e 1

FIG. 5. Current dependence of the width w (in units of the
cylinder radius R) of the edge barrier against the vortex ring en-
try into the superconductor. The upper curve plots the depen-
dence for the case of a thin cylinder (R =0.51), and the lower
curve corresponds to the thick cylinder (R =20A).

the thick sample the value j.,=ec/PyA <<jg arises, at
which the width of the surface barrier decreases down to
a microscopic value of the order of A [Fig. 5(b)]. At
greater currents the barrier width decreases « times
slower to vanish at j =j,. It is easy to check that at j
the field on the surface is of the order of H_,.

Thus, as well as in films,*> H,, has a meaning of field
at which self-field entry on the surface defects of size of A
may occur. We will discuss the implications of the last
result for the microbridges of high-T, superconductors in
the next section.

IV. CONCLUSIONS AND SUGGESTIONS

In the.two preceding sections, we limited ourselves to
the case of isotropic superconductors of circular cross
section. Turning back to the high-critical-current obser-
vations® !° discussed in Sec. I, one can say that the depen-
dence of the edge Bean-Livingston barrier width on
current may, at least in principle, explain the high
current-carrying capacity of very thin conductors. Real-
ly, the reliable bulk-type superconductivity, observed in
them, as well as the direct surface study proves that sur-
face defects are, at any rate, much less than the charac-
teristic transverse size of bridges, which are, in their turn,
of the order of A. In accordance with Fig. 5, that means
that the critical current of vortex entry should be much
more than j_;, characteristics of thick wire. For the sam-
ples of highest quality, the current of the onset of the
resistivity may be close to the j, of (20), which is just of
the order of 10° A/cm? for typical 1-2-3 values of A and
&, in agreement with experiment. %

Indeed, in reference to real experiments, the results of
the present work may be applied only taking into account
at least two factors. The first one is the geometry of
bridges, which is, as a rule, far from the circular cross
section and close rather to being filmlike. The second one
is the high rate of anisotropy typical of high-T, supercon-
ductors. In a curious way, however, these two differences
of experiment from the above-studied isotropic symmetri-
cal problem somewhat compensate each other.
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Really, though equations for anisotropic superconduc-
tors cannot be exactly reduced to the isotropic case by a
direct scaling transformation, '*~% valid for strong mag-
netic fields, nevertheless the process of closed-loop nu-
cleation as well as vortex-loop entry into a layered super-
conductor in the presence of a transport current should
be very similar to that in the isotropic case. The loop
consisted of two Abrikosov-like and two Josephson-like
vortices, first discussed by Friedel,?! and plays the role of
the vortex ring in a layered medium. Supposing the in-
plane and out-of-plane parts of such a loop to be of the
same energy, one finds that the ratio of its in-plane length
I, to the out-of plane length /, should be of the order of
m, /m,*"® where m, and m are the effective masses of
electrons in the respective directions. Some of the sam-
ples in the experiments®'® had a ratio of sizes L, /L, that
fit well to the [, /1,, which makes the above closed vortex
excitations appropriate for entry. In a more filmlike
geometry with L /L, >>1,/1,, one should expect other
excitations, such as vortex-antivortex pairs in films, to
arise. It is interesting that the highest value of the criti-
cal current, ~1.3X10° A/cm? was observed on the
bridge with L /L, =4, close to m, /m =5 known for 1-
2-3 compounds.

Another remarkable difference between our theory and
the treatment of experiment results in Ref. 10 is that
theory predicts no size dependence of critical-current
density j., while in Ref. 10 the latter was stated to rise
with a decrease of the transverse size. In our opinion this
statement was connected to the manner in which the data
were treated. In Ref. 10, j. was calculated by direct
division of the full critical current by the area of the cross
section of the sample, regardless of the size of the latter.
Correct at the sample size of the order of A=1400X 108
cm, this method gave undoubtedly the understated values
of the critical-current density, 5X 107 A/cm?, for the
sample with a 4000X5000X 10™'® A/cm? cross section
and 3.6X10® A/cm? for the sample with a
500X 5000 X 10716 cm? cross section, since the current in
these samples would be distributed mainly near the edges
of the samples. Combining the above corrections, one
should expect these samples to have actually greater
critical-current densities, which may be of the same
highest order of 10° A/cm?.

Note added in proof. After the submission of this paper
I was informed of the papers (Refs. 25 and 26) where
similar results were obtained using another approach.
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APPENDIX A: FREE-ENERGY CALCULATION

To evaluate the free energy (6), let us use the following
trick: Making use of the vector identity

(curlh)>=h-curl[curl(h)]+div[hXcurl(h)] , (A1)

one can present the energy (6) as a sum of two integrals,

=1 : 2
F - deh {h+A%curl{curl(h)]}

do
+§ 5 -[hxcurlh] . (A2)
The second term in (A2) is the integral over the surface
of a cylinder and is equal to zero because of the boundary
condition 4 (r =R)=0. The expression in brackets in the
first term of (A2) coincides with the left-hand side of Eq.
(1) divided by (—AZ2). Then one obtains, from (A2),

F=1r®,lim h(p,z=0) . (A3)
p’—*f

Taking into account that 4 (p) saturates at the axis of
the vortex within the scale of &, the coherence length, one
may take p—r —§& and get (7).

To find the approximations of the exact formula (7), let
us note that the series in (7) converges very slow and,
hence, the terms with large k make an essential contribu-
tion to the result. Then one can use asymptotic represen-
tations for the Bessel functions in (7),%

J (2)=V2/mz cos(z —m/4—7v/2), (A4)
and obtain
®3r = cos(y E/R)—sin(y2r/R)
F=—" Vie/R)ZSinty (A3)
8A% (< Vy2+(R /A)?

which with a good accuracy approximates the exact ex-
pression (7) at all R and r.

Let us note that the lowest zero of the Bessel function,
y,=3.81.2 That allows one to omit (R/A)* in the
denominator of (A5) at R <A. Then, using approximate-
ly y, =m(k +1),% one finds, for the first term in (A5),

® (vx§/R)
. cos(y & _

p3 - =In(R /7E) (A6)
and, for the second term,
= sin(y,2r/R) T T T _r
"2 . TR
—sin R In |2sin [%” .
(A7)
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Then, upon substitution of (A6) and (A7) into (AS), one
gets (9).

In the case of R >>A, let us divide the series in (AS5)
into two parts with Kk <R /7A and k > R /mwA. In the first
part, one may neglect y, in the denominator if (AS5), and
in the second one may omit R /A. Then one obtains

= cos(yi&/R)
E VI RAP
where C ~0.58 is the Euler constant,?} and
»  sin(y,2r/R)
SV RAP

=

[1—C+1n(k)] , (A8)

3 |

T

sin[2(R —r)]
2(R —7r)

f~—1

1
T

m(R —r)

—SIin 2R

T
2 Si[2(R r)]]

(R —r)

2R (A9)

—COos

Ci[2(R —1)] ] ;

where Ci(x) and Si(x) are the integral cosine and integral
sine, respectively.?> The validity of the approximation
for the energy [Eq. (10)] in a wide range of vortex ring ra-
dii, A <<R —r <R follows from (A9). The obtained ex-
pressions (9) and (10) exhibit proper behavior in the limit-
ing cases r <<R and r—R and provide a precision of
10% in the intermediate range of r.

APPENDIX B: MAGNETIC-FLUX EVALUATION
In Eq. (17), the series to be evaluated is
- Yid1(¥xr/R)
PR ACP(S RS SZ

(B1)

Making use of the exact formula?*
el ’}’kJI('VkX) __Jl(ax)
is1Lr)lyi—a®)  Jila)

(B2)
for a=iR /A, x =r /R one can find

rIl(r/)\,)

AD(r)=9, l—m

(B3)

that delivers limits (18) and (19) for the cases R <<A and
R,r >>A, respectively. In fact, the exact formula (B3) is
well fitted by expression (18) at R <A for the (R /A)* as
compared with ¥ values, the lowest of which
y,=3.81.5
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