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Superconductivity phase diagram in the gauge-field description of the t-J model
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We analyze the effect that the gauge field has on the superconducting transition temperature in
the t-J model. Mean-field theories of the t-J model tend to predict d-wave superconductivity at a
very high temperature of the order of T, 0.15 J. We will show that this transition temperature
is suppressed, if one takes a Buctuating gauge field into account. The underlying idea is that
there is a significant reduction of &ee energy due to gauge-field Buctuations, which is partly lost
when a superconducting gap opens up. This cost of energy prevents the system from going into
a superconducting state. Superconductivity is only possible at an intermediate range of doping,
when the superfiuid density of holons is sufficiently large to stiffen the gauge field. These ideas are
supported by a numerical analysis. We obtained a phase diagram in the doping-temperature plane,
that shows that for t/J = 3 the optimal T, occurs at a doping of z 0.15. One consequence of our
analysis is that in this model the spin-gap phase is completely destroyed by gauge-field Suctuations.

I. INTRODUCTION

Due to an intense effort by many researchers the un-
usual properties of the high-T, copper oxides are now
quite well documented. In the normal state the copper
oxides seem to be an example of a strongly correlated
electronic system, which cannot be described by conven-
tional Fermi-liquid theory. One of the unusual normal-
state properties is the resistivity, which is proportional
to temperature over a large range of temperature. The
superconducting state is in some sense less unusual than
the normal state, because in many respects it behaves
like a BCS superconductor, but with an unusual pairing
mechanism. The onset of superconductivity occurs at
temperatures that are so high that the pairing between
electrons cannot be solely due to phonons. Moreover,
microwave measurements of the quasiparticle contribu-
tion to the conductivity have shown that the scatter-
ing rate decreases strongly below T„which is inconsis-
tent with a scattering mechanism due to phonons. It is
therefore more likely that the pairing mechanism has an
unconventional origin, which could be magnetism. This
is further supported by experimental reports of gapless
excitations, and even evidence for a d-wave symmetry
of the order parameter. Another peculiar aspect of the
superconducting state is that it only occurs in an inter-
mediate rage of doping of 0.05 & z & 0.3, but disappears
when the doping is too small or too big.

Many of the microscopic models that have been pro-
posed to describe the properties of the high-T, copper
oxides are based on the two-dimensional Hubbard model
or the t-J model. In the case of the t-J model, one can
obtain a crude approximation of the onset of supercon-
ductivity, by means of a BCS-like mean-field decoupling
of the Hamiltonian. Several mean-Geld phases have been
suggested, and depending on the doping and temperature
diferent phases can be energetically favored. In gen-
eral these mean-field phases predict a pairing-transition
temperature of the order of T 0.15J close to half fill-

ing, which corresponds to a temperature of several hun-
dred degrees kelvin. The reason for this overestimate of
T, is that a simple mean-field theory ignores Buctuations,
which are very important in a strongly correlated system.

We will take the gauge-Beld formulation of the t J-
model as our starting point, which goes beyond mean-
field theory by including Gaussian fiuctuations of a gauge
field. ' The gauge-field model has been succesful
in explaining some of the normal-state properties, such
as the linear resistivity, in the regime above the Bose-
condensation temperature. So far, little work has
been done on what the effect is of the gauge Beld on the
superconducting state. This article will focus on how the
interaction with the gauge field can suppress the pairing-
transition temperature to a temperature scale that agrees
more with the experimental values of T, & 100 K. The
main argument for this suppression is that the gauge field
introduces an additional term in the &ee energy, which
opposes the opening of a superconducting gap. Our nu-

merical calculations show that this suppression is very
significant, and that in fact superconductivity only sur-
vives at an intermediate range of doping, with a maxi-
mum T, at a doping of x 0.15.

II. THE ROLE OF CAUCE-FIELD
FLUCTUATIONS IN THE t-J MODEL

In this section we will first give a quick review of how
the gauge-field model is derived &om the t-J model. We
refer to other papers for a more lengthy discussion of this
derivation. ' ' Our starting point is the t-J model
on a square lattice,

H= t ) c, c~ +J)—
~

S;.S,. ——nn, ~, (1)
t' 1
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where S; = 2c, cr @esp and n, = g c; c; This Hamil-.
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tonian is under the ixnportant constraint that no site
is double occupied. In order to satisfy this constraint
we employ the slave-boson formalism, ' in which the
electron operator c; is replaced by ct = ft b, .The
boson operator b,. keeps track of the empty sites, and
the fermion operator f, ca. rries the spin. ' The con-
straint of no double occupancy is satisfied by requiring
that b, b; + g f; f; = 1 at each site i. In order to get
a superconducting state in the slave-boson picture it is

I

not sufBcient that the fermions form Cooper pairs, but
the bosons have to be Bose condensed as well.

The gauge-field model is obtained &om Eq. (1) by de-
coupling the hopping terxn and the Heisenberg term us-
ing Hubbard-Stratonovich fields, and then making the
approximation of only considering Buctuations of the
phase of one of these new fields. Denoting the Hubbard-
Stratonovich fields by (;~ = (e' '& and 6,i ——+Ap, this
leads to the Hamiltonian '

1 . 3J 2 4 2 -'; i3J t . tII = —) —
~(~ + —

~Ap~
—(e ' *"

~

f—, f~ . + 2th, bi
~

—c.c. —6,,
* (f tf~g —f pffft) —c c.

(' )

8t ) b bib b; —yp) f, f; —i) A(ft f; +btb; —1),
(' )

(2)

where A; is a Lagrange-multiplier field that enforces the
local constraint btb; + ft f; = 1. The role of the field

a;~ will be discussed later on.
We will first consider the mean-field solution of this

Hamiltonian, which corresponds to a;~ = 0. At the
mean-field level iA; = p~ plays the role of a chemical
potential for the bosons, and p~ is chosen such that the
average boson density is equal to the doping concentra-
tion x. The mean-field phase diagram is schematically
shown in Fig. 1. ' ' Below the dashed line the uni-
form resonating-valence-bond (RVB) order parameter (
is nonzero. At a lower texnperature, denoted by the dot-
ted line, d-wave pairing between fermions occurs, i.e.,

z+z Az z+y Lp Below the solid line the bosons
condense into a super8uid state. According to mean-
Geld theory Bose condensation occurs at a temperature
scale given by T&E 2mz/my, where 1/m~ ——2t(. The
mean-field phase diagram divides naturally into four re-
gions. Region I with (6) g 0 is a Fermi-liquid phase.
Region II with b,p g 0 but (b) = 0 is called the spin gap-
phase, because an anisotropic gap appears in the ferxnion
spectrum which represents the spin degrees of &eedom.
In region III both b, p and (b) are nonzero, so that d-wave
pairing between physical electrons occurs, resulting in a
superconducting phase. Region IV has been called the
strange metal phase, because it exhibits some of the un-
usual properties of the normal state of the high-T copper
oxides ~ '

Since f; and 6, are fictitious entities, the only true
phase boundary in Fig. 1 is the transition to the super-
conducting state in region III. Nevertheless it is possible
that the other transition lines broaden to crossover lines,
such that one can still identify the regions I, II, and IV in
the phase diagraxn, characterized by the physical prop-
erties described above. In particular much attention has
been paid to the spin-gap phase, because NMR and sus-
ceptibility experixnents indicate the appearance of a gap
in the spin excitation spectrum in a temperature range
above the superconducting T in underdoped materials.
On the other hand, a recent analysis of the data by Mil-
lis and Monien indicated that the spin-gap phase may be
absent in single-layer xnaterials such as La2 Sr Cu04,

1 Bsl
24am~ )

0
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I
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d-wave
pairing
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FIG. 1. Schematic mean-field phase diagram of the t-J
model. Below the dashed line the uniform RVB order pa-
rameter ( is nonzero. The mean-Beld pairing line (dotted)
and the Bose-condensation line (solid) divide the phase di-

agram into four regions. Region I is a Fermi-liquid phase,
region II is the spin-gap phase, region III is the supercon-
ducting phase, and region IV is the strange metal phase. In
this paper we argue that the spin-gap phase is destroyed by
gauge-field Huctuations.

and present in double-layer materials such as the Y-Ba-
Cu-0 (YBCO) compounds. 2r Thus the identification of
the spin-gap phase with region II is quite uncertain at
this point.

A serious diSculty with the schematic mean-field di-
agram shown in Fig. 1 is that the temperature scale for
Bose condensation is much too high, if one uses the mean-
field expression Tg E 4trtgx. Furthermore, close to
half filling (2: & 0.04) the d-wave pairing state is un-
stable to more complicated phases, such as dimerized
phases, incoxnmensurate Bux phases, and staggered
Bux phases. We restrict our attention to z & 0 04)
which is indicated by the shaded region in Figs. 3 and 4.
The dotted line in this phase diagram is the mean-field
transition to a d-wave pairing state. On the same plot
the TBE line would lie entirely inside the shaded area.

For noninteracting bosons Bose condensation does not
really exist in two dimensions, but one can still consider
TBPE as a crossover temperature below which the boson
susceptibility diverges exponentially:

(3)
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It has been argued that the characteristic temperature
scale for the increase in y~ will be strongly suppressed
by fiuctuations around the mean-field solution. is 2s si

We will now discuss how Buctuations alter the mean-
Geld results mentioned above. We will restrict our anal-
ysis to Gaussian Buctuations of the phase a;~ of the
RVB order parameter (;~, which is a massless Goldstone
mode. The field a,.z is called a gauge field, because
the Hamiltonian (2) is invariant under the local gauge
transformation

(4)

gB = (5)
7l mg

It is tempting to identify ~p with the transport scatter-
ing rate of the bosons by the gauge 6eld, which is given in
Born approximation by 7p = k~T/4m~y. If we further
follow Wheatley et al. and replace y by the &ee-fermion
expression y& ——1/(12~m~), we obtain

f;. ; f; e"',
, b g8;

a~ ', a~+8; —8~ .
We will choose to work in the Coulomb gauge V' a = 0,
in which case the gauge-field propagator D„„(q)= (b„„—
p„p„/p )/II(q) is purely transverse. II(q) = II~(q) +
II~(q) is the sum of the fermion and boson transverse
current-current polarization functions. 9 Here we de6ned
p„= 2 sin q„/2 to take the lattice structure into account.
The Lagrange-multiplier field A; can be considered as the
time component of the gauge 6eld. ' In this paper we
will simply replace i A; by its saddle-point value p,~, which
will serve as the chemical potential of the bosons. The
gauge 6eld couples to both the fermions and the bosons,
so one expects that both the d-wave pairing line and the
Bose-condensation line in Fig. 1 will be affected by the
Buctuating gauge 6eld. While the main topic of this
paper concerns the coupling of the fermions to the gauge
field, this problem cannot be addressed without consid-
ering the coupling of the bosons to the gauge field as
well.

The coupling of the bosons to the gauge field is a
strong-coupling problem in the physically interesting case
of t/J ) 1, and is therefore difficult to analyze. This
was illustrated by a diagrammatic analysis of IofFe and
Kalmeyer, who calculated the lowest-order gauge-field
correction to the diamagnetic susceptibility y~. They
showed that this correction becomes very large if one
approaches the Bose-condensation temperature T&E, at
which point the perturbative analysis becomes unreliable.
The problem has also been treated by a renormalization-
group analysis29 and by path-integration methods. It
was pointed out that the Quctuating gauge field tends to
reduce the projected area of Feynman paths, so that the
path integral is dominated by almost retracing paths.
Wheatley and co-workers ' did a further analysis of
the path-integral formulation, by making the rather dras-
tic approximation of relating the problem to one where
the bosons couple to a dissipative bath. This problem
of noninteracting bosons coupled to a heat bath with a
damping time 70 can be solved exactly. For strong cou-
pling, i.e., for 70 )) k~T, the boson susceptibility y~ is
given by

0 0
diss ~F BE

~B — 2T (6)
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FIG. 2. Boson susceptibility y&(T) for three different mod-
els for a doping z = 0.07. The fact that gory(T) increases
rapidly at low temperatures indicates that the bosons ef-
fectively condense into a super8uid state below a certain
crossover temperature. The dotted line is the mean-field value

y&, given by Eq. (3). The dashed line represents the dissipa-
tive model for X&",given by Eq. (6), which we believe grossly
overestimates the efFectiveness of the gauge field to suppress
Bose condensation. The solid line is the self-consistent dissi-
pative y&, which takes into account that a large y~ stifFens
the gauge Geld. In the absence of a full theory y& is a reason-
able guess for the behavior of the susceptibility yn(T). We
believe, however, that at low doping y& underestimates the
suppression of Bose condensation.

We will refer to this result as the dissipative model. Note
that g~ divcrgcs only as T q

as opposed to thc expo-
nential growth of y~& given by Eq. (3).

We believe that Eq. (6) grossly overestimates the effect
of the gauge-6eld Huctuations for at least the following
reason. The susceptibility y that controls the strength of
the gauge-field Buctuations is the sum gF + y~, where

y~ should be treated self-consistently. Note that this
self-consistency is missing in Eq. (6), because g was sim-

ply replaced by gF. As y~ grows 70 is reduced so
that the dissipation crosses over to the weak-coupling
limit, and Eq. (5) no longer applies. We have carried
out a self-consistent calculation of y~, where we used
the full solution of the susceptibility valid for arbitrary
7p The .resulting self-consistent y~&~ is shown in Fig. 2.
P recent analysis based on self-retracing Feynman paths
yields qualitatively the same results.

The value of ys&c (solid line) lies between yP& (dotted
line) and ya&" (dashed line), and diverges exponentially
below a temperature which is a fraction of T~PE. In the
absence of a full theory, we believe that y& is a rea-
sonable guess of the behavior of the boson susceptibility,
which we can use in the interim. We have to keep in
mind however that at low doping g& is probably too
large, because the self-consistent dissipative model as-
sumes that II~(q) = ggq, while in reality Ilg(q) lev-
els ofF to ps = x/m~ for large q. This means that when

ps is small the self-consistent dissipative model underes-
timates the gauge-field Huctuations for large regions of q
space, resulting in a susceptibility y& that is too large.
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In this paper we have carried out the calculation of the
phase diagram using all three different choices for y~.
For reasons to be explained below, it turns out that y&
and y& yield practically indistinguishable phase bound-
aries for the onset of superconductivity. That result is
shown in Fig. 3. For completeness the phase boundary
using y&" is shown in Fig. 4.

The main result of this paper is that quantum fluctu-
ations of the gauge Geld are very effective in suppressing
the pairing between fermions. In fact, the suppression is
so effective that the spin-gap phase (region II in Fig. I)
is destroyed completely, and only a direct transition to
a d-wave pairing state remains. The transition tempera-
ture T, is reduced compared to the mean-field value T, ,
and T, vanishes completely at low doping. The result of
our numerical calculation of T, is shown in Figs. 3 and 4.
Before going into any technical details, we give a quali-
tative discussion of the physics behind this suppression.
The coupling of the fermions to the gauge field is very
much analogous to the coupling of electrons to an electro-
magnetic field, except that the magnitude of the dimen-
sionless coupling constant is very different. The dimen-
sionless coupling constant is very small for an electromag-
netic gauge Geld, but of order unity in the t-J model. It is
known that in metals the low-lying excitations associated
with a fluctuating gauge field give rise to a large negative
contribution to the free energy, so that the specific heat
in three dimensions varies as TlnT. In ordinary metals
this is a small effect because it is proportional to v+/c,
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FIG. 3. Phase diagram of the t Jmodel for t-/J = 3 us-

ing a mean-field expression for the susceptibility y&, given
by Eq. (3). The self-consistent dissipative model g& pro-
duces a phase diagram that is essentially indistinguishable.
The solid line for T,(z) uses T = 0 expressions for Iip (v) (see
Sec. III A), while the dashed line is obtained by expanding
Imii~(v) snd Reii~(v) in b,o (see Sec. III B). The 6rst-order
jump in Ao at the transition is quite small for x & 0.1, and
hence the expansion in small b,o (dashed line) is s good ap-
proximation in this case. For z & 0.1 the first-order jump in
&0 becomes so large that the solid line is more appropriate.
The line denoted by black diamonds is our best guess of the
correct phase boundary within this model. For x & 0.05 su-
perconductivity vanishes completely, which is directly related
to the fact that the gauge field becomes unstable against Bux
phases for z & 0.04. For z & 0.2 the gauge field becomes so
stifF that the transition line T,(z) approaches the d-wave BCS
value T, (z) (dotted line).
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FIG. 4. Phase diagram of the t-J model in the dop-
ing-temperature plane for t/J = 3, using the dissipative
model for the susceptibility y&". The solid line for T', (z)
uses T = 0 expressions for II» (v), while the dashed line is
obtained by expanding Imlis(v) and Reiis(v) in 60. The
T = 0 approximation for the propagator (solid line) is more

appropriate, because of the large first-order jump in 40 at the
transition. In the underdoped case the susceptibility y~" is
relatively small at the transition, so this model predicts a
direct transition from a strange metal to a superconducting
phase. Note that in this phase diagram the transition tem-
perature T,(z) is much lower than in Fig. 3. This is directly
related to the fact that in the dissipative model Bose conden-
sation occurs at a much lower temperature than if one uses

gs or y& (see Fig. 2). For large doping z & 0.35 the gauge
field becomes so stifF that the transition line T,(z) approaches
T, (z) (dotted line).

and has not yet been observed. This small factor is absent
in the t-J model, which makes these fluctuations very
important. In two dimensions the specific heat varies
as T ~, implying a free-energy term Fg~„g, proportional
to T ~ . The importance of the gauge-field contribution
to the &ee energy has been pointed out by Hlubina et
al. ,

2i who showed that the contribution from the trans-
verse gauge-Geld fluctuations, together with the longitu-
dinal gauge-field fluctuations, brings the mean-field free
energy much closer to that given by high-temperature
expansions. Unlike the transverse mode, the longitudi-
nal mode does not give rise to singular corrections at low
temperatures, because it is screened. We will therefore
ignore the longitudinal contribution to the free energy in
what follows below.

In a pairing state a gap 4 opens up in the fermion
spectrum. This introduces a gap in the gauge-Geld exci-
tation spectrum as well, so that gauge-field modes with
frequencies less than 2A do not contribute to the free en-

ergy, resulting in a net free-energy cost. We can estimate
the free-energy cost bFg „g by replacing the temperature
cutoff in Fg „g by A, resulting in bFg „g, oc 4 ~ . On the
other hand the BCS-like free-energy gain from pairing is
proportional to 4, so that bFg«ge always dominates, at
least for small enough A. This situation will change when
the boson susceptibility becomes so large that the bosons
effectively condense into a super8uid state. In that case
the gauge field becomes effectively massive, with a stiK-
ness equal to the superfluid density pp x of the bosons,
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due to the Anderson-Higgs mechanism. The gauge field
is then so stiff' that F „, is no longer dominating, and
its role in suppressing fermion pairing disappears. We ex-
pect then a direct transition to a superconducting phase
with d-wave pairing between physical electrons.

This qualitatively explains the phase diagrams shown
in Figs. 3 and 4, which were obtained by a detailed nu-
merical calculation to be described in the rest of the pa-
per. We see in Figs. 3 and 4 that, in contrast to the
mean-field solution, T, now vanishes for sufficiently low
doping z & 0.05. For larger doping the stifFness of the
gauge field increases and it becomes less efFective in sup-
pressing pairing. Therefore for large doping z & 0.2 the
transition line T,(z) is close to the mean-field line T, (z),
as one can see in Figs. 3 and 4. At low doping the phase
diagram now describes a direct transition from a metal-
lic phase to a superconducting state, bypassing the spin-
gap phase. This implies that we have to look beyond the
single-layer t Jmode-l for an explanation of the spin-gap
phase in bilayer materials, in agreement with the analy-
sis of Millis and Monien mentioned earlier. 2 In the over-
doped region z + 0.2 we expect a direct transition from
a Fermi-liquid phase, i.e., a phase in which the bosons
are Bose condensed, to a superconducting state.

Another consequence of our numerical analysis is that
we expect the transition to be first order, with a relatively
large jnmp of b, . Of course, in practice the transition will
be rounded off by phase fluctuations of the pairing field
6;~, which are not considered in this analysis. Therefore
the calculation presented here should be considered as a
calculation of the mean-field T, as far as two-dimensional
fiuctuations in the pairing field b„.~ are concerned.

In the remainder of this paper we will describe the
details of our calculation of Fz „, and its dependence on
b,o. In Sec. III we derive a formal expression for the free
energy Fg „g,(60), which will be analyzed in two limiting
cases in Secs. III A and IIIB. We present our numerical
analysis in Sec. IV. This numerical analysis takes several
important aspects of the t-J model into account, that we
did not discuss so far. For instance, an important role is
played by the d-wave symmetry of the gap function b, (k)
and the non-spherical Fermi surface. These anisotropies
have a large effect on the free energy Fg „g„and are taken
fully into account in our numerical analysis described in
Sec. IV.

III. THE GAUGE-FIELD CONTRIBUTION TO
J'(Eg) IN THE PRESENCE OF A GAP

We now present a detailed calculation of the gauge-
field contribution to the &ee energy in the presence of
pairing between the fermions. In the presence of a gauge
field the onset of pairing is still determined by minimizing
the total free energy Ft, ,(b 0), analogous to BCS theory.
However, the total free energy will now have a contribu-
tion from the gauge field as well. We note that the free
energy is a gauge-invariant quantity, and is free of the
singularities that plague quantities that are not gauge
invariant, such as the fermion Green function. This is
why we choose to analyze F~ q(E0), rather than a dia-
grammatic study of the pairing amplitude in the presence

The dispersion relations Ei, = ge~& + b, 2~for the fermions
and Op for the bosons are given by

Ai, ——2t((cos k + cos k„) —p~.,
3J(

eg = (cos k~ + cos kg) p,y')
4

b, g = b,o(cosk —cosk&).

Finally we obtain the total free energy Fq t(b, o)
FMF(b, o) + Fg „g,(ho), by integrating over the gauge
field in the action Sg „g,[a]. By distorting the contour
integral and noting that the analytical continuation of
logII(q, iv„) has a branch cut along the real axis, one
finds that the contribution of the gauge field to the free
energy can be written as

Fg „g,(b,p) = —[2n~(v) + 1]
dzq dv

27I Q 27I

(Imll(q, v + ih, b,o) )x arctan
(ReII(q, v+ ib, b.p))

'

where n~(v) = (e"~"~+ —1) i is the Bose occupation
number. For b, p = 0, Eq. (9) is equivalent to the expres-
sion written down by Hlubina et al. Notice that while
Hlubina et aL needed a regularization scheme to keep
Fg „g, finite, we avoided the infinite constant by taking
the analytical continuation iv„m v + ib.

The opening of a gap ho will mostly affect the
fermionic contribution to the inverse of the total gauge-
field propagator II = II~ + II~. In the normal state, II~
has the form Ily (q, v) = ggp —ipse(q)v/p, where we
defined p„= 2sinq„/2 to take the lattice structure of
the t-J model into account. The fermion susceptibility
y~ is given by

1 dzk 8'ei, &'ei,

(2) ak ak (10)

Notice that y~ is negative for the t-J model for any dop-
ing x 0.5, which indicates that the uniform phase
(;~ = ( is unstable towards fiux phases close to half
filling. Away &om half filling the uniform phase regains
its stability, because the sum y = y~+ y~ becomes pos-
itive as soon as the density of bosons is suKciently large.
The damping parameter p~(q) is a finite number which
depends on the direction of q, and for the t-J model close

of a gauge field.
We will calculate Ft t(b, o) using the following proce-

dure. First we integrate over the matter fields f; and
6;, which leads to an effective action S,ir = PFMF(b, o) +
Sgauge [a], where

SJ2 4 d k
FMF (&0) = —(2 + —b, o2 —2T 1n[cosh(EI, /2T)]

4 3J (2')
d k+T 1 (1 —e-"~~'),

(2z )
(7)

S.-,.l ] = —)T ~ d g222""
4V~
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to half filling pz(q) is small in the (1,0) direction, but
strongly enhanced in the (1, 1) direction.

When a gap 40 opens up the polarization function
II~(q, v) will be modified, which will change the free en-

ergy Fs „s, in Eq. (9). The most obvious change is that
Ily (q = 0) becomes massive with a mass proportional to
Ap ~ This is responsible for the Meissner e8'ect in ordi-
nary superconductors. The effect of this mass term on
the &ee energy has been discussed earlier by Halperin
et al. 6 in the context of a Buctuating electromagnetic
field in a BCS superconductor. Their work was a classi-
cal calculation, based on a Ginzburg-Landau free energy.
They argued that this mass term in ReII~ gives rise to
an additional term in the &ee energy, that is nonanalytic
in 6 . This implies that the superconducting transition
must be a first-order transition.

We are more interested in the question how the total
&ee energy is infiuenced by quantum Buctuations of the
gauge field. We therefore need to know how a nonzero
gap modifies Ilz(v) at finite frequencies. We first con-
sider II~(v) in the normal state, i.e. , without a gap. To
get a simple estimate of Fs „s,(Ap ——0) we consider first
for simplicity an isotropic band structure, in which case
IIF(q, v + ih) = yFq —i 4 v/q for v ( kpq/m~ We.
further concentrate on the quantum fluctuations in Eq.
(9), i.e. , v ) k~T, so that 2nz + 1 may be replaced by
unity. In the normal state we approximate Fg g by

kpq/mP dq
Fs „s,(Ap ——0)

(kFv 5
x arctan

~(xq'y

This is a large negative quantity, which is finite because g
is restricted to the first Brillouin zone. We are interested
in how this quantity depends on the lower cutofF k~T in
the &equency integral. For small &equencies v && yk+2

the q integration can be done first, which yields a fac-
tor proportional to (k~v/g)2~s. The v integration then
yields a large negative term plus a T ~ correction due

to the lower cuto8' at k~T.
When a gap 6 opens up both the real and imaginary

part of the polarization function are modified, and in
general Imllz(v) and Rell~(v) become very complicated
functions of the &equency v, especially when the gap
A(k) is anisotropic. Before studying the general case, we

will first consider the simpler case of an isotropic gap at
T = 0. In that case the propagator is modified by the
gap as follows.

(i) I ow-lying gauge-field modes with v ( 2b, are un-

damped, i.e., Imll~ = 0 for v ( 2A (at T = 0). In ordi-
nary superconductors this is responsible for the anoma-
lous skin effect.

(ii) The real part of II~(q, v) is enhanced, which stifFens
the gauge field.

We now see that this change in lmll~(v) and Relly (v)
gives rise to a huge cost in the &ee energy. From the dis-
cussion following Eq. (11) we learned that in the normal
state all gauge-field modes give a negative contribution
to the free energy Fs „s,(b, = 0). When an isotropic gap
6 &) T opens up, the gauge-field modes with &equencies
v ( 2A do not contribute to the &ee energy anymore.
The v integral in Eq. (11) is now cut off by 6 instead
of k~ T, so that a &ee-energy cost of 6 /' results. This
free-energy cost is in general much larger than the &ee-

energy gain coming f'rom FMF(b, ), which is proportional
to A2. This implies that due to low-lying gauge-field Quc-

tuations it is not favorable anymore to open up a gap 6,
and hence the superconducting transition temperature
will be suppressed.

We now turn to the the calculation of Imll~(v) and
Rell~(v) in the general case of an anisotropic gap b, (k)
at finite temperatures. The calculation is analogous to
the calculation of the complex conductivity in a BCS su-

perconductor, which was first performed by Mattis and
Bardeen, and by Abrikosov and Gorkov. Their re-
sults were originally meant for an s-wave gap A(k) = 6,
but it is a straightforward exercise to generalize these ex-
pressions to the anisotropic case of a d-wave gap A(k).4P

We will do our calculations in the extreme anomalous
limit (i.e., 1/q much larger than the coherence length),
which is the appropriate limit in our case. In this limit
one obtains

( )
OO —I&I —I&'I-~ -I&l

I 11~(q, )=-' ' + +~( -I&I-l&'I)
IXI, IA'

I

—v —oc I&'I —~

E(E+ v) + bA'
[f( ) f( + )]

[
2 2] [( ) ]

Rellp(q, v) = pp (q) E(E+ v) + AA'
dE , f(E+ v). [&'-E']:[(E+ )'-&"]:+, , f( E —v) sgn(—E+ v),[4"—E'] ' [(E+ v)' —A'] -'

(12)

where & = bp&pi, +qy2 and b, ' = Ap&p~ ~~2 (yi, = cos k
cosk„). Here we must choose k such that k + q/2 are
on the Fermi surface, so that A and 4' are completely
determined by g. The lower limit in the first integral in

I

Eq. (12) is the maxiinum of ]4( and (b, ') —v. Similarly,
the integrals in Eq. (13) are restricted to those values

of E for which the arguments of the square roots are
positive. For 6 = 4' the Eqs. (12) and (13) reduce to
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FIG. 5. This figure shows ImIIy (v) at T = 0 fp»'/& = 1
0.3, —0.3, and —1. Notice that there is no absorption for
v ( Ib I

+ Ib, 'I. For v & I4I + Ib, 'I it depends on the relative
sign of 4 and E' whether Imll~(v) is enhanced or suppressed
by the gap. The dotted line is the normal-state (6, = 0) value.

frequency

FIG. 6. This figure shows Rell~(v) at T = 0 for 6'/4 = 1,
0.3, —0.3, and —1. Similar to the case of Imll~(v), it depends
on the relative sign of b, and 6' whether Rell~(v) is positive
or negative.

the expressions given by Mattis and Bardeen. At 2' = 0
only the last integral in Eq. (12) survives, and therefore
lmll~ is onl noaze» f» v & I&I + I&'I

In principle we would like to solve for Fg „g,(b,p), by
combining Eqs. (9), (12), and (13). However, doing this
while taking full account of the anisotropic d-wave gap
and the non-spherical Fermi surface is a complex numer-
ical problem. Instead we will study two limiting cases for
the polarization function II~(v, b, , b, '). We will first coa-
sider the zero-temperature limit (i.e., T &( Ap), which is
the simplest case to understand &om a physical point of
view. We will later consider the opposite limit Ap (( T,
to study the possibility of a second-order transition.

A. The polarisation function at T = 0

The objective of this section is to give an estimate
of Fg „g,(6p), using zero-temperature expressioas for
Im II~(v) and Re II~(v). The dependence of Imllg(v)
and Re II~(v) on the gap 6p at T = 0 is shown ia Figs.
5 and 6, for various values of 6'/b, = b, (k —q/2)/A(k+

I

q/2). For q ~ 0 one always has b, '/b, 1, and
—Imll~(v) is suppressed for all v, evea for v &

I
b I+ Ib, 'I.

However for large q it is possible that b,6' ( 0, in which
case —Imllp (v) is actually enhanced for v & I+I + I+'I.
This is an important point to make, because this means
that while scattering processes that involve a small mo-
mentum transfer are pair breaking, scattering processes
with a large momentum transfer can have exactly the op-
posite effect. The dependence of Rell~(v) on Ap shows a
similar behavior (see Fig. 6), in the sense that Reil~(v)
in Eq. (13) is positive when b,b, ' & 0 and negative whea
AA' & 0.

We will initially igaore the anisotropy of the gap, which
is a valid assumption as long as the important momenta

q are small compared to the size of the Brillouin zone.
The most important feature of Imlly (v, 6p) is thea that
ImII~(v) = 0 for v ( 26p, so that gauge-field modes
with v ( 2b, p do not contribute to Fg „g,(Ap) in Eq.
(9) anymore. A crude estimate of Fg „g,(b,p) —Fg „g,(0)
is therefore given by the contribution to Fg „g,(0) of the
"missing" gauge-field modes with v C 26p. For T & TBE
we caa use Rell~(q) yq2, so that we can do the q
integration in Eq. (9) by scaling:

' ' dv v d'q fppv)
Fg~uge (6p ) Fg8~ge (0) — coth arctan

I

27r 2T 2' ( yqs )

2//3
71'

II
~5/s

ix) (14)

Note that Eg „g (Ap) Dp is nonanalytic in b, p2, so
that the pairing transition must be a Grst-order transition
in this approximation. More importantly, Fg „g,(b p)—
Fg»g, (0) is always much larger than FMF(b, p) for any
b,p, as long as y 1/(247rm~) remains small. This im-
plies that the opening of a gap will never happen for
T & TBE-

However, for T ( TBE the susceptibility y y~ will
increase rapidly, which will lower Fg „g,(Ep) in Eq. (14)
significantly. In fact, if y~ becomes much larger than
1/m~ = 2(t, the approximation Rell~(q) y~q is
only valid for very small q. Instead Rell~(q) levels off
to Rell~(q) ps for yq & ps, where ps x/m~ is
the superfiuid density of bosons. The fact that Reil~(q)
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becomes massive below TgE implies that we cannot as-
sume anymore that the dominant momenta q are small
in the integral (9) for Fs „s,(b,o). That means that for
T & TBE the anisotropy of the d-wave gap 4(k) will
start to play an important role. This decreases the pair-
breaking effects of the gauge field, because as pointed out
in the'beginning of this section, modes with a large mo-
mentum q actually favor pairing. The reason for this is
that b, (k+ q/2) and 6(k —q/2) can have opposite signs
if q is large enough.

The consequences of this for the phase diagram are
that the gauge field suppresses pairing very strongly at
low doping, but for large doping the pair-breaking effects
of the gauge field will be less pronounced, because the
gauge field is in that case stifFened by a large superfiuid
density pp.

B. The polarisation function for Lo && T

In the previous section we used a zero-temperature ex-
pression for the gauge-field propagator. The fact that
the free energy varied as Fs „s,(Eo) b, o f» T & TnE
implied that the superconducting transition had to be
a first-order transition in that approximation. It is an
interesting question whether the transition can becoine
second-order if we would use a finite temperature ex-
pression for Im II~(v) and Re II~(v). To address this
question we will assume that Ao && T, and expand
the polarization function in powers of 6o by writing
II(Eo) II(ks ——0) + A2o811/Bb, 02. We can then use this
expansion to find Fs „s,(b,o) for b,o « T. Using Eqs.
(12) and (13) one can show that in the limit b,o ~ 0,
BIIy /84o has the following functional form:

lim 2 Ils(q, v) = "R —
~
+ & "Ipy(q) vi . vi.

Do~0 gQo qp' T ) T).

hl — ——— dx
v 1 /&p (p

T 2 ~ (x 1+x)
1

x ——f (i') —f(xv) + f ((] + ~)~); (16)
2

= pp tanh + p +p

x 1 —tanh2 (17)

Notice that we have to use a finite-temperature expres-
sion for BII~/M. zo, because h,l(v/T) diverges logarithmi-
cally for T —+ 0. For yy' & 0, hl and h~ are always
positive, but for yy' ( 0, hl and h~ can become nega-
tive. This shows explicitly that scattering processes with
a large momentum transfer (for which spy' & 0) are not
necessarily pair breaking. %"e will later take this into ac-
count in our numerical calculations, but we will ignore
the anisotropy of the gap in the simple estimates that
follow below.

We can now use the expressions for hr(v/T) and
hR(v/T) to evaluate BFs „s,/84o, which according to
Eq. (9) can be written as

lgEg~~ge 8 q QiV fF coth
o a o 2m o 2' qv 2T

X
I,(v/r) Rerl —h, R(v/r) lmll

(ReII) 2 + (ImII) 2
18

It is instructive to estimate OFs „s,/Bb, o, assuming that
ReII yq, which is a valid assumption above the Bose-
condensation temperature TBE. The calculation. is sim-
ilar to the calculation of Fs „s,(b,o) in Eq. (14). The q
integration in Eq. (18) can again be done by scaling, and
one obtains

where h(v/T) is a linear combination of the functions
hr(v/T) and h~(v/T) . The frequency integral in Eq.
(19) diverges at v -+ 0, because h~(v/T) is linear in v/T
for v ~ 0. This implies that a second-order transition is
impossible for T & Tgp.

We will now analyze Eq. (19) for a small finite gap Ao.
One can repeat the calculations that led to Eq. (19) for
a nonzero gap Qo (& T, by noticing that a nonzero gap
Ao essentially introduces a lower cutoff in the &equency
integral in Eq. (19). This cutoff is due to the fact that
the expansion in Eq. (15) is only valid for v )) 2b, , and
the expansion clearly breaks down for v & 2A. Using
this cutoff one can now evaluate the &equency integral
in Eq. (19), which gives

2/3

b'~s (20)

This is the same functional form for Fs „s,(60) as ob-
tained in Eq. (14), where we used a zero-temperature
expression for II(v, b,o). The conclusion is again that
the superconducting transition has to be first order for
T & THE.

As before, the arguments that led to OFs „s,/M, 02

have to be modified if a superfiuid density ps
develops for T & TnE. If one replaces Rell(q) = gq2

by Rell(v) = ps one finds that the expression for
BFs „s,/Bb, o in Eq. (18) converges, even for Ao -+ 0.
This makes it, in principle possible to have a second-order
transition for T ( TBE, if pg is sufEciently large. Con-
sidering that the pair-breaking effect of the gauge field
diminishes as the super6uid density increases, we expect
that the first-order jump of Lo at the transition becomes
smaller as pg increases, and the transition might become
second order if pg is suKciently large.

These arguments assumed that there is a true super-
fiuid state for the bosons, i.e., Rell~(q) = ps for q -+ 0.
However, we discussed in Sec. II that one approximate
treatment of the interaction of the bosons with the gauge
field leads to the dissipative susceptibility y~ in Eq. (6),
which increases according to a Curie law yn 1/T, in-
stead of diverging exponentially below T&E. In that case
there is no true super8uid state anymore, which means
that even at low temperatures Rell~(q) varies like yq
for small momenta q. This implies that Fs „s,(60) will

still vary like Ao for a suKciently small gap Ao. There-5/3



SUPERCONDUCTIVITY PHASE DIAGRAM IN THE GAUGE-. . . 6861

fore we will always find a first-order transition if we use
the Curie-like expression for y~ in Eq. (6).

IV. NUMERICAL ANALYSIS OF Es „s (Ep}

We did a numerical analysis of Fq q(b, p), using the ex-
pression for Fs „s,(Ap) in Eq. (9), and assuming a d-wave
symmetry for the gap b, (k). We used mean-field expres-
sions for the RVB order parameter (, the susceptibility
yz, and the damping parameter pz(q), and we carefully
took the diamondlike shape of the Fermi surface into ac-
count. As mentioned after Eq. (10), yF is actually nega-
tive for the t Jmo-del {for doping z & 0.5), and ps (q) is
highly anisotropic due to the nonspherical shape of the
Fermi surface. The value of the order parameter ( de-
pends on z and T, and decreases rapidly if the doping z
becomes very small. We minimized the total &ee energy
Ft i(b, p) with respect to b, p, and the onset of supercon-
ductivity is determined by the temperature T, at which
Fg~g(Ap) has its global minimum at a nonzero value of
Ap.

The most challenging part of this numerical calcu-
lation is to find expressions for ImII~(v, b, , b, ') and
Rell~(v, 6, 6') that take into account that the d-wave

gap 6 = L~sa(p(pp+q/2 is anisotropic around the Fermi sur-
face. As pointed out after Eq. (13), this anisotropy of the
gap has the feature that processes with a large momen-
tum transfer q tend to favor pair breaking, because b,b, '

can become negative for large q. The anisotropy of the
gap is very important for the numerical values that one
obtains for the suppression of T,(z), and can definitely
not be ignored. We performed the numerical calculation
in the two limiting cases that we discussed in Secs. IIIA
and IIIB. In the first case we used zero-temperature ex-
pressions for Imil~(v, b, , 6') and Reil~(v, 6,6'), which
is a good approximation when Ap )& T. In the second
case we expanded ImII~ and ReII~ in Ap, which is a
good approximation when Ap « T. For v ) ~A~ + (b, '(
we used the functions hI(v/T) and hR(v/T) as defined in
Eqs. (16) and (17). This expansion fails for v & ~b, ~+(6'~,
in which case we used a high-temperature expression for
the propagator instead.

To take the effect of Bose condensation into account we
used a parametrization of Rell~(q), which interpolates
between the limits Rell~(q) g~q (for q ~ 0) and
Rell~(q) z/m~ (for large q). For y~ we used the
three possibilities discussed in Sec. II: (i) the mean-field
expression g& in Eq. (3); (ii) the dissipative expression
ys&" in Eq. (5); (iii) the self-consistent dissipative ys&c

shown in Fig. 2.
The result of our numerical analysis is shown in the

phase diagrams in Fig. 3 (using the mean-field gP&) and
Fig. 4 (using the dissipative y&"). The phase diagrams
show that T (z) is indeed strongly suppressed compared
to the mean-field transition temperature TP(z) (dotted
line), especially at low doping. The solid line represents
T,(z) if one uses T = 0 expressions for the propagator,
as discussed in Sec. III A, and the dashed line is the re-
sult for T, (z) if one assumes b, p « T, as discussed in
Sec. IIIB. These two approximations for the propagator

give results that are qualitatively similar. One has to
compare the first-order jump in b,p at T,(z) with T,(z)
itself to decide which approximation is more appropriate.

In Fig. 3 the first-order jump in Ap is small for large
doping so that the dashed line is appropriate, whereas for
small doping the j»mp in Ap becomes so large that the
solid line is more appropriate. The line indicated with
diamonds, which interpolates between the dashed line
and the solid line, is our best guess of what the correct
phase boundary is. We reiterate that the need to use
two different approximations for the polarization func-
tion (represented by the dashed line and the solid line)
is purely technical, due to the limitation of our compu-
tational abilities. Note that the superconducting tran-
sition temperature goes to zero at a finite doping near
z = 0.05. This is not too surprising, because the gauge
Geld becomes unstable towards a Qux phase for z 0.04
and hence the strength of the gauge-Beld fiuctuations di-

verges in the vicinity of this point. At higher doping the
transition temperature T,(z) approaches the mean-field
transition line TP(z), because the gauge field becomes
very stiff as the superfiuid density ps /zm~ increases.

When we repeat the calculation using y& the result
is indistinguishable &om Fig. 3. The reason is clear from
Fig. 2 by observing that for z 0.07 the self-consistent

is exponentially large for T & 0.2J. Because the
phase boundary is at a much lower temperature, the
bosons have essentially Bose condensed at the transition,
whether one uses y~& or y~&+. This model therefore pre-
dicts a Fermi liquid in a temperature range just above T„
even in the underdoped case. This aspect of the model
may be in disagreement with experiments, and we believe
that this is related to the fact that in the underdoped
case z ( 0.1 the self-consistent dissipative model under-
estimates the effectiveness of the gauge field to suppress
Bose condensation.

For completeness we show in Fig. 4 the phase diagram
using the dissipative model g~&". Note that the suppres-
sion of T,(z) is much larger than in Fig. 3. The first-
order jump in Ap is large at the transition, so that the
solid line, which uses the approximation Ap &) T, will be
close to the correct answer for T,(z). According to Fig.
2, y&s"' is still relatively small at the transition tempera-
ture for z = 0.07, so that the dissipative model predicts
a direct transition from a strange metal phase into a su-
perconducting phase at low doping. The fact that in the
dissipative model the gauge field is still massless at T, is
the reason why T,(z) is suppressed more strongly in Fig.
4 than in Fig. 3. As explained in Sec. II, we believe that
this dissipative model grossly overestimates the effective-
ness of the gauge field in suppressing T . We therefore
think that the phase diagram in Fig. 3 is closer to the
truth than the phase diagram in Fig. 4. In the under-
doped case z ( 0.1 the true answer will lie somewhere
in between Pig. 3 and Fig. 4, because at low doping the
self-consistent model underestimates the effectiveness of
the gauge Geld in suppressing Bose condensation.

As pointed out earlier in Sec. II, the first-order jump
in Lp will be rounded off by phase Huctuations of the
pairing field 4;~. Taking this into consideration the in-
terpretation of our numerical results should be that the
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FIG. 7. This figure shows b,oo(z), the gsp at T = 0. By
comparing this to T,(z) in Figs. 3 and 4 we find that the
ratio 2600/T, is approximately 3 if one uses the mean-field

ys (or the self-consistent y& ), and approximately 8 if one
uses the dissipative y~". This should be compared to the
mean-field d-wave value of 2400/T, 2.6, which does not
include any gauge-6eld fluctuations. We believe that in the
underdoped case the true value of 24oe/T, is significantly
larger than 3, because at low doping the self-consistent g~
underestimates the efFectiveness of the gauge-Beld to suppress
Bose condensation.

gap 60 increases very rapidly below T„much faster than
according to BCS theory. Our numerical results indicate
that this rapid increase in 60 will be more pronounced
in the underdoped case x & 0.1.

In Fig. 7 we show a plot of b,oo(z), where b,oo(z) is
the gap at T = 0. Note that Boo(z) is independent of
the particular model for y~, because the bosons are con-
densed at T = 0 for all three models. As expected the
function Boo(z) has essentially the same shape as T,(z).
We are mostly interested in the ratio 2b, oo( z) /T, ( z),
which is a constant according to BCS theory. For a d
wave gap without a gauge Geld we find this ratio to be
approximately equal to 2.6. If we include the gauge field
this ratio is enhanced, depending on the model that one
uses to determine T,(z). If we use the dissipative y&"
the ratio is strongly enhanced to 26po/T 8 but if we
use the mean-field y& or the self-consistent y& this ra-
tio is only slightly enhanced to 26op/T, 3. Because we
believe that at low doping y& underestimates the im-
portance of gauge-field Quctuations, we expect that the

correct value of 24pp(z) /T (z) will be significantly larger
than 3 in the underdoped case x & 0.1.

V. CONCLUSIONS

We analyzed the pair-breaking eKects of the gauge
Geld, by studying the contribution &om the gauge Geld

to the total &ee energy. This contribution Fs „s,(Ao)
depends on b,o, because a nonzero gap 6o modifies the
gauge-field propagator, and therefore changes the &ee en-

ergy. We showed that Es „s,(Ao) b,o, which implies
that the superconducting transition must be Grst order,
if one ignores Quctuations in the pairing field itself.

Our numerical calculations, which took into account
that the gap b, (k) has a d-wave symmetry around the
Fermi surface, showed that there is indeed a strong sup-
pression of superconductivity by the gauge Geld. The
value of the boson susceptibility y~, which indicates
whether the holons are condensed or not, played an im-

portant role in the suppression of T,(z). We used several
models for y~, and in all cases we found that super-
conductivity only survives in an intermediate range of
doping 0.05 & x & 0.35. The maximum critical tem-
perature occurs near z = 0.15. These numerical results
are in qualitative agreement with the well-known phase
diagram of the high-T, copper oxides.

One of our predictions is that the experimentally ob-
served "spin-gap phase" cannot be due to pairing of
fermions within the plane, because those Cooper pairs
are broken by the fiuctuating gauge field. We also pre-
dict that the nature of the superconducting transition
is significantly altered by the gauge field, especially in
the underdoped case. The signature for this is that the
magnitude of the gap Ao increases very rapidly below

T,. Moreover, we expect that in the underdoped case
the ratio 2boo/T„where bw is the gap at T = 0, will

be significantly larger than what one would obtain &om
BCS theory.
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