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Critical current of a one-dimensional superconductor
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We solve the Bogoliubov-de Gennes equations for a clean, one-dimensional superconductor in the
presence of super6uid Bow. The maximum electrical current occurs when the super8uid velocity v,
equals the Landau depairing velocity B/pF, where 4 is the pairing potential of the superconductor
and pF is the Fermi momentum. The resulting critical current is approximately 2/s times smaller
than the value eb/5 recently predicted for a superconducting point contact. The "discretized"
critical current of (2/s)(eE/5) arises when all the conducting electrons are forced to drift at the
Landau depairing velocity.

I. INTRODUCTION

All the phase bound. aries of superconductors are set by
"pair-breaking. " If electronic paths in the superconduc-
tor are no longer efFectively coupled to their time-reversed
paths, the individual Cooper pairs reduce to ordinary
electrons and the material becomes normal. For example,
the critical temperature of an ordinary, weak-coupling,
clean superconductor~ can be viewed as a competition
between the thermal dephasing length LT = vF(h/ksT)
and the pair size (o ——vF(5/2A). When the temperature
is large enough so that thermal dephasing occurs before
the pair orbit can be completed, the material becomes
normal at ksT,

Pair breaking also places an upper theoretical limit on
the critical current of a superconductor. 2 ~ If the electron
wave vector is k and the wave vector for the collective
drift motion (superfluid motion) of the electrons is q, the
ordinary k and —k pairing must be generalized to pair the
states (k+ q) and (—k+ q). This new pairing introduces
an oscillation frequency u„= Akq/m into the relative
motion of the &ee electron two-particle wave function.
If this wave function changes sign over the pairing time
5/b, , so that u„(5/b, ) 1, there is essentially destructive
interference of the pair at a velocity

vg = hqg/m = b, /pF,

k

i~r & » (2)

where pF = hkF = /2m@ is the Fermi momentum and
p, is the Fermi energy. Cooper pairs therefore "depair" if
forced to drift too rapidly.

The Landau depairing velocity vg bears on the re-
cently predicted 'discretization" of the critical current
in a superconducting point contact to eE/h. Refer-
ence 10 pointed out that a critical current of magnitude
eb, /5 follows naturally from Landau depairing in a one-
dimensional superconductor. The critical current of a
narrow superconductor is simply I envp, where the
quasiparticle density is n 2kF jn in one dimension.
Using (1) we have

II. ELECTRICAL CURRENT FLOW

The Bdc equations are

where the one-electron Hamiltonian H(x) is

d
H(x) =—,+V(z), (4)

with V(x) = 0. Following Ref. 3, we take the pairing
potential b, (x) to be

b.(z) = b,e 's e'~,

The factor of 2/n in this heuristic argument was dis-
missed in Ref. 10 both as inconsequential and likely to
move closer to unity in a more detailed calculation. s How-
ever, we show here that the correct numerical factor is
indeed 2/7r. The actual numerical prefactor in Eq. (2)
can probably be distinguished in future experiments on
narrow superconductors and point contacts.

Our calculation also impacts the study of mesoscopic
superconductor-normal-superconductor (SNS) junctions.
In a short SNS junction, where the length L of the nor-
mal segment obeys L « (o, the critical current is sup-
posedly evF/2(o ——eb, /fe. However, if the length of
the normal segment is not negligible, the critical current
is presumably suppressed to evF/(L + 2(o); for exam-
ple, see Ref. 10. Inserting a normal metal region into a
superconductor enhances the depairing of ordinary and
time-reversed electronic paths, suppressing the critical
current. Therefore, a short SNS junction cannot permit
a 50'Po larger critical current than a uniform superconduc-
tor. Transport calculations applying the Bogoliubov&e
Gennes (BdG) or Gorkov equations to SNS junctions
or NS interfaces may need to be modi6ed in some
way to obtain physically reasonable results.
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where 4 is a real number. The traveling wave in the
pairing potential b, (z) imposes a superfluid drift velocity
v, = hq/m on the quasiparticles.

Solutions of Eq. (3) have the form

( u(z) l f Ae'&*e'4'/

I( v(*) )I I( Be—'&*e—*4'/' )
' (6)

E„+, = (hk)(hq/m) + E„'+6', (7)

where the "average" or "center of mass"8 energy E~ is

where the A and B depend on k and q. The resulting
energy level spectrum is

J-.(*) = —Im(u~(z) l&u~(z)j) = IAI' (»)h(k + q)

and

J-.(*) = —™(v~(z)l7»(z)j)=
h,(k —q)

The equilibrium Fermi occupation factor for the state k
ls

1

] + e(gJ,

q/RENT)

The total particle current II and electrical current Iq
carried by the states (6) we therefore find as

g2 k2 g2q2
E~(k, q) = + —y, .

The spectrum from Eq. (7) is plotted in Fig. 1. (The
pairing potential is taken to be 4 = 10 meV, the Fermi
energy is p = E~ ——100 meV, and m is the free electron
mass. ) The main efFect of superfluid flow is to shift the
quasiparticle levels by an amount (hk)(hq/m). Figure 1
also shows that the depairing condition occurs when the
quasiparticle energy gap is reduced to zero.

The quasiparticle current density J~ and electrical cur-
rent density Jq are shown in the Appendix to be

and

(hql dk
Ip = 2

I

—
I

—f(k)
(m) 27I'

+2 f (k—) I

—
I (IA I' —IBI')

dk fhkl
2m (m) (14)

Iq = 2e
I

—
I

—(f(k)IAI'+ tl —f(k)ALIBI')
6hq) dk

q m) 2n.

(hk1
+2e f(k)—I

—
I

. (15)
2x (mj

For the electronlike branch the factors IAI and IBI are
Jp(z) = ).f(k)(J .(z) —J .(z) ) gl+ (b, /E&)2+ 1

2/1+ (6/E~)'
(16)

Jq(z) = e):(f(k)J .(z) —[I —f(k)jJ"(z)) (1o)

The sum in Eq. (10) can run over either the electronlike
branch, the holelike branch, the upper + branch, or the
lower —branch of the dispersion law. The sum in Eq. (9)
runs over the electronlike branch. The J„„(z)and J„„(z)
in Eqs. (9) and (10) are the Schrodinger currents carried
by the waves ug(z) and vi, (z), namely,

1.0

r4
0.0

-1.0

-1.0 0.0 1.0
Wavevector k/kF

FIG. l. Quasiparticle energy level spectrum for a clean
superconductor subject to a super6uid 6ovr of velocity
v, = vq = b, /pp (solid line) and v, = 0 (dashed line). The
quasiparticle energy gap is reduced to zero at the depairing
velocity e, = vz.

and

gi+ (b, /E„)2 —i
2g]. + (a/E„)2

The factor IA, I

—IB, I

= 1/gl+ (6/EA)2 is therefore
zero at the Fermi wave vector, and rises rapidly to nearly
unity away from the Fermi wave vector. Note IAI +
IBI' = i.

We graph the particle current Ip and the electrical
current Iq versus superfluid velocity v, = hq/m at zero
temperature in Fig. 2. The particle current Ip increases
linearly with the superfluid velocity when v, & vp, satu-
rating at (2/m)(b, /h) when v, ) vg. The electrical cur-
rent Ig increases nearly linearly with superBuid velocity
until v, = v~, reaches a maximum value slightly smaller
than (2/ir)(eb, /h) when v, = vz, and decreases abruptly
when v, & vg.

We can understand the behavior of II and Ig in Fig. 2

by examining Eqs. (14) —(17). When v, & vg, the elec-
tron distribution is symmetric such that f (k) = f( k)—
In that case, only the first term in Eqs. (14) — (15)
contribute to II and Ig. Thus, Ip is simply the su-
perfluid velocity hq/m times the quasiparticle density
P 2kp/n, while Ig is the superfluid velocity times
the electrical charge density Q. (P and Q are defined
in the Appendix). Figure 2 asserts that Q eP. The
heuristic argument in the introduction leading to Eq. (2)
therefore applies perfectly to the particle current Bow,
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FIG. 2. Electrical current Ig (solid line) and particle cur-
rent Iz (dashed line) versus super6uid velocity v, . The par-
ticle current saturates at (2/z)(E/5) above the depairing ve-

locity e, & eg, while the electrical reaches a maximum slightly
less than (2/z)(eE/h) at v, = vq.

and also seems to apply quite well to the electrical cur-
rent Bow.

For velocities greater than the depairing velocity, some
k states near the Fermi wave vector k = ky are forced
above the Fermi level p and become unoccupied, while
new occupied states are added below p near k = —k~.
The last term in Eqs. (14) and (15) then becomes im-

portant, as f(k) g f(—k). The particle current Ip does
not suffer Rom the occupation of reverse moving elec-
tron states near k = —k~, since their contribution to I~
is suppressed by the factor (A~2 —~B~2 0 in the second
term of Eq. (14). The first term in Eq. (14) still sup-
ports the particle current Ip = (2/7r) (b, /fc). In contrast,
the electrical current Iq is drastically reduced when ad-

ditional states near k = —ky become occupied, as the
second term in Eq. (15) produces a large and negative
contribution to Ig.

III. SELF-CONSISTENT
PAIRING POTENTIAL

If the pairing potential 4 remains 6nite above the de-

pairing velocity, Fig. 2 indicates that a supercurrent can
still Qow for v, ) vg. To see if such a "gapless" su-
perconductor is possible, we examine the self-consistency
relation for the pairing potential b, (x), namely,

2B'A =
+ +2 (20)

so that the self-consistency condition (18) for 6 = A(q),
applying Eq. (5), is

dk 1

gE (k ) ~,()~

1.0

The pair potential h(q) versus superfluid velocity
v, /vg = q/qg is shown in Fig. 3. For v, ( vg, and at
zero temperature, 6 is basically unafFected by the super-
Quid Qow. Despite their energy shift, all regions of the
energy band continue to support the pairing potential
with essentially the same weight as in the absence of a
superQuid Bow. At the depairing velocity, the states near
k kF o—ppose the contribution to the integral in (21)
&om the rest of the band. The large density of quasi-
particle states near k —k~ makes their contribution
outweigh that from the rest of the energy band, so that
at T = 0 Eq. (21) has no solution for a super8uid flow

faster than the depairing velocity. The decrease in 6 at
a finite temperature (T = 0, 25, 50, and 75 K) is also
shown in Fig. 3.

Rogers s s uses Eq. (21) to show that the superfluid
velocity can slightly exceed the depairing velocity in a
bulk superconductor. Rogers therefore finds gapless su-
perconductivity is possible for a three-dimensional super-
conductor. Gapless superconductivity does not occur in
a two-dimensional layer.

In Fig. 4 we plot the currents IJ and Iq versus super-
Huid velocity hq/m at a finite temperature, with the pair-
ing potential 6(q, T) determined self-consistently from
Eq. (21). The temperature dependence of the electri-
cal current Iq versus phase gradient (oVQ(z), where the
position-dependent phase is P(x) = P+ 2qz, is similar
to the temperature dependence of the Josephson current
versus the phase difference between the two superconduc-
tors in an SNS junction. s io The particle current How Jp

(18)

In Eq. (18) ~g~ is the pairing interaction strength, E&+ is

the quasiparticle energy &om Eq. (7), and the siimmation
over wave numbers k includes only energies on the upper
branch of the dispersion curve in Fig. 1. Using the states
(6) we have

E(x) = (g() [1 —2f(E& )]B'Ae 'v e'~ .

0.0
0.0 0.5 1.0
Superfluid velocity v, /v„

FIG. 3. Pairing potential A(q, T) versus super8uid veloc-
ity at temperatures T = 0, 25, 50, and 75 K. b.(q, 0) re-
mains constant up to the Landau depairing velocity, then
drops abruptly to zero. This "depairiug" transition in A(q, 0)
sets the critical current phase boundary.
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We take the sum P& in Eqs. (22) and (23) to run over
the electronlike states. Minimizing the &ee energy F with
respect to the occupation factor fs gives Eq. (13),proving
that the standard equilibrium Fermi occupation factor
with the energies from Eq. (7) is the correct occupation
factor for the quasiparticle states.

The Helmholtz free energy of both normal (F„) and
superconducting (F,) states is shown in Fig. 5. The free
energy is normalized to Fo = iF„i, where Fo = —2np/3
is the free energy of the normal state electron gas at zero
temperature. At low temperature, F„decreases as the
temperature rises due to the increase in entropy S. The
&ee energy of the normal state is also independent of the
superfluid flow velocity q, since A(q) = 0 in the normal
state. Thus, the &ee energy of a drifting superBuid is
being compared to that of a stationary normal electron
gas.

The drifting superBuid still maintains a lower &ee en-

ergy than the stationary normal state for all Bow veloc-
ities where the pairing potential A(q) exists. Our com-
putation is therefore internally consistent. Figure 5 also
shows that the &ee energy F, has a discontinuous jump
at the phase boundary for T = 0, indicating a first order
phase transition. F, smoothly approaches F„as the su-
perBuid velocity increases for any finite temperature T,
so that the phase transition is second order at any finite
temperature.

FIG. 4. (a) Particle current II (q, T) and (b) electri-
cal current Icf(q, T) versus superfluid velocity hq/m, calcu-
lated using the self-consistent pairing potential b, (q, T) from
Fig. 3. The critical currents are still Iq = (2/s')(eA/h) and
If = (2/s')(4/h) for zero temperature, but are degraded at
a 6nite temperature.

again remains larger than the electrical current Bow Jq
for all temperatures.

IV. HELMHOLTZ FREE ENERGY

V. CONCLUSIONS

We have solved the Bogoliubov —de Gennes equations
self-consistently for a one-dimensional superconductor in
the presence of superBuid Bow. Using the resulting self-
consistent order parameter, we have computed the elec-
trical current, quasiparticle current, and Helmholtz &ee
energy subject to the superBuid Bow. The calculation
confirms that coupled electrons and time-reversed elec-
trons in a superconductor "depair" at a critical velocity
v~ = b/p~.

For the superconducting state to persist, the Helmholtz
&ee energy F = U —TS under a superBuid Bow must
be less than that of the normal state. If not, the &ee
energy constraint will determine the phase boundary,
rather than Eq. (21). The expectation value of the inter-
nal energy U we obtain directly &om the second quan-
tized Hamiltonian 'R,g of de Gennes. By computing
U = ('R,g), we find

~ = ) .f E f l ~a(*)I'&*

-1.00

ca -1.01

—):('—f~)a f l
"~(*)l*~* (22) -1.02

0.0 0.5 1.0
Superfluid velocity v, /v,

S/I:~ = ).Ifs l—n ff + (1 —fs) ln(1 —fs) j . (23)

Equation (22) is evaluated at a fixed superfluid flow ve-
locity q. The energies Es are given in Eq. (7). S is the
usual entropy of independent Fermi particles,

FIG. 5. Helmholtz free energy E„(T) of the normal state
(dashed line) and F, (q, T) for the superconducting state (solid
line), calculated using the self-consistent pairing potential
A(q, T) from Fig. 3. The phase transition is Brat order at
T = 0, and second order at any 6nite temperature.
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The idea of a super8uid depairing velocity, originated
by Landau in the 1940s, qualitatively explains the "dis-
cretization" of the critical current carried by a one-
dimensional superconductor to (2/w)(eb, /5). The nu-
merical factor of (2/n. ) is easily understood by noting
that all the quasiparticles are drifting at the Landau de-
pairing velocity on the critical current phase boundary.

Q(z) = e ) .(f l~(z) I'+ (1 —f ) Iv (z) I') (A9)

and the electrical current Jq is identified as

Jq(z) = e ) (f„J„„(z)—[1 —f„]J „(z)) . (A10)
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&(z) = Ial). u (*)v.'(z)(1 —2f-)

we can write

(A11)

APPENDIX: CONSERVATION LAWS

The BdG Eqs. (3) imply the conservation laws x2

—) S„(1—2f„)= —) Im[b, (z)u„'(z)v„(z)(1 —2f„)]

+V'J~ =S„/2 (A1) Im[b, (z)b, '(z)] = 0 .
2

(A12)

and

(A2)

where the "source term" 8„ is

S„(z)= —„Im[u„'(z)A(z)v„(z)] .
4

We wish to use Eqs. (Al) and (A2) to construct one
conservation law for the quasiparticle current J~ of the
form

Therefore, if the self-consistency condition Eq. (18) is
satis6ed, there is a conserved electrical current given by
Eq. (A10). We have also obtained Eqs. (A8)—(A10) by
constructing the conservation laws &om the second quan-
tized Hamiltonian of de Gennes. However, we have not
been able to derive Eqs. (A6) and (A7) by this method.

A possible alternate de6nition of the electrical current
is found by xnultiplying both Eq. (Al) and Eq. (A2) by
the Fermi factor f and subtracting, yielding the conser-
vation law

8—P+ V' Jy ——0
t (A4) —Q'+ V Jq ——S' .

t (A13)

and a second conservation law for the electrical current
J with

Here the possible electrical charge is

—Q+V Jq =0.
t (A5)

Q'(z) = e):f-(lu-(z) I' —lv-(z) I') (A14)

We obtain Eq. (A4) by multiplying both Eq. (Al) and
Eq. (A2) by the Fermi factor f and adding, yielding a
quasiparticle density P of

and the electrical current is

Jq(*) = ).f (J.(*)+J..(*))

P(*) = ).f-(lu-(z)l'+ lv-(z)I') (A6)
with a source term

and a quasiparticle current J~, where

Jx (z) = ) .f-(J-.(z) —J-.(z) ) . (A7)

S'(z) = e) f„S„. (A16)

8 e—Q+V. Jq= ——) S„(1—2f ).Bt (A8)

In Eq. (A8) the electrical charge density Q is

To obtain Eq. (A5), we multiply Eq. (Al) by f, Eq. (A2)
by (1 —f), and add to find

Equations (A14) —(A16) are summed over the electron-
like branch.

Although the current Jq(z) is appealing from the view-
point of the conservation laws discussed in Refs. 12—14,
the source term S'(z) is not obviously zero unless S„=0
for all n. Therefore, Jq(z) might not be a conserved
electrical current in general. In this paper, however, we
indeed have S„=0 for all n, xnaking Eq. (A15}a possible
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candidate for the electrical current. However, Eq. (A15)
is very sensitive to which branch of the dispersion law is
chosen to carry out the P&. [For example, Jq(x) = 0 if
the + branch is chosen at zero temperature. ] Further, the
current Jq(x) from Eq. (10) seems to be independent of
the branch of the dispersion law chosen to carry out the

summation over wave numbers, making it an attractive
choice for the electrical current. For the actual numeri-
cal computations in Figs. 2 and 4 there is no qualitative
difference in the dependence of the currents Jg(x) and
Jq(x) on the superfluid flow; however, Jq(x) is slightly
larger than J&(x).
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