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We report measurements of the complex ac susceptibility y(T) for both isotropic and anisotropic
square superconducting wire networks as well as direct measurements of the magnetic normal-to-
superconducting phase boundary T, (H) ~r for these systems. The g( T) transition is substantially broader
and exhibits greater depression in magnetic field than the resistive transitions R ( T). Commensurability
structures found in the T, (H)~z measurements at low-order rational fields are greatly enhanced com-
pared to those found in resistively measured phase boundaries T, (H) ~„. For square networks made an-

isotropic by difFerent wire widths in the two perpendicular directions, the T, (H)~r phase boundaries
demonstrate that increasing the anisotropy greatly increases the depression of the susceptibility transi-
tion temperature at incommensurate applied magnetic fields. This indicates a weakening of the
network s ability to screen magnetic field with larger anisotropy despite the fact that anistropy is in-

creased by adding material to one set of parallel wires. This result supports a picture of anisotropic lo-
calization of the order parameter and/or anisotropic vanishing of the flux pinning or helicity modulus in
periodic systems in an irrational homogeneous field.

I. INTRODUCTION

In the past decade, superconducting networks have
proven to be extremely fruitful experimental systems. '

The behavior of the networks in the presence of a uni-
form magnetic field can be related to many general prob-
lems of current interest in condensed matter physics;
these include frustration, commensurability, two-
dimensionality phase transitions, localization, and elec-
tronic ground states in two-dimensional geometries in
perpendicular magnetic fields. As a consequence of Qux-
oid quantization, the applied magnetic field provides a
tunable length scale to complement the length scale al-
ready inherent in the network geometry. It is the com-
petition between these two length scales which results in
many of the interesting properties of these systems. Fur-
thermore, the description of the superconducting net-
works by a macroscopic wave function allows the
behavior of these systems to be mapped to a mathemati-
cally identical problem concerning the states of a single
electron on a lattice of the same geometry in a magnetic
field. Therefore, studying the networks gives us insight
into the nature of these electronic states.

In particular, we have recently reported evidence for
the apparent localization of the superconducting order
parameter in square networks into which anisotropy was
introduced by making one set of parallel wires wider than
the perpendicular set. Four-point resistive measurements

were used to independently probe the two sets of wires
and show that at incommensurate values of the applied
field, the resistive T, [operationally defined as
R(T, )=e aR„with ett -0.3, as discussed below] along
the narrow wires was substantially depressed below T,
measured along the wide wires.

In general, an explanation for the behavior of these
network systems is sought using linearized Ginzburg-
Landau (LGL) theory as originally applied to networks
by de Gennes and Alexander. For the isotropic square
network, the solution for the field-dependent transition
temperature T, (H) is formally equivalent to the max-
imum eigenvalue of the spectrum for a tight-binding elec-
tron on a square lattice in a homogeneous applied mag-
netic field; therefore, the phase boundary for an isotropic
square network is just the upper edge of the celebrated
Hofstadter Butterfly. A similar solution for the aniso-
tropie square network can be found using appropriate
modifications to the Hofstadter solution. (Specifically,
the complementary electron problem is one in which the
tight-binding transfer integrals differ along the two
different directions of the square lattice. ) We have
shown that this solution provides an excellent fit for T,
measured resistively along the wide wires of the aniso-
tropic network. This is reasonable given that the LGL
theory yields the highest temperature at which any part
of the system exhibits a nonzero order parameter. Since
we found T, of the wide wires always equals or exceeds

0163-1829/94/49(10)/6815(7)/$06. 00 49 6815 1994 The American Physical Society



6816 ITZLER, DANNER, BOJKO, AND CHAIKIN 49

that of the narrow wires, the LGL result can be expected
to describe the wide wire phase boundary. However, the
LGL solution provides no explanation for the behavior of
the narrow wires.

Additional insight concerning the anisotropic system
was provided by Aubry and Andre in their theoretical
treatment of the anisotropic tight-binding bands. They
found that for incommensurate magnetic fields, the wave
function is anisotropically localized; i.e., it is extended
along the strongly coupled direction while being localized
along the weakly coupled direction. This is entirely con-
sistent with our experimental results on the anisotropic
networks at incommensurate fields: at temperatures for
which the wide wires showed a loss of resistive sensitivi-

ty (indicating an extended order parameter), the narrow
wides retained a large fraction of their normal resistance
(indicating localized behavior). Only at much lower tem-
peratures did the narrow wires exhibit a vanishing resis-
tance.

As with all resistive measurements on superconducting
networks, the fairly narrow 8 vs T transition limited the
range of temperatures for which these previous experi-
ments were sensitive. In the interest of studying net-
works (particularly the anisotropic networks) at lower
temperatures, we have measured their complex ac suscep-
tibility y using a mutual inductance technique first em-

ployed by Shoenberg. This experimental approach has
many advantages including high sensitivity, simplicity of
construction, and versatility with regard to sample size
and shape. Recently, beautiful measurements have been
made on thin films and networks by Hebard and Fiory
and by Martinoli's group using a variation of this tech-
nique. However, our experimental setup is more similar
to that used previously by Pannetier's group. '

In the past, we have measured resistive phase boun-
daries by assuming that T, corresponds to a temperature
at which the network resistance falls to some chosen frac-
tion of its normal resistance R„. (Although in practice
we may choose an arbitrary fraction of R„, experience
has shown that the best agreement with the mean-field
solution given by LGL theory is found for values in the
range -30—50%%uo of R„.) A feedback loop maintained
this resistance while the magnetic field was swept by ad-

justing the temperature of the system. The temperature
thus obtained at any field H can then be identified with
the critical temperature T, (H) ~R, where ~ti indicates that
we are using a particular fractional value e~ =R ( T, }/R„
as our criterion for T, .

In an analogous way, we have directly measured a mag-
netic phase boundary T, (H}~z by using a fixed value of
the susceptibility y in the y(T) transition as our criterion
for the "magnetic" transition temperature [i.e., T, (H) is
defined by y(H, T, ) —= [( l —ez)y, +e&g„], where y„(y, ) is
the normal (super conducting) susceptibility]. Gandit
et al 'previously m.easured y(H) at fixed temperatures
for isotropic square nets and indirectly deduced a mag-
netic phase boundary fmm those sweeps, but as we shaH

see, direct measurements of T, (H) tr reveal much greater
detail. For both isotropic and anisotropic square net-
works, we have found that the structure at commensurate

fields is greatly enhanced and is evident out to higher-
order fields when compared to similar structures found in
the resistively measured phase boundaries T, (H )~z. Ad-

ditionally, the y(T) transitions are much broader and
substantially depressed in temperature relative to the
R ( T } transitions.

The measurements of T, (H) ~r for the anisotropic net-

works also reveal the following remarkable behavior. At
incommensurate applied fields, the susceptibility transi-
tion temperature is greatly depressed as the anisotropy is
increased. This transition essentially probes the change
in the sample's ability to screen magnetic fields. There-
fore, at incommensurate fields, samples with larger an-

isotropy screen much more weakly (i.e., at a given tem-
perature in the transition region) even though the anisot-

ropy is increased by adding material to one set of parallel
lines (making them wider) while leaving the other set un-

changed. This result is consistent with the idea suggested
by our earlier resistive measurements that the supercon-
ducting order parameter is anisotropically localized as
was first predicted in the work of Aubry and Andre and
that the effects of this localization are more pronounced
with increasing anisotropy. However, recent theoretical
studies of anisotropic networks show complementary
effects with presumably related origins. For networks at
rational fields Hu and Niu" found interesting tempera-
ture dependences to the flux lattice structure and "weak-
ened" correlations for Aux 1ines separated by thicker
wires. Alternatively, Monte Carlo studies of frustrated
XFmodels with anisotropy show that the rigidity or heli-

city modulus becomes finite at a higher temperature in
one direction than another. This would yield a tempera-
ture range in which the flux lines are pinned in one direc-
tion but not another. The magnetic screening measured

by y would not be effective until the flux is pinned in all
directions.

The remainder of this paper is organized as follows.
Section II contains experimental details. In Sec. III, we

report the results of susceptibility measurements made on
isotropic square networks, and Sec. IV contains the re-
sults of similar measurements made on the anisotropic
square nets. %e discuss these results in Sec. V and
present our conclusions in Sec. VI.

II. EXPERIMENTAL DETAILS

The networks studied in these experiments were fabri-
cated at the National Nanofabrication Facility at Cornell
University using standard bilevel electron beam lithogra-
phy. AH samples consisted of 500-A-thick aluminum de-
posited by e-beam evaporation in a square lattice
geometry of 400X400 lines with a 2.0-pm center-to-
center line spacing. For the isotropic networks, all lines
had a width of 2300 A. In the anisotropic samples, the
narrow set of parallel lines had a 2300-A linewidth while

the wide lines in the perpendicular direction had widths

varying from 1 to 4 times that of the narrow lines. Resis-
tivities of simultaneously evaporated solid films were on
the order of 1 LMQ cm.

The apparatus for the susceptibility measurements was
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based on a mutual inductance technique employing two
counterwound pickup coils driven by a single coaxial
drive coil (see Fig. 1). For geometrically identical pick-
ups (aside from the winding direction), the net emf across
the pair due to the drive field should be zero since they
are counterwound. Once the net signal across the pair is
nulled with a sample inside one of the pickups, any
change in the sample s magnetization will change the in-
ductance of this pickup and generate a signal proportion-
al to the sample's magnetization. By applying a time-
varying field dH, the derivative of this magnetization
dM/dH can be measured and used to calculate the com-
plex susceptibility y—=y'+iy" of the sample. This mea-
surement can be made in the presence of any external dc
magnetic field.

The real part of the susceptibility, y, is essentially a
measure of the sample's screening capacity. If the
sample's skin depth or penetration depth 5 is much
greater than its characteristic dimension a, there is prac-
tically no screening and y'-0; conversely, if 5 «a, then
y' attains its saturation value. Dissipation in the sample
is given by the imaginary part g". For 5 »a, there are
negligible screening currents and therefore there is negli-
gible dissipation; when 5 (&a, screening currents are car-
ried only at the sample's surface and again the dissipation
is small. In the intermediate range 5-a, the dissipation
(and therefore y") reaches its peak value. For a good
conductor, the skin depth 5~ 1iv o where o is the in-
trinsic conductivity of the sample. One can then inter-
pret a finite width normal-to-superconductivity suscepti-
bility transition as the temperature range in which the
sample conductivity increases from its normal-state value
to the saturation value in the superconducting state
(where crusoe for co~0). Finite resistivity can result
from order-parameter amplitude fluctuations (to zero) or
phase fluctuations (motion of flux lines).

Small residual offsets present after cooling the coun-
terwound pickups to helium temperatures were canceled
using an ac bridge circuit. Each pickup served as one
arm of the bridge, and variable resistance and capaci-
tance on the remaining arms were adjusted to achieve an

acceptable null. Both the real and imaginary parts of g
were measured simultaneously using a PAR 5301 dual-
phase lock-in amplifier. Generally, the phase was set to
give y"=0 when the sample temperature was well below
the y transition (where the dissipation can be expected to
be negligible).

As illustrated in Fig. 1, samples were mounted on a
single-crystal quartz pedestal so that they were positioned
at the center of one pickup where the maximum signal
was obtained. Leads for making simultaneous resistive
measurements were also present. The apparatus sensitivi-
ty was calibrated using a known sinusoidally varying
magnetic moment (a small current loop); for the pickups
used in most of the measurements, this value was
1.0 X 10 s esu/pV/kHz. A drive current of 100 pA gen-
erated an oscillating drive field dH —16 mG; this ampli-
tude was determined to be well within the linear response
regime. Drive coils were made with a single layer of ap-
proximately 100 turns of 38 AWG copper wire, and the
pickups typically had between 1000 and 2000 turns of 44
AWG wire wound in many (-50) layers. The large
turns ratio (100:2000) was necessary to achieve sufficient
sensitivity while using a drive field dH small enough not
to perturb the system.

III. ISOTROPIC NETWORK RESULTS

Before considering the anisotropic samples, we will
first present typical results for the susceptibility transi-
tions y( T ) for an isotropic square network; these are
shown in Fig. 2. The real part y'(T) (upper part of left-
hand vertical scale) and the imaginary part y"(T) (lower
part of left-hand scale) are plotted with the R(T) resis-
tive transitions (right-hand vertical scale). The rightmost
curve of each type is taken at zero field; the middle
curves are for f= ,', and the leftmo—st curves are for

f=0.618. . ., where f is the average flux per unit cell of
the square lattice. [The third value corresponds to the ir-
rational field f=1/r=(v'5 1)/2, the—inverse of the
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FIG. 1. Schematic diagram of coil setup and sample place-
ment for mutual inductance technique used to measure complex
ac susceptibility of superconducting networks. The copper
stage is at the end of a cold finger capable of reaching -500
mK.
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FICx. 2. Susceptibility and resistive transitions for an isotro-
pic square network. g'(T) is on upper part of left-hand vertical
scale, y"( T) is on lower part of left-hand scale, and R(T) is on
right-hand vertical scale. The rightmost curve of each type is
taken at zero field: the middle curves are for f= z, and the left-

most curves are for f=0.618. . . .
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golden man. ] All three curves at a given field were taken
simultaneously. Curves for f=1 are not shown since
these were identical to the f =0 results aside from a
slight depression in temperature (a few mK) due to flux

expulsion from the bulk of the wires. Perhaps the most
obvious feature in Fig. 2 is that the susceptibility transi-
tions are substantially wider than the resistive transitions;
whereas zero-field resistive transition widths (10%—90%)
are about 3-5 mK, the susceptibility transition widths at
zero field are on the order of 40 mK. [The g( T) width is
taken to be the distance between the two points at which
y" is 10% of its peak value. This seems to be a more
reasonable criterion than any using y'(T) since the satu-
ration beyond the knee in y'( T ) is rather slow. ] Another
feature is the depression and broadening of both parts of
y( T) in a magnetic field. The depression is much greater
at the incommensurate field f=0.618. . . than it is at the
commensurate filed f= ,'. The i—ncommensurate case also

shows somewhat larger broadening. A third characteris-
tic of these transitions is that the onset of the y( T ) transi-
tion clearly overlaps the resistive transition tail at all field
values. [This is seen most obviously where the g'(T)
curves cross the tails of the R(T) transitions near 1.20
K.]

The y( T ) measurements were made at frequencies
ranging from 1 to 50 kHz. In this range, we found no fre-

quency dependence for these transitions to within an un-

certainty of +5 mK. This indicates that there is no dis-
tinct Kosterlitz-Thouless transition in these systems; if
the y(T) transition were KT-like, it would exhibit a no-
ticeable frequency dependence. This conclusion is con-
sistent with the fact that the small network resistances
render the KT transition temperature Tzz indistinguish-
able from the mean-field T, since the difference T, —Tzz
is expected to be much smaller than the measured mean-
field transition width of 3-5 mK.

Using the calibration from the previous section, we can
calculate the susceptibility and demagnetization factor
for the samples from the saturation value of dM/dH.
Since the samples are thin films, we can expect the
demagnetization factor rl [given by y= —I /4n. (1—g) ] to
be quite close to 1 and y to therefore be quite large. Typ-
ical saturation values for dM/dH were about 1.5 X 10
esucm/G (see Fig. 2), and sample volumes were about
(0.82 nm) X0.05 pm=3. 36X 10 cm . (In calculating
the volume, we treat the networks as continuous films.
This seems appropriate since solid films did, in fact, have
the same saturation value. ) Therefore, the measured
volume susceptibility y„=(I/V )(dM /dH ) is about
—450. This is much larger than the value —1/(4') ex-
pected for bulk superconductors (at least when q-0) be-
cause the film excludes flux from a roughly spherical
volume with a diameter equivalent to the linear dimen-
sion of the film. These results are consistent with values
reported by Gandit et al. ' for square indium networks
which were 6 mm on a side. Their value for the volume
susceptibility (y„——3500) is larger by approximately a
factor of the ratio of their linear sample dimension (6
mm) to our linear sample dimension (0.82 mm). It is
clear that this should be the case when one considers that
although their sample volume is larger by this ratio

squared, their screening volume is larger by this ratio
cubed. Therefore, their value for y, should be larger by a
single power of this ratio.

In an attempt to account for the zero-field width of the

y( T) transition, y can be viewed as a contactless mea-

surement of the complex impedance of the sample with

greater sensitivity than that of the resistive measurement.
We expect that the peak in the dissipative part y '( T) will

occur when the magnetic penetration depth is on the or-
der of the sample size. %e start with Pearl's form' for
the penetration depth in the two-dimensional limit:
A=2K, /d, where A, is the bulk penetration depth and d
the sample thickness. The temperature dependence
for A, is' A, =A.,Q 0)[( T,

—T)/T, ] '~, where A,,$0)
=ho"'"(go/1. 331)'~ is the zero-temperature penetration
depth in the dirty limit; in aluminum, V~"'"=0.016 pm,
(o-1.6 pm, and the sample mean free path 1-0.0235
pm as determined elsewhere. ' Finally, we must consider
that the square lattice is mostly devoid of material there-

by reducing its screening ability, and we should correct
for this by dividing by the linear filling factor of —

—, (as-

suming line widths of -0.25 pm and lattice constants of
2 pm). This gives a difference between the resistive T,
and the temperature at the peak in y"( T) of b T, —5. 3

mK which is off by a factor of 6 from the measured value
of -30 mK. Therefore, the above analysis is insuScient
to account for the g( T ) transition widths. (However, the
small filling factor in the isotropic networks does make
an unambiguous contribution to the width since solid
thin films were found to have a dissipation peak at a sub-

stantially smaller value of hT, —10 mK. )

As described in the introductory section above, we can
measure a magnetic phase boundary T, (H)~r by fixing y
at some fraction of its maximum value using a feedback
loop while the field H is swept. Locking into either g' or
g" gives qualitatively similar results, and so the data
shown below were taken using a fixed value only in the y'
transition. Results were also fairly insensitive to the pre-
cise lock-in value as long as it was not too close to the
transition tails. Figure 3 shows T, (H)~r, where g' was

fixed at 50% of its saturation value (e&=0.5), and the
lower curve is the resistive phase boundary T, (H}~„
(with ez -0.3) for the same sample. The magnetic phase
boundary shows much larger commensurability struc-
ture, and this structure is apparent for higher-order corn-
mensurate states: structures at f=

—,
' are fairly unambi-

guous on the magnetic phase boundary whereas structure
at f= ,' on the resistive p—hase boundary is completely ab-

sent. In fact, the magnetic T, (H) bears a closer resem-

blance to Josephson junction array data this is perhaps
not so surprising given that the susceptibility data are
taken well below the GL transition temperature so that
we are no longer in the mean-field regime.

In the presence of a finite magnetic field the ac penetra-
tion depth depends on flux pinning and dissipation. The
interpretation of the susceptibility in this picture is that
the harmonic pinning constants are large for low-order
commensurate states and progressively smaller for less
commensurate states. The finite pinning for incommen-
surate states presumably comes from imperfections.
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FIG. 3. Magnetic phase boundary T, (H)Iz of an isotropic
square network taken by locking into 50% of the saturation
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Since the pinning constants increase with lower tempera-
tures, the T, (H)Ir measurement then refiects the fact
that to et theg same pinning (same y}, a lower tempera-
ture is required for less commensurate states.

IV. ANISOTROPIC NETWORK RESULTS
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6820 ITZLER, DANNER, BOJKO, AND CHAIKIN

the g' saturation value. Plotted below this on the same
scale is the resistive phase boundary T, (H)~z taken by
probing the narrow wires for the same sample. As in the
isotropic sample data, the magnetic phase boundary
shows much deeper structure out to higher-order com-
mensurate fields than the resistive data, and in this case it
is even "spikier" than the isotropic sample data. Fur-
thermore, for this case the depression at incommensurate
fields is enormous ( —50 mK).

We can see the dependence of this depression on an-
isotropy in Fig. 6. In this figure, we present the magnetic
phase boundaries T, (H) ~r with y' locked at 50% for four
anisotropy ratios (bottom to top): the isotropic case (I:I),
2:1, 3:1, and 4:1. For larger anisotropy, the increased
depression at incommensurate fields is obvious and the
structure at commensurate fields grows sharper as well.

V. DISCUSSION

In a previous study we reported the measurement of
the resistive transitions for some of these networks. They
showed that the resistance along the wide wires is re-
duced much more rapidly with decreasing temperature
than the resistance along the narrow wires, but that this
is only true for irrational fields. The present measure-
ment of y requires circulating screening currents and
therefore probes both directions. However, based on
resistance measurements presented here and in our earlier
work, we expect that the large suppression of the screen-
ing response is dominated by the inability of the narrow
wires to support supercurrents at the same temperature
where such transport is possible along the wide wires.
Screening is only effective when the skin depth is compa-
rable to or less than the size of the sample and at our
measurement frequency this requires much lower resis-
tances than we can probe with our conventional four-
probe technique. The ac susceptibility therefore provides
us with a probe much deeper into the superconducting
state than resistivity. Once the skin depth calculated
from the low-frequency resistivity is less than the sample
dimension, the ac screening may still remain small due to
weak pinning and a large superconducting penetration
depth.

There are two mechanisms which can produce resis-
tance in the vicinity of the superconducting transition in
a magnetic field: the magnitude of the order parameter
may be zero somewhere in the system yielding a region of
normal resistance, or the flux lines piercing the system
may not be pinned. The magnitude effects are presum-
ably responsible for the difference between the measured
and calculated transition temperatures for disordered
networks where it is known that the highest transition
temperature state is localized. A more mundane exampl. e
would be a multilayer sandwich of superconducting and
magnetic films which would have resistance at zero tem-
perature. Flux motion corresponds to time-dependent
phase slips causing a voltage and resistance. Examples of
resistance from flux-line motion are particularly popular
in the high-T, superconductors where the resistive transi-
tion is tremendously broadened in the presence of a mag-

netic field piercing the two-dimensional layers.
In terms of the amplitude effects, a natural explanation

of our results can be found in the work of Aubry and An-
dre. They showed that the solution to Schrodinger*s
equation for an electron is an anisotropic tight-binding
band in an irrational magnetic field is localized states in
the smaller bandwidth direction and extended wave func-
tions in the larger bandwidth direction. For linearized
Ginzburg-Landau theory applied to our system, this
maps to an extended superconducting order parameter
along the wide wires and a localized wave function along
the narrow wires. This would naively suggest a zero
resistance path along the wide wires and a nonzero path
along the narrow wires for the highest-temperature su-
perconducting state. Since the nonlinear problem has not
yet been solved, it is not evident how quickly an extended
state would develop along the narrow wires as tempera-
ture is lowered. The anisotropic extended-localized states
may remain considerably more stable energetically to low
temperatures. Another scenario is that, on cooling, the
order parameter still varies in the weak direction and that
these low magnitude strips provide easy pathways for flux
motion and phase slip.

The opposite view would be to see what happens when
the order parameter is fixed in magnitude at all tempera-
tures, i.e., in a Josephson array or XY model. Recent
Monte Carlo techniques allow for the study of incom-
mensurate structures. For commensurate, but fully frus-
trated fields (one-half flux quanta per cell) in anisotropic
triangular XY models the remarkable result was that the
rigidity went to zero for directions perpendicular to the
strong bonds at lower temperature than along the strong
bonds. ' Moreover, the structure was incommensurate
and temperature dependent even though the field itself
was commensurate. What this implies for anisotropic
Josephson arrays and wire networks without amplitude
fluctuations is that the helicity modulus can be zero in
one direction and finite in another at a given temperature.
This would give finite resistance in one direction (along
the weak bonds) and zero in the other (along the strong
bonds). It presents the same paradox apparent in the lo-
calization problem. If the helicity modulus were to go to
zero in one direction while remaining large in the other,
the dimensionality would be reduced, and both localiza-
tion and XY phase transitions are drastically different in
one dimension.

Hu and Niu" have recently investigated anisotropic
square lattices for several rational fields below the super-
conducting transition. They find the interesting result
that the commensurate flux lattice rearranges below T,
and there are several transitions to states with different
symmetry. Often the periodicity remains the same per-
pendicular to the wide wires, but the flux lines move and
rearrange in the rows between these wide wires. It ap-
pears that there is little interaction between the flux lines
in one row and the next. Moreover, the larger the value

of q in f=p /q, the greater the number of different phases
and the more closely spaced are the transition tempera-
tures. This would suggest that for irrational fields (as

q ~ &n ) the flux lines may have a continuous rearrange-
ment with temperature, a floating incommensurate phase
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inside the rows, while they are locked commensurately
between rows.

VI. CONCLUSIONS

We have measured the complex susceptibility )t'(T) for
both isotropic and anisotropic superconducting square
networks. We find that the )t'(T) transitions are substan-
tially broader than the resistive transitions R(T) and
occur at lower temperature. We have also reported the
first direct measurement of the magnetic phase boundary
T, (H)~r and shown that commensurability structures
found in these measurements at low-order rational fields
are greatly enhanced compared to those found using
resistively measured phase boundaries T, (H ) ~tt . As far
as we know, there is not yet a suitable theoretical descrip-
tion for the magnetic phase boundary which strongly de-
viates from the mean-field theory phase boundary that
has been successfully applied to many resistive transi-
tions. For the anisotropic samples, T, (H) ~z data demon-
strate that increasing the sample anisotropy substantially
increases the depression of the y transition temperature
at incommensurate fields rejecting a weakening of the
network's screening ability even though the anisotropy is

enlarged by adding material to one set of wires.
The problem of anisotropic superconductivity has

gained increased notoriety due to the discovery of the
high-temperature superconductors and the even more
highly anisotropic organic superconductors. In these sys-
tems the motion of Aux lines is considerably easier be-
tween the planes than for Aux piercing the planes or mov-
ing across the planes. The present study suggests that the
eSects of anisotropy and applied field create a situation in
which the incommensurability and frustration are con-
centrated in the "weak" direction and that easy fiux
motion and low ac screening are the natural conse-
quences. In the anisotropic superconducting networks in
irrational magnetic fields, either the order parameter, the
helicity modulus, or the Aux pinning vanishes in one
direction at a lower temperature than in the other.
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