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Correlations in vector-spin-glass models in a transverse field
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Several publications dealing with the infinite-range quantum XY and Heisenberg spin glasses in
an external magnetic field K in the z direction share a common supposition: the correlation between
the x and y components of the spins is zero. Using the Matsubara imaginary-time formalism we

show that this assumption holds only for those models where K = 0. With the help of the Trotter-
Suzuki formulation we investigate the phase diagram of the XY' model for spin S = 1/2, and find
that it is different from those previously reported because of the nonzero zy correlation. It is also
argued that for a general spin S in the XY model at zero temperature the spin-glass phase persists
up to K, =2S.

I. INTRODUCTION

In quantum spin-glass models with infinite-range
interactions attention is increasingly paid to sys-
tems with more and more complicated forms of the
interactions2 or symmetries, s whereas simpler cases such
as the XY or Heisenberg xnodels in a transverse field are
not yet properly described. In the present paper we in-

vestigate in detail the XY model, but our basic results
hold also for the Heisenberg model.

The Hamiltonian of the XY model is given by

N N

II = ——) J;s (S~;Sos+ SyiSM) —K) S„,
&W2 i=1

that the XY spin glass has a smaller critical temperature
than the Ising spin glass for all transverse fields.

This paper is organized as follows. First, in Sec. II,
we present arguxnents to show that at zero temperature
in the XY model the spin-glass phase persists up to
K, = 2S. This value is higher than that of the Ising
model, contrary to previous predictions. We show in Sec.
III that the contradiction comes from the fact that previ-
ous researchers have overlooked an important correlation
between the x and y components of the spin operators.
In Sec. IV we present a Trotter-Suzuki calculation of the
kee energy and some preliminary results for the phase di-

agram of the XY model. Finally, we discuss the possible
extension of our results to the Heisenberg model.

where S, = (S;,S„,, S„) is the quantum spin oper-
ator associated with the spin S at site i. The J;~
(i ( j, J;s = Js;) are quenched random exchange in-

teractions governed by independent symmetric Gaussian
distributions with mean zero and variance 1/~N (results

for variance J/~N can be obtained by an appropriate
rescaling of the temperature and of the transverse field).

The phase diagram of the system with the Hamil-
tonian (1) has been investigated within several
approxixnations, 4 8 including an "exact" Trotter-Suzuki
calculations for spin 1/2. The results seem to indicate
that the XY spin-glass model behaves qualitatively as
the Ising model does, the only difference being that the
transition temperatures are lower in the former because
of its higher degree of &eedom.

In the Ising model, the transverse field acts as a source
of a "noise, " as does the temperature, and the spin-glass
phase seems to have the same properties as the classical
spin glass. In the XY model, the transverse field acts
diH'erently Rom a simple "noise:" since the magnetization
connected to the field commutes with the Hamiltonian
(1), the eigenstates of the Hamiltonian (1) are indepen-
dent of the field values and only their energies change as
the field varies. This means that one cannot say a priori

II. THE QUANTUM ZERO-TEMPERATURE
PHASE TRANSITION

Although there have been several attempts to describe
the zero-temperature behavior of the infinite-range quan-
tum Ising spin-glass model in a transverse field,
only extrapolations &om finite-temperature analysis have
been made for its XY counterpart. For S = 1/2, estima-
tions of the critical transverse field K,(T = 0) vary from
1.253/2 to s 1.44/2 in contrast to the value K, = 2/2
resulting from the static approximation4 s (SA) (the fac-
tor 1/2 comes from the relation S„= —o„,p, = x, y, z,
between the spin operators and the Pauli matrices: see
Sec. IV).

As we have shown elsewhere, to discuss the ground
state properties of the Hamiltonian (1) only two prop-
erties of the interaction matrix J;~ need be considered:
its symmetry with J;; = O, Vi, and the fact that its
largest eigenvalue is finite, i.e., A ( oo. Since H com-
mutes with the total magnetization in the z direction
M = g, S„,all eigenstates of II can be characterized
by a fixed magnetization M, . The state

~
NS), where all

spins are aligned in the direction of the external field, is

0163-1829/94/49(10)/6794(6)/$06. 00 49 6794 1994 The American Physical Society



49 CORRELATIONS IN VECTOR-SPIN-GLASS MODELS IN A. . . 6795

In this section we show that the contradiction between
the results of the zero-temperature analysis discussed
above and that of previous publications is due to a cor-
relation between the x and y components of the spins,
overlooked in these publications.

The derivation of the free energy, using the Matsubara
time formalism is given in Ref. 4 and is a straightforward
generalization of the work of Bray and Moore. Here we
quote only the paramagnetic free energy F„:

1 1

Fy = drdr R~~(r, r ) + R„(r,r )
0 0

—2R „(r,r') —ln Q~,
1 1

Q~ = Tre *T exp P drdr'4(r, r')
0 0

(2)

4(r, r ) = R~~(r) r )S~(r)S~(r )

+R„„(r,r') S„(r)S„(r')
+21R»(r, r )S~(r)ss(r ), (4)

where T is the time-ordering operator rearranging the
S (7) operators in the expansion of the exponential of
Eq. (3) in order of decreasing tiine arguments. The op-
erator S (r) is defined as

S (r)=e P *S eP *, n=z, y, z, (5)
and the correlation functions R p(r, r') are determined
from the saddle-point equations:

R~~(r) r') = (T~s~(r)s~(r'—))p,

R w(r r') = O'-Ss(r)sw(r'))~—

R»(r r') = =(T-S*(r)sw(r'))~

(6)

(7)

(8)

where (T .
)& means an average with respect to the ef-

fective Hamiltonian defined in the exponent of Eq. (3).
. From Eqs. (6) and (7) it is clear that both R and R„„

the ground state for K & K = SA . For K & K, the
ground state has M (NS.

For a random Gaussian matrix J;~, A = 2 in the
limitis N ~ oo (for N finite A has a distribution
whose width is proportional to N ~ ). This value of

gives K, = 2S, implying that for K & K the
ground state cannot have spin-glass order. For K ( K,
and N —+ oo the spin-glass order may be present, as we
believe to be the case. For S = 1/2 this conjecture is
supported by the finite Trotter-Suzuki calculation pre-
sented in Sec. IV, where we find that the transition line
lies above the one resulting from the SA. On the other
hand, the SA at zero temperature gives exactly the same
critical value, 4'5 K, = 2S, as this zero-temperature anal-
ysis. This means that if the static approximation yields a
lower bound for any temperature, the exact critical field
for T = 0 is K, = 2S. We think that the above-described
change in the ground state is the reason that the same
critical field is found using difFerent approximations. ' '

III. MATSUBARA IMAGINAL- TIME
FORMULATION

are even functions with respect to the exchange of 7 and
~I

Some authorss s claim that R „(r,r') = 0 by symme-

try, without defining what kind of symmetry they mean.
Other authors using the SA neglect R „(r,r') with-
out any explanation and give a misleading statement
about the symmetry of the paramagnetic phase. Finite
Trotter-Suzuki calculations ' also use the R „(r,r') =
0 supposition for the high-temperature phase. We will
show that a nonzero external field K gives a nonzero
R & even in the paramagnetic phase.

The system possesses rotational symmetry about the
z axis, so the &ee energy, Eqs. (2)—(4), and the correla-
tion functions, Eqs. (6)—(8), are invariant under any such
rotation, i.e.,

RP,v —RPv ) I ) 7 9
1 1 1 1

drdr'4 (r, r') = drdr'4(r, r'),
0 0 0 0

which are fulfilled for any angle y, if the correlation func-
tions, Eqs. (6)—(8), obey the symmetry relations

R~~ (r, r') = R„„(r,r'),
R»(r, r ) = —R»(r ) r).

(9)
(10)

Equation (9) is a natural consequence of the rotational
symmetry. However, Eq. (10) does not imply that
R „(r,r') is identically zero: it is simply an odd func-
tion with respect to the interchange of its arginnents. To
show explicitly that R s(r, r') g 0 one can calculate the
diHerence between the left- and right-side limits at w = w'

&om Eq. (8):

R» (r~ r —o) —R»(r~ r + 0) =

If lt is not zero, (T S,(r))„is also different &om zero, im-

plying that R s(r, r') has a discontinuity at r = r'. This
discontinuity disappears for K = 0, where R „(r,r') = 0.

H one assumes that, the spin-glass order parameters
q p(r, r') (a, p = z, y) do not depend on the imag-
inary times w and v', the transition temperature will
depend only on the integrals of R p(r, r'). i Because
R „(7,r') = R„(r', r), its inte—gral is zero, i.e., the
critical-line equation remains unchanged,

1 1

2 drdr'R (r, r') = 1.
0 0

(12)

To obtain a simple approximation for the free energy

where the tilde designates the new coordinates. To see
the consequences of this symmetry let us rotate our sys-
tem by an angle y in the z-y plane. Then, from Eqs. (6)—
(8) we have the relations

R--(r, r') = cos yR (r, r') + sin yRII„(r, r')
+i cos @sing [R „(r,r') + R „(r',r)],

Rs„-(r,r') = cos yR»(r, r') —sin pR»(r', r)
+i cos p sin rp [R (r, r') —R„„(r,r') ],
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Qo ——2 dz e cosh I'(z),
0

r(*) = g(px)2)'+ pz, *,
(13)

(2) one can neglect the 7 dependence of the correlation
functions, Eqs. (6)—(8). Within this so-called static ap-
proximation (SA), R (r, 7') = Ro and R „(r,r') = 0.
Unfortunately there is no simple way to approximate
an odd function like R „(r,r'), so the form of the SA
remains unchanged. Nevertheless, we emphasize that
R „(7., r') = 0 is only an approximation, not a relation
due to a certain symmetry. For spin 1/2 we have

F = —2Ro+ info,

where Ro should be determined from the saddle-point
equation BI" /BRo ——0. Using Eq. (12) the transition
temperature is obtained &om the relation 2RO ——1, and
the resulting phase diagram is shown in Fig. 1.

We would like to recall here that the SA assumes that
the saddle point occurs when R „(r,7') vanishes. Within
our improved approximation, the saddle point is also lo-
cated on the R „axis, but at a finite distance &om the
origin of the R —R z plane. This means that it is no
longer true that the SA, Eq. (13), gives an upper bound
for the Bee energy, as has been claimed by some authors. 4

Using these simple suppositions of the SA we can cal-
culate the correlation functions to first order. Hence
the right-hand sides (RHS) of Eqs. (6) and (8) are

(r, ~') = (T 8 (r)S (~ ))p

dze *
l

coshI'(z) + 2 —
&

cosh[1(z) (1 —2
I

~ —~' l)j I

r PRoz
I'2 z

~(r r') = (T-~*(&)~w(&'))oiPK, sinh [I'(z) (1 —2
l

7 —7 l)]

(14)

(15)

Here (. .)o denotes the thermal average with respect to
the effective Hamiltonian of the SA, Eq. (13). One can
see that the cross-correlation function p(r, r') is iden-
tically zero only for K = 0 and as K increases, the

depend-ent parts of p(7, 7') and g(7, r') approach the
same order of magnitude.

As it has been shown, using these approximate corre-
lation functions one can make a first-order approximation
of the &ee energy, which goes beyond the SA. Although
this first-order calculation gives a good result for the Ising
model, we found that in the case of the XY model there
is no solution of the saddle-point equations for some val-
ues of the transverse field and the temperature. Actually,
even for the case K = 0, where there is a saddle point
giving a paramagnetic-spin-glass transition temperature
close to the exact one, this saddle point is unstable.
This means that p(w, 7') and g(r, 7') are too large to be
used as the basis of a perturbation series. Nevertheless,
for higher spin values where the SA is thought to be bet-
ter, this type of perturbation series might converge.

IV. TROTTER-SUZUKI DISCRETE PATH
FORMULATION

In this section we present some preliminary results
for the phase diagram of the XY model in a trans-
verse field for spin 1/2, using finite Trotter-Suzuki cal-
culations. This type of calculation has been performed
for the system under consideration and for the Heisen-
berg model, but in all of these publications the cross-
correlation function R „was omitted. Our second aim is
to discuss the symmetries of the correlation functions in
this approximation.

Since in almost all work dealing with S = 1/2 the
Pauli matrices are used as spin operators without the
1/2 prefactor, we also adopt such a normalization in this
section (the previous notation can be easily recovered by
scaling the field as K + K/2 and the temperature as
T ~ T/4). Instead of the Hamiltonian (1) we have

N N

H = ——) J~&(oz~oz& + oilao&&)
'—K ) ozi & (16)'

'~2

where o (n = z, y, z) is the ath Pauli matrix.

2.0;-

1.5—

0.5—

SG

0.0 I

0.3 0.6 0.9

FIG. 1. Phase transition lines for the XY' spin-glass model
in a transverse field for spin 1/2. T, temperature in units
of J = ((J, )/N) ~; K, field in units of J; P, paramag-
netic phase; SG, spin-glass phase. Solid line: numerical 'Xtot-

ter-Suzuki calculation. Dash-dotted line: an interpolation be-
tween the exact phase transition point (0, 2) and the solid line.
Dashed line: static approximation.
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Let us denote by H that part of H [Eq. (16)] which
contains only a operators (a = x, y, z). In order to avoid
the difhculties of the noncommutativity of the operators
involved one can use a Trotter-Suzuki formula

Tr exp( —PH) = iim Tr e M e ~ "e—~H. —~II —~H.™
M-moo

(17)

and make an extrapolation to M —+ oo f'rom 6nite M
calculations. Although there is no general proof that
the finite M approximant of the RHS of Eq. (17) con-
vergences to the M = oo limit in the same way as
M 2 (n = 1, 2, . . .), we found that because of the sim-

ilar form of H and H„, this convergence is valid for spin
1/2. On the other hand, there is a general proof of M
convergence for the symmetrized formula

Trexp( —PH) = lim Tr e 2M ~e 2M *e M +e 2M *e 2M
—~a —~fr —~a —~a

M-+oo

We will use Eq. (18), which does not converge better than the form (17), but which, as will be seen, has some other
advantages. From Eq. (18) the partition function is

Z= Tre ~~= lim Tr e M~ e ~M~ e M ~e
M-moo

(19)

where we have rearranged the operators of Eq. (18)
finite M. If we insert a complete set

~
o'i, ) =~ 0'i&)

at the kth operator exp( —&~H ) in Eq. (19) (cx = z, y;

cyclicly. Let us denote the RHS of Eq. (19) by ZM for
O' N&) (0',&

——kl) of eigenstates of the operators o';
k = 1, . . . , M), we have

M M

ZM = Tr-. -vexp ——) (H )+Hei) (oi f
e ~ * [ai)(0„" f

e ~ *
f ~i*+,)

Ie

(2o)

where H i, = (0'&
~
H

~ 0&) with the boundary condition M + 1 = 1. Since H, is factorized in the real space index
i = 1, . . . , N it is easy to calc date the remaining matrix elements of Eq. (20),2z yielding

N M N M

ZM = A Tr ~p exp ) J;j) (0''go&i, + 0''gN&i', ) + iP) ) (0';&0;".&
—o,"&o; &+i)

'2 k i k

(21)

where

P = arctan(e M ). (22)

M

fM = fp — ) r (k, l)+r„„(k,l) —2r „(k,l)
kl

+ ln Tr exp(H, ir), (23)

From Eq. (21) one can calculate the free energy per spin
using the standard replica trick. We give here only the
paramagnetic free energy

r p(k, t) = r p(k —l). (27)

From Eq. (25) it is also clear that

where ( ),ir means an average according to H, rr (24).
Although in the limit M ~ oo the Matsubara and the

Trotter-Suzuki formulas become equivalent, this does not
mean that even for M Bnite, r p(k, l) will have the same
symmetries as R p(r, 7') [Eqs. (6)—(8)]. Thus one has
to analyze the symmetries of r p(k, t) directly from Eqs.
(23)—(26). Because the effective Hamiltonian in Eq. (24)
represents a periodic chain, we have

M

H,~ = ) i. (k, l)oi, ai + r„„(k,l)gsoi"
kl

(k, l) = r (l, k), o. = z, y. (28)

+2ir „(k,l)ai, cr)"

M

+'&):(~a ."-
~ a+, ),

k

with the saddle-point equations

(24)

~a ~
which is a symmetry transformation if

(29)

Equation (21) is symmetric with respect to the transfor-
mation &;~ ~ &,"-&, 0;-& ~ —u,*k+z. The corresponding
transformation in the effective Hamiltonian (24) is

r (k, l) = (o'P, erg), &, o. = z, y

.,(k, ~) =
—,. (-a-, )',1

(25)

(26)
r (k, l) = r„„(k,l),
r „(k,l) = r„(I+ 1,k) . —

(3o)

(»)
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It is easy to check that these relations hold self-
consistently in Eqs. (25) and (26). Equation (30) is natu-
ral, but Eq. (31) is not trivial. It says that r „(t,k) is not
simply an odd function, but one of its arguments must
be shifted after the interchange. Of course, if M ~ oo
this small shift becomes negligible and we recover the
odd correlation function R „(7,r'), Eq. (10), obtained
with the Matsubara formalism. From Eq. (31) we see
that g& I r „(k,I) = 0, which ensures that the critical
line equation does not change,

(32)

FIG. 2. Phase transition temperature T for difFerent

field/temperature ratios, ( = K/T, from ( = 0.0 (upper
curve) up to ( = 2.5 in steps of 0.5. Points represent re-

sults of Snite M calculations. The curves are obtained from

parabolic 6t.

FIG. 4. Correlation function r „(k,l) obtained from the
finite Trotter-Suzuki calculation, Eq. (26), with M = 7
for different field/temperature ratios ( = K/T in the
phase-transition point: S, ( = 2.5; &, ( = 1.5; 0, ( = 0.5.
The lines are only visual guides.

gral is different &om zero, i.e., the critical line equation
(32) should be replaced by a more complicated one.

Using Eqs. (22)—(32) we calculated the critical tem-
peratures for M = 3, . . . , 7 and used a M z" fit to the
M i oo extrapolation. [In previous works's calcula-
tions were carried out up to M = 10 and M = 14, but
the nonzero r „(1"., I) makes this type of calculation more
complicated. ] Up to K/T = 2.5 these points fit nicely on
a curve a+bM +cM as is shown in Fig. 2. The cor-
relation functions r and r „ for M = 7 are presented
in Figs. 3 and 4, respectively. To obtain a reliable ex-
trapolation for smaller temperatures and higher fields a
larger M should be chosen. Figure 1 shows the phase
diagram resulting &om an interpolation up to the exact
phase transition point (T = 0, K, = 2) obtained in Sec.
II.

(note the different normalization of R p and r p). If one
uses the nonsymmetric formula (17), there is no simple
symmetry relation for r „(k,I) for finite M; even its inte-

1.00

0.75—

0.25—

I I I I I

-3 -2 -1 0 1

I I

2 3

FIG. 3. Correlation function r (k, l) obtained from the
finite Trotter-Suzuki calculation, Eq. (25), with M = 7
for different field/temperature ratios ( = K/T in the
phase-transition point: Q, ( = 2.5; 6, ( = 1.5; 0, ( = 0.5.
The lines are only visual guides.

V. DISCUSSION

N N

H = ——) J;,.S;S, —K) 8„..
iwj i=1

(33)

We have shown that for the XY spin-glass model there
is an important cross-correlation function between the
x and y spin components due to the external field in
the z direction. This function was overlooked in previ-
ous publications. We have analyzed the symmetries of
this function in the Matsubara and in the Trotter-Suzuki
formalism, and calculated the corresponding phase dia-
gram for spin 1/2. We have found that in the X'Y model
at small temperatures the spin-glass phase survives for
higher external field values than in the Ising model, due
to the fundamental difFerence of the role played by the
external field. This difference can be summarized by the
fact that the field does not change the eigenstates of the
XY spin-glass Hamiltonian (1), as it does for the Ising
model.

Now we discuss brie6y the symmetries of the Heisen-
berg model defined by the Hamiltonian
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In the Matsubara formalism the paramagnetic free en-

ergy is similar to that of the XY model, Eq. (2), but we
have three additional correlation functions, R „R„,and
R„[see Eqs. (6)—(8)], and a nonzero Edwards-Anderson
parameter q due to the external 6eld. The rotational
symmetry about the z direction (discussed in Sec. III)
shows that the new cross correlations R, and R„, are
identically zero, and that R „remains antisymmetric [see
Eq. (IO)].

In the Trotter-Suzuki formalism one has to decide be-
tween the nonsymmetric [Eq. (17)] and the symmetric
[Eq. (18)] formulas. For both, the new cross-correlations
r, and r„, are identically zero. With the symmetric for-
mula one can find a symmetry relation such as Eq. (31)
for r v, but there will be four efFective spins for each Trot-
ter index. With the nonsymmetric formula only three ef-
fective spins per Trotter index are needed, but the useful
relation for r &, Eq. (31), and the simple form of the
critical line equation (32) are lost.

We would like to point out that the XY model is sim-

pier to analyze than the Heisenberg model because (i)
a zero-temperature transition can be found analytically
(see Sec. II), (ii) the symmetrized Trotter-Suzuki for-

mula can be used without difhculty to carry out 9
Trotter calculations (see Sec. IV).

More extensive Trotter-Suzuki calculations for both
the XY model (with M ) 7) and the Heisenberg model

are needed to locate precisely the phase-transition line

between the paramagnetic and spin-glass phases. The
properties of the spin-glass phase, e.g. , the time depen-
dence of the order parameters and the nature of the
replica symmetry breaking, remain to be investigated.
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