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Critical exponents for the sinh-cosh interaction model in the zero sector
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In this paper, we continue our investigation of a one-dimensional, two-component, quantum
many-body system in which like particles interact with a pair potential s(s + 1)/sinh (r), while

unlike particles interact with a pair potential —s(s + 1)/cosh (r). For an equal number of particles
of the two components, the ground state for s ) 0 corresponds to an antiferromagnet/insulator.
Excitations consist of a gapless pair-hole —pair continuum, a two-particle continuum with gap and
excitons with gap. For —1 ( 8 ( 0, the system has two gapless excitations —a particle-hole
continuum and a two-spin-wave continuum. Using 6nite-size scaling methods of conformal 6eld
theory, we calculate the asymptotic expressions and critical exponents for correlation functions of
these gapless excitations at zero temperature. The conformal structure is closely related to the
Hubbard model with repulsive on-site interaction.

I. INTRODUCTION

We recently presented the exact solution to a one-
dimensional, two-component, quantum many-body sys-
tem of considerable complexity in the form of an asymp-
totic Bethe-ansatz calculation. The two kinds of parti-
cles are distinguished by a quantum number u = +1,
which may be thought of as either spin or charge. The
system is defined by the Hamiltonian

where the pair potential is

1 + CT&CFg

v, s(2:) = s(s+1)
2 sinh'(x)

1 —crjo.g

2 cosh (x)
(2)

We assume s & —1. We~ll this the SC model, for
the sinh-cosh interaction. Thus for s & 0, like particles
repel, while unlike particles attract. When like parti-
cles are near, the repulsive potential increases as 1/r2,
while for large separations, both potentials decay expo-
nentially with a decay length which we take as our length
scale, and hence unity. The potentials might usefully be
thought of as a screened 1/r2 potential. This system was
first introduced by Calogero et al. , who showed it to be
integrable. Sutherland soon afterward showed that the
system could be exactly solved, and gave the solution for
a single-component system. In the present paper, we con-
tinue our study of the SC model with an investigation of
the correlation functions and their critical exponents, at
zero temperature, by methods of conformal field theory.

The concept of conformal invariance in one-dimen-
sional (1D) quantum systems at criticality constrains the
possible asymptotic behavior of correlation functions and
allows a classi6cation into universality classes, distin-
guished by the value of the central charge c of the under-
lying Virasoro algebra. For models with short-range in-

teractions and a gapless excitation spectrum with a single
Fermi velocity, we can determine both c and the critical
exponents of correlators directly &om 6nite-size correc-
tions to the ground state energy and the low-lying exited
states. In most cases, such models have been found to be-
long to the universality class of the 1D Luttinger model, 5

i.e., c = 1, and the critical exponents to vary as functions
of the coupling constant of the corresponding conformal
theory.

Recently, various authors have extended these concepts
to include multicomponent systems with difI'erent excita-
tion velocities, such as the Hubbard model. ' In general,
one 6nds a c = 1 Virasoro algebra for each critical degree
of &eedom, i.e., each gapless excitation with a unique
velocity. It is then possible to construct the full theory
as a semidirect product of these independent algebras.
Again, critical exponents may be calculated &om 6nite-
size corrections but now they are functions of a matrix
of coupling constants.

In another recent development, the ideas of conformal
6eld theory have been applied to models with long-range
interactions such as the 1/r2 system. s s It turns out that
one can no longer simply read ofF the value of the cen-
tral charge from the 6nite-size corrections to the ground
state energy. However, one may still calculate the correct
critical exponents of the asymptotics of the correlations
functions &om the finite-size scaling behavior of the low-

lying excitations.
Our paper is organized as follows: In Sec. II we briefiy

review the asymptotic Bethe-ansatz solution of the SC
model in the zero sector as obtained in Ref. 1. Section
III outlines the Luttinger liquid approach for long-ranged
models. We give arguments why the standard evaluation
of conformal Geld theory for c may fail for long-ranged
models. For 8 ) 0, there is only one gapless excitation
corresponding to a single c = 1 conformal theory. For
—1 ( 8 & 0, however, there are two gapless excitations
with difFerent velocities, so that we briefIy review the
main formulas for a semidirect product of two c = 1
Virasoro algebras. In Secs. IV and V, we give expressions
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for the correlation functions and calculate their critical
exponents &om the Bethe-ansatz equations for the —1 (
s & 0 and the s ) 0 cases, respectively. For simplicity,
the two types of particles are assumed to be either both
bosons or both fermions, although a mixed Bose-Fermi
system can be studied along similar lines. We close our
paper with Sec. VI, where we briefly show how both the
—1 & s ( 0 and the s ) 0 cases fit together as s + 0+.

II. BETHE-ANSATZ SOLUTION
IN THE ZERO SECTOR

Let us recall the results of Ref. 1: We have N~ particles
with o = —1 and Nt with u = +1, for a total of N =
Ng+Ng and Nt ) Ng. The zero sector corresponds to an
equal number of up and down spins, i.e., Ng ——Nt. For
s ) 0, pairs of up-down spins bind into a variety of bound
states, or pairs, which we will label by m = 1, . . . , M(s),
where M(s) is the smallest integer larger than s. Let
there be N of each type. Unbound particles correspond
to spinons and/or ions in the spin-charge picture and
there are Np ——N —2P~& &M N of these. Let us call
particles with spin down spin waves; there are N 1 ——

N~ —Pz& &M N of these.
Imposing periodic boundary conditions on the wave

function and taking any particle, pair, or spin wave
around a ring of large circumference yields the following
set of Bethe-ansatz equations:

For 0 ) s ) —1, there are no bound states and we @rill

call this the unbound case in the sequel. We therefore
have only two coupled equations for No particles with
pseudomomenta kp ——(kq, . . . , k~, ) and N ) spin waves
with rapidities k q

——(Aq, . . . , A~, ):

Lk, = 27rI, (k, )

0 = 2~J(A) +

N

) 8p )(k, —A )
ca=1
Np

) 8p () (k~ —k(),
l=a
N

) 8 ) )(A —Ap)
P=1
Np

) 8 g, p(A —k~).

I& = (Np —1)/2 (mod 1)
J = (N q

—1)/2 (mod 1),

whereas for fermions,

The particle quantum numbers I~ and the spin-wave
quantum numbers J are restricted by the parities of
No N 1 and the statistics of the particles to the follow-

ing combination of integers and half-odd integers: If both
spin-up and spin-down particles are bosons,

Lg k =2zI (k )+ ) ) 8 (k —k ),
Iz ——N q/2 (mod 1),
J = (Np + N y

—1)/2 (mod 1).
—1(m'(M k',

m = -1,0, 1, . . . , M.

Here the I (k ) denote the set of quantum numbers
for each type of particle. Depending on the parities of
N and the particle statistics, the quantum numbers will
be restricted to integer or half-odd integer values. Note
that for the spin waves, I 1 ranges only over 1, . . . , No.
8 (k —k ) is the phase shift for the scattering of
particles of type m with type m' and has been calcu-
lated previously. ~ Note that 8 (k) = —8 (—k) =
8 (k). Furthermore, we define

C

u(&) =
g + g f do i(u —u)~(u)du

B
+ gi—f d'oo(k —h)p(h)dh

C

o(A) = 0 + ~1 8', ,(A —y)o(p)dp
B

+ ~~f d', ,(A —h)p(h)dh,

(1o)

In the thermodynamic limit, i.e., L ~ oo with 6xed
dp —= Np/L, d q = N q/L, the ground state is a filled
Fermi sea characterized by the distribution function )p(k)
of particles and o (A) of down spins:

0,
'gm= &

2

m= —1
m=0,
m = 1, 2, . . . , M(s) .

(4) Here the prime denotes the 6rst derivative. The values
of B and C are 6xed by the following equations:

We can write the momentum and energy for a solution
of (3) as

) ~)k,
—1(m(M k

E= — ) q) k'—
—1(m(M k

) N K

1(m(M
(6)

Here K = s+1—m denotes the poles in the transmission
and reflection coeKcients that give rise to bound states
of type m.

f p(k) dk = dp,
—B

f
C

o(A)dA = d g
——dp/2 —M,

—C
(12)

where M = (N~ —Ng)/2L is the magnetization per unit
length. Let us now restrict our discussion to the zero
sector, when Np ——N, N q ——N/2, M = 0, and the
limit C of the spin-wave distribution is oo. Then we can
solve for the spin-wave distribution by Fourier transform
in terms of the particle distribution, which we then sub-
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stitute into the particle equation, giving a single integral
equation for the distribution of particles p(k):

1 B—= p(k) + — 8'(k —h) p(h) dh.2' 2'

allowed; these we call excitons, and they have simple
single-parameter dispersion relations.

Let us denote the unique velocity of the excitations of
type (i) by vq. The Bethe-ansatz equations that describe
these excitations may be written as

Here the kernel 8'(k) is given as

OO

(14)

N/2

2Lk~ = 2vrH~(k, )+.) 8g, g(k~ —k)). (19)

The excited states in the zero sector are given by the fol-
lowing: (i) Remove a particle from the ground state dis-
tribution, and place it outside the limits; we call this cre-
ating a hole and a particle, and it gives a two-parameter
continuum. (ii) Remove a spin wave from the ground
state distribution, and place it on the line with imagi-
nary part equal to i; we call this creating two spin waves,
one with spin up and the other with spin down. It gives
a two-parameter continuum of the type familiar &om the
Heisenberg-Ising model. Each of these two types of two-
particle continua has a single Fermi velocity. Let us de-
note by vp the Fermi velocity of the first excitation and
by v 1 the Fermi velocity of the second. As has been
pointed out in Ref. 1, the two velocities are in general
not identical. The same is true of the Hubbard model
with repulsive on-site interaction, and we will later make
extensive use of the conformal results obtained for this
model 6'7

For s ) 0, which we call the bound case, the ground
state in the zero sector consists of a spin Quid of type
m = 1, and thus spin 0. In the ground state, the k's
for the pairs distribute themselves densely with a density
r(k), between limits kD, normalized so that

D
dg

—= Ng/L = 7.(k)dk = N/2L.
—D

The energy and momentum are given by

D

P/L = 2 r(k)kdk = 0,
—D

D
E/L = r(k)k dk —s Ng/L.

—D

The integral equation which determines r(k) is

D
1/vr = r(k) + — 8'„(k —h)r(h)dh.

2x D

The kernel of the equation, 8~~(k), is the derivative of
the phase shift for pair-pair scattering.

The low-energy excited states are given by the follow-
ing: (i) Remove a pair from the ground state distribution,
and place it outside the limits; we call this creating a
pair-hole and a pair, and it gives a gapless two-parameter
continuiirn. (ii) Break a pair, to give two particles, one
spin up and the other spin down; this also gives a two-
pararneter continu»m. However, there is a finite energy
gap for breaking a pair. These are the spinons or ions.
(iii) Excite a pair into a higher-energy bound state, if

Note here that k~ is the pseudomomenturn of a pair, and
is not the pseudomornenturn of an individual particle,
which would be complex and of the form kz/2 6 is. The
pair quantum numbers H~ are restricted by the parity of
N1, and Bose and Fermi statistics are given as

H~ = (Nq + 1)/2 (mod 1), (20)

since pair-pair scattering is symmetric for pairs of bosons
and pairs of fermions. The pairs will be singlets.

III. CONFORMAL APPROACH
FOR CORRELATION FUNCTIONS

A. Finite-size scaling
in conformal theories of Luttinger liquids

The behavior of the correlation functions for a given
one-dimensional model at large distances and low tem-
peratures is determined by the gapless excitations.
These gapless excitations are due to hydrodynamic Quc-
tuations and it has been argued that the low-energy
physics of such a system may be described by the exactly
solvable Luttinger model, 13 the 1D quantum version of
the classical 2D Gaussian model. The Luttinger model
is a critical system with continuously varying exponents
and corresponds to the universality class of c = 1 con-
formal field theories. ~4 Application of conformal theory
allows the calculation of these critical exponents purely
&om finite-size scaling arguments.

The value of the central charge c may be read off &om
the following finite-size scaling formula:

XV
Ep epL — c,

6L ' (2i)

thus enabling an independent check of the above argu-
ments. Here, Ep is the ground state energy of the fi-
nite system, ep is the ground state energy density in the
thermodynamic limit, and v is the Fermi velocity in the
system. In short-ranged 1D quantum models, including
Bethe-ansatz solvable models, the above universal pic-
ture is confirmed. However, for long-ranged models,
straightforward application of this equation may lead to
unphysical results. s (We include the SC model in this
class, although its pair potential decays exponentially,
since it can only be solved by means of the asymptotic
Bethe ansatz. ) For instance, in the 1/r2 models c is pre-
dicted to be equal to the interaction strength, although
independent calculations show that the critical exponents
are those of the c = 1 universality class. However, if
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xv Eg,
Ep opL — c +

6L (22)

The low-temperature expansion, however, uses boundary
conditions instead for the time axis of the model and we
thus have no such corrections. We may therefore write
the &ee energy of a long-ranged c = 1 Luttinger liquid as

one instead estimates c kom the low-temperature expan-
sion of the &ee energy, one does get the correct answer
c = 1.

Let us give an argument that may explain the failure
of (21) in long-ranged models. The crucial point is that,
due to the long-range character of the interactions, fi-

nite systems will always "feel" the particular boundary
conditions chosen, so that (21) includes an additional cor-
rection term Ep„representing the boundary energy, and
so

B. Conformal weights
and the dressed charge in the bound case

For the bound case in the zero sector, only the pair—
pair-hole excitation branch is gapless. Thus there is only
one excitation velocity, and &om the above arguments,
we expect the dimensions of the primary operators to
obey the formulas for a single c = 1 Gaussian model, i.e.,

2

(27)

The coupling constant (i of this Gaussian model depends
on the system parameters. It is sometimes called the
dressed charge and may be calculated &om the Bethe-
ansatz equations by means of an integral equation

~T'
F(T) F(T = 0)—

6v

D

Q (k) = 2 + — (i (h) Hi, (h —k) dh,
2' Q

(28)

Let us recall the main formulas for calculating the cor-
relation functions and their critical exponents. 4 Every
primary field P~ in a conformal field theory on an infi-

nite strip of width L in the space direction gives rise to a
tower of exited states. Let x = 6+ +6 denote the scal-
ing dimension and o = 6+ —b, the spin of Py. Then
the energies and momenta of these exited states scale as

where the constant is 2 because this excitation is a pair.
However, we can also calculate (i = (i (D) by purely

thermo dynamical arguments as follows: Let us change a
given ground state configuration by adding pairs while

keeping the Fermi sea at zero momentum, so that the
excitation can be described by the pair (b Ni, Di ——0).
Then a second order expansion gives

E(b,~, N+) —E, - (z+N++N ),

P(A+, N+) —Pp ~ —(0' + N+ —N ) + 2Dkf.

(24)

(25)

AE = —pi(b, Ni) + —
2 (b,Ni) )

1 1

2 L~g d~

Here N+ and N are positive integers, v is the common
Fermi velocity of the excitations, and 2D is the momen-
tum of the state in units of the Fermi momentum ky .
Note that the quantities on the left hand side of these
equations are evaluated with respect to the same bound-
ary condition and therefore the above mentioned correc-
tion terms cancel We may write the correlation functions
of the primary fields at zero temperature (expressions for
low but finite temperature may also be given) as

(4' + (* t)& + (0 0))=,.„t, +,.„t, — (26)
exp( —2iDky)

However, the excitation spectrum of the SC model is
quite difFerent for the bound (s & 0) and the unbound

(—1 & s & 0) cases as we have argued in the previous sec-
tion. Most importantly, the unbound case does not have
a common velocity for all excitations anymore and so the
formulas given above for a Lorentz-invariant conformal
6eld theory can no longer hold.

where p, q
———& is the chemical potential for adding

1
pairs and Kq is the pair compressibility. Comparison with

(24) and (27) yields

(i = ~&1&ldi —7I dl/512 2 (30)

C. Finite-size scaling
and the dressed charge matrix in the unbound case

For the unbound case, two excitation branches are gap-
less, giving rise to a particle-hole continuum and to a
spin-wave continuum, with Fermi velocities vp and v

respectively. Thus, the finite-size corrections of Eqs. (24)
and (25) now become

In the last equation, we have used the well known relation
Ui2 ——1/(midi). Therefore, by knowing the Fermi velocity
of the pair —pair- hole excit at ions, we can calculate the
scaling dimensions.

E(b N, D) —Ep ——hN (:" i) V(:- ')b, N + D:-V:- D + vp(Np+ + Np ) + v i(N+i + N i)
2' 1

L 4

P(AN, D) —Pp —[AN D + Np —Np + N+i —N ij + 2Dpky g + 2(Dp + D i )kf $ .
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Here, the matrix V = diag(vo, v i) and the excited
state is characterized by the pairs AN = (ENp, 6N i)
and D = (Dp, D i). As before, No+ and N+i are positive
integers that label the descendant fields. The 2 x 2 matrix
:" is the generalization of the dressed charge f and may be
calculated by means of coupled integral equations. Thus
if we denote the components of:- by

then

B
1 + ~ (p p(h)8o p(h —k)dh

—B
C

+ ~ &o,-i(I )8'-1,0(I k)dI
—CB

(o, i(A) = 0 + ~ (p,p(h)8o i(h —A)dh
—B

+ ~ 4,-i() )8'-i, -i() -~)dI
—CB

(-i,o(k) = 0 + ~~/ (-i,o(h)80O(h —&)dh

C
+ g~ (—i,—i(P)8—i,o(P —k) dIJ ~

—CB
( i i(A) = 1 + ~ f io(h)8o i(h —A)dh

—B
C

+ ~~ (-i,-i(v)8 i, i(I —&)dv-.
—C

2

+ —(24N i —ENo)D i + N+i . (37)
4

Note that the second equation is independent of (p. How-

ever, there is an explicit dependence on the interaction
strength s and only for s = 0 do we recover the result of
the Hubbard model.

This s dependence can be understood by realizing that
for the zero sector and —1 & s & 0 the Bethe-Ansatz
equations of the rapidities k i ——(Ai, . . . , A~, ) are es-
sentially the Bethe-Ansatz equations of the Heisenberg-
Ising model. The effect of the Bethe-Ansatz equations
for the pseudomomenta is simply a renormalization. Fol-
lowing Ref. 11 we parametrize the anisotropy in the
Heisenberg-Ising model by 6 = —cos(y, ). Then the cor-
respondence is established by setting p, = —ms. Thus we

may say that the behavior of the spin wave excitations
changes &om ferromagnetic at s ~ —1+ (b, = 1) to an-
tiferromagnetic at s -+ 0 (b, = —1). Furthermore, we

expect to see &ee spin waves at s = —z. This picture has
been confirmed by a study of the transport properties of
the SC model which we present in another publication.
An integral equation can also be given for (p,

B
(p(k) = 1+— gp(h)8'(h —k) dh,

2x

where the kernel is as in Eq. (14). Alternatively, we may
simply express (p in terms of thermodynamical response
functions as

(34)
(p ——mvotcodp ——m'do/vo.2 2 (39)

Thus, the situation for —l & s & 0 is analogous to the
situation in the repulsive Hubbard model away &om half-
fillingr's and we may interpret Eqs. (31) and (32) in
terms of a semidirect product of two independent Vira-
soro algebras, both with c = l. The scaling behavior
of the energy and momentum in terms of the conformal
weights 60 and 6+& and the formulas for these weights
as functions of the components of the dressed charge ma-
trix = have been given in Ref. 7, and we will not repeat
them here. The generalization of the correlation func-
tions of the primary fields has also been given in Ref. 7.
However, as before, thermodynamic arguments may be
used to calculate the values of the dressed charge matrix.

For the zero sector, i.e. , Af = 0, the relevant equations
simplify considerably. In this case, kgb = kgb = ky =
m'dp/2, and the dressed charge matrix = niay again be
expressed in terms of a single parameter (p = (p(B), i.e.,

)'(o o
1 1

/2(i+. ) )
Thus the conformal weights Lo and L+z are given as

1, (
+o = &o l

Do+ —D—i
I

+ .(&No)'
2 ( 2 ) 8Q

+ —ANp(2Dp + D i) + No+,

D. Correlation functions and conformal expansion

C„(z,t) = (n(z, t)n(O, O)).

The spin-spin correlation functions are

C:(z, t) = (S (*,t)S'(o, o)),

C~(z, t) = (S
—

(z, t)S+(O, O)),

(41)

(42)

where we used S' = (nt —ng)/2 and S+ = Q~tgg. Note

Given the conformal weights, we now construct the
asymptotic expressions for correlation functions. For
—1 & s & 0, we want to consider the following set of
correlators: Let vP (z, t) denote the field operator of a
particle with spin 0. Later, we wiO additionally restrict
the statistics to be either bosonic or fermionic by restrict-
ing the possible values of the pair D. Then the field
correlator —also called the one-particle reduced density
matrix —is given by

C~(z, t) = (~„(z,t)@,'(O, O))

Defining the number operator n(z, t) = n~(z, t)+ng(z, t),
we write the density-density correlator
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1.0
6 .

0 ~ 5CO

0.2

—0.05

0 ~ 0 -1 ~ 0 -0.5 0.0
2 .

0 ~ 0 0 ~ 5 1 ~ 0

FIG. 1. Lines of constant universal behavior for the un-
bound case. Contours of constant value of the dressed charge
(p in the (dp, s) plane are shown. The lines represent incre-
ments of 0.2 starting from (p = 1.0 at dp = 0 up to (p = 1.8.
The dashed line correspond to the value (p = ~2 of a nonin-
teracting system.

that for systems that are rotationally invariant, such as
the Hubbard model in zero magnetic field, these two spin-
spin correlators are closely related, i.e., C' = 2C+.

Following Ref. 7, we also consider the correlation func-
tion for singlet pairs,

FIG. 2. Plot of 8 as function of particle density do for var-
ious values of interaction strength 8 for the unbound case.

integers or half-odd integers depending on the parities of
the pair b,N = (b,No, 6X i) and the statistics of gt, Q.
In particular, for fermionic particles we have

C--.(, t) = (~,'(, t)4,'( t)4 (0 0)@ (0 0)) (44) (47)

Note that all these correlators are of the form

(A(z, t)At(0, 0)). By standard arguments of conformal
field theory, 4 we may deduce the leading terms and the
critical exponents of the long-distance behavior of these
correlators by expanding A in terms of the primary fields

Py while minimizing with respect to D at the correspond-
ing values of AN. Here the above mentioned restric-
tions on D will become crucial. This approach, however,
will leave the expansion coefficients undetermined, and
at special points in the phase diagram, they may even
vanish.

For 8 & 0, the model exhibits a gap for breaking of
pairs and there are no spin waves. Therefore the corre-
lators (40), (42), and (43) will decay exponentially. Let
us introduce the pair field operator 4. The pair-density—
pair-density correlator can be written in terms of the pair
number operator p = 4 t 4 as

C„(~,t) = (p(z, t)p(o, o))

and the pair field correlator is given by

C+(x, t) = (4'(2;, t)C (0, 0)).

(45)

(46)

As before, we can construct these correlators by an ex-
pansion in primary fields, minimizing with respect to
ANg and Dg .

IV. ASYMPTOTICS OF THE CORRELATION
FUNCTIONS FOR THE UNBOUND CASE

Due to the restrictions (8) and (9) on the quantum
numbers of a given state, the numbers D = (Do D i) are

We can now apply the scheme for calculating the leading
asymptotic behavior of the correlation function as out-
lined in the last section. Following our selection rules, we
therefore have for a fermionic system

Cg .

C„:

C':

ANp ——1,

Dp ——0, +1,
ANp ——0,

Dp ——0, +1
ANp ——0,

Dp ——0, +1

C+: ANp ——0,
1Dp = +2) ~ ~ )

Csing . +Np

1Dp +2)00 ~

&N y ——1,
D

AN g ——0,

D g ——0, +1, . . . ;

AN g ——0,

D g ——0, +1, . . .

AN g
——1,

D g ——0, +1, . . . ;

AN g ——1,

D g ——0, +1, . . . ;

(48)

This is identical to the results for the repulsive Hub-
bard model, and as in Ref. 7, we will write the criti-
cal exponents as functions of e = 2Q. However, there
is an additional interaction strength dependence in the
correlation functions due to the explicit appearance of
s in Eq. (3). This is a novel feature and not true in
the Hubbard model. It emphasizes the close correspon-
dence of the Heisenberg-Ising model and the SC model
for —1 & 8 & 0 in the zero sector.

Following the scheme outlined brie8y in the last
section, we calculate the leading asymptotics of the
fermionic field correlator in the SC model to be
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1
Cg(z, t)- [z+ivot~'»+«" [z+iv, t~ / +"/ (s+ ) ( z —ivot& gz

,»,. fx+ iv, t) ' '
+ ~ .t['/'+"/" [*+ t]'/'+"/'( +') ' " (*— t)

+ iv it) 1/4

—iv it)
fz+iv it) 1/4

(x —iv it) (49)

The density-density correlator is given by

cos(2kyz + 41) cos(4kyz+ 42) z —(vpt) z —(v it)
~z+ ivpt['/ [z+ iv, t[ /('+ ) ~z+iv. t]s [*'+(vpt)']' [*'+ (v it)' ]' ' '+22 +A, +A, , i50~

and since the selection rules for the density-density cor-
relator are identical to the selection rules for the longi-
tudinal spin-spin correlator, the above calculation holds
for C' with different constants and the replacement of
A(2 for n2o. Finally, for the transverse spin-spin and the
single-particle correlator we find

cos(2kyz + 4)C z, t -Ao
]z+ ivot['/4[x+ iv, t[(1+ )

1 z+$v
[z+iv it] +"/( +') x —iv it

1
Csing (z& t) &o ]z+ ivpt~ / [z+ iv it]'/('+')

1 z+ ivot+
[z + i v t]4/s+s/4 x —ivpt

Re A~e '

(52)

Following Eq. (39), we calculate (p from the Fermi ve-

locity vp. In Fig. 1, we plot the lines of constant (p in the

(dp, s) plane. Note that the value of 8((p) at zero density
is given by 2(1), whereas for finite densities and vanishing

interaction strength s ~ 0, we have 8 ~ 4 ((p ~ +2).
As expected, this is the same behavior as in the Hubbard
model for vanishing on-site interaction strength u. How-

ever, we can not bound 8 between those two values as we

could for the Hubbard model. In fact, 0 is larger than 4
and continues to increase for finite densities and increas-
ing negative interaction strength 8 ~ —1+. A plot of 0
as a function of the density do for different values of the
interaction strength 8 is given in Fig. 2.

For Bose statistics, Do and D q are restricted to inte-
ger values. The correlators of diagonal operators, i.e., the
density-density correlator C„and the longitudinal spin-
spin correlator C', are independent of statistics, and so
only the correlators C~, C and C»„g change. We find
for their asymptotics

1 1
Cg(z, t) Ap +

~z+ ivpt]'/ ~z+ iv it~ 1+ /4 ~z+ iv t~s/4+1/s~z+iv, t~("+4 +io)/s(1+. )

&z + ivpt l / z + iv it l1/2 . 1/2

x e ie
I z ivpt) (z —tv

C~(z, t) - A,
1 1

~z+ iv it~ +' ~z+ jvpt~s/4~x+ iv it~2+ '/(1+ )
(54)
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FIG. 3. Lines of constant universal behavior for the bound

case. Contours of constant value of the dressed charge (1 in
the (do, s) plane are shown. The lines represent increments of
0.2 starting from (1 ——2.0 at dp = 0 down to (1 ——1.2.

FIG. 4. Plot of 8 as function of particle density do for var-
ious values of interaction strength s for the bound case.
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1 1 /x+ ivptC„„s(z,t) - Ap [x+aot[4&' [x+~U, t['&'+'&'[x+ia t['&~'+ ~ (z —iu, t)Re hie (55)

V. ASYMPTOTICS OF THE CORRELATION
FUNCTIONS FOR THE BOUND CASE

Due to the restriction (20) on the quantum numbers
of a given state, Di is an integer or half-odd integer de-
pending on the parity of ANq for both Bose and Fermi
statistics of the particles, i.e.,

ANg
Di —— (mod 1) .

2
(56)

*' —(vit)'

1
+22 cos(2kyz + [pi) x+ ivit a (57)

and for the pair field correlator

1
t"s, (z, t) Ai z+ ivit '~a

]. ,2I, z + iv~t+ Re A2e
~z + ivit [a+i~a z —ivit

(58)

Here we again defined an exponent e = 2(i2. Following
Eq. (30), we can calculate (i from the Fermi velocity of
pairs vi. In Fig. 3, we plot the lines of constant (i in
the (dp, a) plane. Note that the value of e(fi) at zero
density is given by 8(2), whereas for finite densities and
vanishing interaction strength 8 ~ 0+, we have 0 —+ 4

((i -+ ~2). A plot of (i as a function of the density dp
for diferent values of the interaction strength 8 is given
in Fig. 4.

VI. NONINTERACTING
TWO-COMPONENT SYSTEM

At 8 = 0, the system reduces to a noninteracting two-
component gas and we may expect a certain continuity
in the behavior of the correlators at this point. Indeed,

This selection rule is just the same as the case of one-
component bosons, and so we find for the asymptotics of
the pair density correlator

whereas for the bound case we have

KT'
F(T) F(T = 0)—

6vi
(60)

As predicted, these two equations are in agreement at
s = 0 and identical to the &ee energy of a noninteracting
c = 2 system.

The bound pairs for s ) 0 are singlets. Therefore we
might expect that the pair field correlator {46) becomes
identical to the singlet pair correlators (44) and (55) of
the unbound case as 8 ~ 0. However, 4't creates pairs
with characteristic length scale 1/a and not just two par-
ticle wave functions. Thus, the pair wave functions in-
clude a normalization factor ~a. As a ~ 0+, the leading
terms of the conformal expansion (58) consequently van-
ish and higher-order terms become important. It should
therefore come as no surprise that the expansions (44),
(55), and {58) do not agree at a = 0.

as s ~ 0, the two Fermi velocities vo and v q both
approach the Fermi velocity of a noninteracting single-
component model, i.e. , vp(a ~ 0 ) = v i(a ~ 0 ) =
zdp/2. Consequently, the correlation functions of the
bosonic (fermionic) system reduce to the correlation func-
tions of a noninteracting Bose (Fermi) system with two
components, i.e., with half the one-component Fermi mo-
mentum. Using the language of conformal field theory,
we can thus describe the excitations of the noninteract-
ing two-component gas by a c = 2 generalized Gaussian
model. '

From the expression of the dressed charges (p and (i,
we see that (i2 = zQP . As a -+ 0+, the Fermi velocity of

the pairs goes to the Fermi velocity of a one-component
free Bose gas with doubled particle mass, i.e. , vi(a ~
0+) = cordi/2 = zvp(a -+ 0 ). Therefore, we expect
Oq ——Oo at 8 = 0 and this is indeed true as shown above.
Furthermore, the Bee energy of the system should be
uniquely specified at a = 0. Following (23) we may write
the finite-temperature corrections for the unbound case
as

~T'(1
F(T) =F(T =0) —

i
+ —i,6 kv i vp)
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