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We examine phases of the Shraiman-Siggia model of lightly doped, square lattice quantum an-
tiferromagnets in a self-consistent, two-loop, interacting magnon analysis. We find magnetically
ordered and quantum-disordered phases both with and without incommensurate spin correlations.
The quantum-disordered phases have a pseudogap in the spin excitation spectrum. The quantum
transition between the magnetically ordered and commensurate quantum-disordered phases is ar-
gued to have the dynamic critical exponent z = 1 and the same leading critical behavior as the
disordering transition in the pure O(3) o model. The relationship to experiments on the doped
cuprates is discussed.

I. INTRODUCTION

The last few years have seen numerous experiments
examining the magnetic properties of the doped copper
oxide compounds in some detail. Neutron scattering ex-
periments on La2 Sr Cu04 have shown that the com-
mensurate long-range-ordered Neel state at z = 0 evolves
into a phase with short-range incommensurate spin cor-
relations above z = 0.075.1 However, our theoretical un-
derstanding has not kept in step, partly due to the nu-

merous competing efFects and ensuing complexity of these
materials: At low temperatures the eH'ects of disorder are
paramount, and at larger doping there is the onset of su-
perconductivity.

On the theoretical side, a popular model for inves-

tigating the interplay of doping and antiferromagnetic
spin correlations has been the t-J model. Numerical
and high-temperature series studies of this model have
been especially valuable as a testing ground for various
theoretical ideas. In an important advance, Shraiman
and Siggia (SS) proposed a phenomenological descrip-
tion of the long-wavelength interplay between spin and
charge transport in this model. There are numerous the-
oretical reasons for believing that their long-wavelength
model is a correct description of the t-J model at low
temperatures and small doping. In this latter regime, it
is expected that the SS model is quite robust, and will
describe a whole class of doped antiferromagnets, not
just the t-J model. However, at some finite doping, an
approach based upon long-wavelength distortions of the
background antiferromagnetic order must eventually be-
come invalid; the mechanism of this breakdown of the
SS model is not understood and remains an important
open problem. This paper shall examine the SS model
in an approach which is designed to explicate the nature
of the quantum-disordered phases i.e., the phases with
no long-range magnetic order. These phases appear at a
reasonably small doping concentration. We conjecture,
although we certainly cannot rule out the contrary, that
these phases are also present in the t-J model, and are

not artifacts of using the SS model. We will also discuss
the relationship of our results to other theoretical work
and some experiments in Sec. IV.

We begin by writing down a simplified version of the
action S of the Shraiman-Siggia model:

S= d7. d r S„+Sf+S, )
0

with r the Matsubara time, r = (z, y) the spatial co-
ordinates, |3 = 1/(ksT), and T the absolute tempera-
ture. The first part, S„, describes Buctuations of the
antiferromagnetic order parameter ng. Here ng is a three-
component vector and is taken to have unit length

(1.2)

We then have

S„=—' (cl nt) + (B„nt)

with p, the bare spin stiffness and c0 the bare spin-wave
velocity. The momentum of the ng field is restricted to
be smaller than an ultraviolet cutoH' A, which is also the
scale at which the coupling constants are defined.

The action of the fermionic dopant holes is given by
Sf. The holes are described by fermionic spinor fields
4 where n =t, $ is the spin index, and v is "val-
ley" index. The valleys are regions in the Brillouin zone
around the minima of the ferxnion dispersion spectrum.
For the square-lattice t-J model there is a great deal of
evidence that there are two valleys centered at the points
(vr/2, +z /2) in the reduced Brillouin zone. s'4 We will ro-
tate our coordinate system &om the conventional one, so
that our x axis is at an angle of 45 to the axes of the
square lattice, and the principal axes of the valleys are
along the new x and y axes; the index v will therefore take
the values v = x, y. Further, we will measure momenta
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&om the center of the valleys. With these conventions,
the fermionic action Sy is

( B g2 B2 g2 B2

gB~ 2mi Bzz 2mi, By2)
& B hz B2 52 Bz )+et

l

——,—,l4„., (1.4)
(B~ 2m', Bx' 2mi By' )

where m~, mg are the light and heavy masses of the hole.
It is important to realize that there is no simple re-

lationship between the bare fermionic field ct of the t-
J model (i is the site index) and the continuum fields

(ns, 4„)of the hydrodynamic SS model. Crudely speak-
ing, one may consider this field transmutation as a form
of spin-charge separation in which the spin-1/2, charge-e
c~ fermionic field has separated into the spin-l, charge-
0, bosonic ns quanta and the spin-1/2, charge-e, 4„
fermions.

Finally, we will consider only the leading term in the
coupling, S„between the holes and the ns field, which is
responsible for inducing local incommensurate spin cor-
relations. It is expected that the remaining terms in the
SS model are innocuous and do not change the results of
this paper qualitatively. We have

S, = ~(4t o p@„p) (es pn B„n~),

where sr~ are three Pauli matrices, and e is a coupling
constant. A crucial feature of the SS model is that there
is no three-body coupling like ng4~ o~&4 p between the
fermions and ng quanta:5 Such a term is forbidden by
a sublattice interchange symmetry of the SS model~ un-
der which ng change sign while the 4 remain invariant.
Other models of nearly antiferromagnetic Fermi liquidss'"
possess such a term and, as a result, have quantum dis-
ordered phases with rather diferent properties.

We wish to clarify a crucial point about our particular
form of S at the outset. SS have shown that there is a
mapping, in principle exact, to an alternative form of S
in which the degrees of freedom are a spin-1/2, charge-
0, complex scalar z with a =g, $ and spinless, charge-e
fermions %„where a = A, B is a sublattice index. The
(ns, 4„)fields are related to the (z, @„)fields by

SS go on to state that equivalent results are obtained
in computations using either choice of fields. In principle,
this statement is correct. In practice, however, one is usu-
ally restricted in the analysis to perturbation theory, in
which the quantum numbers of the low-lying excitations
are essentially identical to those of the degrees of freedom
in the action. Equivalent results in both theories have
been obtained in the vicinity of magnetically ordered
states, where one is performing a small Buctuation, spin-
wave analysis. On the other hand, the choice of fields is
expected to have dramatic consequences in a quantum-
disordered state. Kane et al. and others made a choice
of fields equivalent to the (z, @„)formulation of the
SS model. Thus, not surprisingly, their Schwinger-boson
mean-field theory yielded a quantum-disordered phase
with deconfined, spin-1/2, charge-0, bosonic spinous (the
z ) and spinless, charge-e fermions (4„).

In this paper, we use another approach and shall exam-
ine the phases of the SS model which are obtained nat-
urally in the (ns, O„) formulation. Some of the results
of our calculations were noted some time ago. While,
in the end, we have no formal justification for claiming
that the (ns, O„) formulation is more accurate than the
(z, @„)approach, we can offer the following motiva-
tions. The ng field formulation has been quite success-
ful in describing the undoped, frustrated antiferromag-
net. The long-wavelength action of the undoped anti-
ferromagnetio is simply the O(3) n model, S„, and it is
expected to display a quantum-disordered phase in which
massive n quanta form the lowest excitations and carry
spin 1. Consistent with this, recent investigations of
the quantum-critical behavior in these systems have ar-
gued for the superiority of the n-field-based approach,
and have successfully explained a number of experimen-
tal and numerical computations on the square lattice
antiferromagnet. ' Further, careful analysis of Huctu-
ationsis in the z -based theories of the undoped anti-
ferromagnet has yielded quantum-disordered phases in
which the quantum numbers of the low-lying excitations
are identical to those of the n field, which means that
Quctuations in fact confine bosonic spinons into S = 1
particles. It is then natural to explore the consequences
of doping in a model in which the correct physics in the
limit of zero doping is captured most directly, i.e., in the
(ns, 4„) approach. We shall argue later in this paper
that the results of such an investigation are consistent
with the available numerical and experimental data on
doped antiferromagnets.

Note that there is a U(1) gauge transformation on the
(z, 4„)fields which leaves the (ns, 4„)fields invariant: A. Suxnmary of results

z -+z e', C.&-+ C.&e ', @ea~' ) (1.7)

where P has an arbitrary dependence on spacetime. The
action in terms of the (z, @„)will therefore also have to
be invariant under the gauge transformation; there is no
such restriction on the action in the (ns, 4 ) variables.
This latter absence of gauge restrictions and associated
long-range gauge forces wiB be quite useful to us in our
analysis.

We now discuss the main results of our calculations.
We will distinguish the quantum phases by the properties
of the equal-time ng correlator

S(q) = (lns(q)l')

as T -+ 0, as a function of the momentum q. [We empha-
size that S(q) is not the full structure factor S(q) mea-
sured in neutron scattering experiments; S(q) will con-
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tain additional terms involving the contribution of the
spin-1/2 4'„ fields. Determining these terms requires
knowledge of the connection between the @„ fields and
the bare c; electrons, which we do not have. ] Phases
with magnetic long-range order have a b-function term
in S(q) at T = 0; this b-function is at q = 0 in the com-
mensurate long-range-ordered phase (hereafter referred
to as CLRO) and at q g 0 for the case of incommensu-
rate long-range order (ILRO) [q is measured from (7r, vr)].
The quantum-disordered phases have no b-function terms
at T = 0, but only a peak of finite, though possibly
small, width. This peak is at q = 0 in the commensu-
rate quantum-disordered phase (CQD) and at q P 0 in
the incommensurate case (IQD). In agreement with the
SS analysis and experimental results, the peak in the
ILRO and IQD phases was found to occur along the con-
ventional (1,0) and (0, 1) axes of the square lattice [these
are the (1, 1) and (1, —1) axes in our rotated coordinate
system].

We will have little to add here to existing studies '

of the properties of the magnetically ordered phases
(CLRO and IRLO): Their low-lying excitations are spin
waves involving long-wavelength deformations of the or-
dered state. Our focus will mainly be upon the new
quantum-disordered phases (CQD and IQD) and their
unusual properties. The ng quanta in both phases were
found to be fully gapped. The low-lying excitations in
the ng sector consist of a triply degenerate spin-1 par-
ticle with a finite energy. However, the spin 1/2 O„
particles continue to form a Fermi sea which possesses
gapless fermionic excitations with charge e and spin 1/2.
Despite the presence of these gapless excitations, the ng

gap is robust as there is no term in the SS model which
permits the decay of a ng quantum to a fermion particle-
hole pair. The importance of the absence of the three-
body term noted above is now evident. Taken as a whole,
the model thus only has a pseudogap to spin excitations
in the CQD and IQD phases. One of the consequences of
the presence of the gapless spin-1/2 fermions is that the
uniform spin susceptibility of the CQD and IQD phases
will be Gnite at T = 0 due to the Pauli contribution. We
also note that our calculation has completely neglected
the effect of Berry phases; in the context of undoped an-
tiferromagnets it has been argued that Berry phases
should induce spin-Peierls long-range order in the CQD
phases. It is possible that such spin-Peierls order will also
exist in the CQD phase of the doped antiferromagnet.

We have numerically solved the equations of a self-
consistent, two-loop, interacting magnon approximation
to S and thus obtained a partial survey of its phase di-
agram of as a function of p„K, and the hole density.
Parameters were always chosen so that the zero doping
state was CLRO. This CLRO state was always found
to be stable over a small, but Gnite, doping concentra-
tion. Over some of the regime examined, the sequence
of phases with increasing doping was CLRO-CQD-IQD.
We studied the T = 0 quantum transition between the
CLRO and CQD phases and will present evidence indi-
cating that it has dynamic critical exponent z = 1 and
the same leading critical behavior as the transition in the
pure O(3) 0 model; however, the corrections to scaling

in the two models were found to be quite diferent. The
boundary between the CQD and IQD phases is an ex-
ample of a disorder line: Our calculation only found a
nonanalyticity in the dependence of the structure factor
on the bare coupling constants at the disorder line, but
no strong long-wavelength Buctuations.

In a region of the phase diagram with ~ large, we found
the sequence CLRO-ILRO with increasing doping. In
principle, there should eventually be a ILRO to IQD tran-
sition, but for the parameters examined, we did not 6nd
one before a doping level where the incommensuration
wave vector was almost as large as the momentum upper
cutofF.

We will argue &om the above numerical results, and
&om theoretical considerations, that there is a Lifshitz
point in the p„~ plane where all the four phases, CLRO,
ILRO, CQD, IQD, meet. Some properties of this multi-
critical point will be discussed.

We also have extensive results on the temperature de-
pendence of equal-time correlation functions in the vari-
ous phases. In particular, the temperature dependences
in the spin correlation length and the structure factor are
quite instructive, and will be described later.

II. CALCULATIONS

For the case of the undoped antiferromagnet, the 1/N
expansion on the O(N) nonlinear o model offers a con-
venient and accurate method for exploring properties in
the vicinity of T = 0 quantum transitions. The exten-
sion of the 1/N expansion to the doped antiferromagnet
is however not straightforward because of the presence
of the third-rank er ~ tensor in S, [Eq. (1.5)], which
is special to the case N = 3. Even with this complica-
tion, it is still possible to justify perturbative 1/N cal-
culations, although in a rather inelegant way: After the
fermions have been integrated out, the coupling K, in the
effective action of the n field has be to scaled by 1/N"
where 0 ( p ( 1/2. Not much is learned from this ex-
tension to general N, and we will therefore spare the
reader the details. We will be satis6ed, instead, in re-
stricting our discussion to the special case of N = 3, and
viewing our 1/N calculation as a physically motivated,
self-consistent, interacting magnon approximation. The
magnon-magnon interactions are computed in a manner
which is directly inspired by the 1/N expansion of the
undoped antiferromagnet.

An important property of our approach is that spin-
rotation invariance is explicitly preserved at all stages
of the calculation. This is crucial for a proper study
of the quantum-disordered phases of the model, espe-
cially when the n quanta acquire a gap. We thus ex-
pect our approximations to work best in the quantum-
disordered phase, at the T = 0 quantum transition,
and in the intermediate-temperature quantum-critical
region. ' At the same time, the low-temperature prop-
erties in a region with magnetic long-range order (the
renormalized classical region~o) in the ground state may
not be well described. Even in the undoped antiferromag-
net, the 1/N expansion is singular in the renormalized-
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classical region, and a careful interpretation of the results
is required. We therefore will focus below xnainly on the
quantum-disordered phases.

We begin by expressing the action in suitable dimen-
sionless parameters. We rescale lengths such that the
upper cutofF in xnomentum space for the n field is 1; thus

we then have the following modified form of S„:

S„=—(8 nr) + (B„nr) + (8 ng)
2g

(2.4)

where the dimensionless coupling constant g is given by

r
T M —. (2.1)

hcpA
g =

pp
(2.5)

Similarly, the tixnes r are rescaled so that the bare spin-
wave velocity of the n field is unity:

The fermionic action will retain its form after rescaling
the field 4 ~ A4 and rescaling to the dimensionless ef-

fective masses
'r

7
cpA

(2.2)
mb) Wmgf

Cp
(2.6)

After rescaling the texnperature

hcOA

kg)
(2.3)

Finally in S, we replace e ~ ecp.
We will impose the constraint (1.2) by a Lagrange mul-

tiplier field A. Thus we need to evaluate the functional
integral

Z = 17ngB4~~BA exp j

—S —i dv d z—nq —1
0 2g

(2.7)

It is now possible to set up a rotationally invariant, di-
agrammatic expansion of all observables associated with
Z. We will work at finite T, and so no breaking of
spin-rotation invariance can occur; the properties of the
ground state will be elucidated by taking the T ~ 0
limit. We treat the A field in much the same way as in
the undoped systexn. We assume that Huctuations of iA

occur about a saddle point value A; we therefore write

iA = A+iA, (2.S)

where A is the fiuctuating part of A. The value of A is to
be determined at the end of the calculation to satisfy the
constraint (1.2). The diagrammatic expansion now has
three bare propagators: the conventional Green's func-
tion of the fermions 4„, the propagator G of the nr
Geld,

G (q, iur„) =
q2+u2+ A

(2.9)

(q is the wave vector and u„ is a Matsubara frequency),
and the propagator 1/II of A, with

d2k
II(q, iw ) = T ) G (k + q, ie„ + iv) )G (k, ie„).

4@2
&n

(2.10)

1
G q, i~„ 2.11

q + sr„+ m + Z(q, iur„) —Z(0, 0)
'

where Z is the self-energy and the "mass" m is given by

m' = X+ Z(0, 0). (2.12)

The lowest-order contributions to Z from magnon-
magnon (Z„) and magnon-fermion (Zy) interactions are
shown in Fig. 1, and their values are

Z = E„+Z~,
2 ) d2k G ( k+q, i „e+iu„)
3 - 4+2 II(k ie )

d k
Zy(q, ia)„) = 4g ~ T) — (2q„+ k„) y„(k, ie„)

xG (k + q, ie„+iu„), (2.13)

where y„ is polarization of the fermion in valley v. We
will assume that the fermions continue to form a con-
ventional Fermi liquid even in the presence of ng Geld
Buctuations. We therefore used the following expression
for y„, appropriate for an elliptical Fermi surface:

There are two interaction vertices: the four-body
(n-n-4-4) coupling in S, and a three-body (A-n-n) ver-
tex with the value i/(2g). Finally, there is a rule to pre-
vent overcounting: No A propagator can be followed by
a bubble consisting just of two 0 propagators.

We may now write the fully renormalized correlator of
the n field in the forxn

FIG. 1. Feynman diagrams for the n self-energy. The thick,
solid line is the n propagator, the thin, solid lines are the hole
fermions, and the dashed line is the A propagator.
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X*(q ze ) = Xo(&)
Ie„'+ v~(q2(mi, /mi)'/'+ q„'(mi/mi„)'&z}] j

(2.i4)

kF
)

m) mQ

k2

7r
(2.15)

and the polarization is taken to vanish unless

and similarly for y&. The Fermi velocity vF, the Fermi
wave vector kF, and the doping concentration b are re-
lated by the equations

The numerical determination m2 as a function of T, b
was carried out on a HP-RISC workstation. A meaning-
ful solution always existed at all Gnite T, with no phase
transitions as a function of T or 8. Phase transitions are
however present at T = 0, and were examined by study-
ing the T -+ 0 limit of our solutions. The computations
required about 3 weeks of computer time.

- X/2
q2 (mi, /mg)

i/2 + q2 (mi/m p„)
'/ & 2I +. (2.i6)

III. RESULTS

The prefactor yo we chose as the compressibility of a free
Fermi gas at a temperature T:

(r) ~
(y ~

—". /(»))
2' (2.17)

The restriction (2.16) will have a crucial effect on the
structure of Zf in the small doping limit. In particular,
it is easy to see that both Zf (0, 0) and BZf/Bq (0, 0)
vanish as kF m 0. The fermions therefore only have a
weak effect on the undoped state in this limit, and the
insulating CLRO state is always stable towards in6nites-
imal doping. In this respect our results differ from those
of SS, who did not consider the consequences of spin Buc-
tuations. %hat we have found here is that because the
dynamic range of the spin Quctuations is much larger at
small doping than that of the ferniions, the ferrnions only
have a weak effect on the n quanta.

Our approach consisted of using the above approxima-
tion for Z and then solving the constraint equation (1.2),
or

BgT) G(q, i'„) = 1
d

~ra

(2.i8)

for the value of m2 (or equivalently A). The dependence
of Z on G was made partially self-consistent by replacing
A by mz in (2.9), thus using Go(q, iu„) = I/(qz+u„+m2)
in (2.10) and (2.13). A fully self-consistent approach
would require we replace G by G in these equations;
this is computationally much more dificult and was
not numerically implemented. Our approximation thus
amounts to replacing G by t, but then ignoring the
momentum and frequency dependence of the self-energy
in G. For the most part, this omission is not expected
to be serious, as corrections can be organized order by
order in K,. However, we cannot rule out the possibility,
especially in the quantum-disordered phases, that there
is some entirely different, possibly gapless, solution of
the fully self-consistent equations; such a solution will

clearly be nonperturbative in K. We also note here that
in our analytical considerations below of the boundaries
between the phases we will include the full G in (2.13).

m = m + Z(q„iu„= 0) —Z(0, 0).

It is easy to see from (2.11) that m is roughly the in-
verse correlation length ("roughly" because this neglects
BZ/Bq; including this term yields corrections of the or-
der of unity which are not strongly T dependent). The
various phases can be identified by studying the T de-
pendence of m as T + 0, as will be described below.
The values of q, were approximately T independent and
distinguish between commensurate and incommensurate
phases.

Two samples of our results are contained in Figs. 2
and 4 which plot the T and doping dependence of m for
two sets of coupling constants. For completeness we also

0.6- .
kp = 0.0; q, = 0.0; CLRO
k = 0.I;q = 0.0; CLRO
k+=0.2;q =0.0;CQD
k 08 088 IQD

0.4

'S.o 0.2 0.4 0.6

FIG 2. Values .of m [defined in Eq. (3.1); it is roughly
the inverse correlation length] as a function of T for various
doping levels speci6ed by k+. The coupling constants were

g = 3, ~ = 1.5, (mimi, ) = 0.6, mg/mi, = 0.1296. The
maxima in the structure factor are at q = q, (+1,+1)/~2 in
our rotated coordinate system; this places them at (x + q„n)
and (z', z'+q ) in the conventional Brillouin zone of the square
lattice. All parameters are measured in the dimensionless
units described in Sec. II. The smaD-T behavior of m, and the
value of q, identiiies the nature of the ground state (CLRO,
ILRO, CQD, IQD) which is also noted.

We now describe the results of our numerical calcula-
tions. The nature of the ground state can be determined
from the values and T dependences of q, and m where

q = q, is the location of the maximum of G(q, iu„= 0),
and
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0.9 - ~

kg=
kg=
kg=
ky-
k~=

0.0;q = 0.0;CLRO
0.1;q =0.0;CLRO
0.2;q =0.0;CQD
0.3; q, = 0.38; IQD
0.4;q =0.70; IQD

0.6—

k~ = 0.0; q, = 0.0; CLRO
k& = 0.1;q, = 0.12; ILRO
kp = 0.2;q, = 0.5; ILRO

0.6— 0.4—

0.3— 0.2—

o.S.o 0.2 0.4 0.6 o.S.o 0.2 0.4 0.6

FIG. 3. The values of m associated with the results for m

in Fig. 2 for the commensurate states m = m.
FIG. 5. The values of m associated with the results for m

in Fig. 4.

show in Figs. 3 and 5 the values of m for the same sam-

ples. We will now describe the properties of the phases
in these Bgures and follow that up with some general dis-
cussion on the nature of the quantum transitions between
them.

n sector. Again, the value of q, distinguishes between
the CQD and IQD states.

We examine the nature of the spin correlations at a
point in the IQD phase by plotting the n field contribu-
tion to the structure factor S(q),

A. Long-range-ordered states S(q) = gT ) G(q, (u„),

The states with magnetic order are expected to have

m ~ 0 as T ~ 0. In particular, the low-T dependence
hould b

t' 2mp, l
m exp /—I~T) ' (3.2)

B. Quantum-disordered states

These states have m saturating at a finite value as
T ~ 0, which is roughly the gap, b m(T ~ 0), in the

where p, is the fully renormalized spin stiffness. Nu-

merical solutions at very lower T took longer times to
converge, and so it was difficult to see this exponential
behavior in some of the doped samples. We simply iden-

tified the samples in which m vanished with an upward
curvature as T + 0, as possessing magnetic long-range
order. Further states with q, = 0 (q, P 0) were identi6ed
as CLRO (ILRO). 0

ImZ, (q, ~) - &
lql(~ —»'
~1/2 (~ ~)5/2

0&a(6,

(3.4)

in Fig. 6. Notice that there is strong overlap between the
peaks at high temperature. Upon lowering the tempera-
ture, the peaks first sharpen considerably, but then their
width saturates.

Let us discuss the form of the n spectrum at T = 0 in
the CQD phase. We will focus on real frequencies, ur just
above the gap 6, and small momenta q. The magnon
contribution to the self-energy Z„ in (2.13) does not ac-
quire an imaginary part until a = 3A and can therefore
be completely ignored. The damping from the fermion
particle-hole continuum Zy is however not so innocuous.
We find~

0.45—

k~ = 0.0; q, = 0.0; CLRO
k+=0.1;q =0.12; ILRO
k+ = 0.2; q, = 0.5; ILRO

and ImZf (q, —ur) = —ImZg(q, ur). The n spectral weight
is then given by

0.30—

1
&'+ q' —~'+ Zf (q, (u)

' (3.5)

From the above results it follows that at q = 0 we have

0.15-

0.0$ 0.2 0.4 0.6

FIG. 4. As in Fig. 2 but for g = 6, m = 2, (mgmg) / = 0.6,
mg/mg = 0.1296.

ImG(q = 0, (u & b, ) = —'b((u —b, ) +, , (~ —4)'/'

(3.6)

for some constants aq, a2. Thus there is a sharp spin-1
quasiparticle peak, and a second background term which
is a direct consequence of the coupling of the n quanta to
the particle-hole continuum. At small, but finite q, the
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the parameters examined, we did not find one before a
doping level where the incommensuration wave vector
was almost as large as the momentum upper cutofF. We
now present a theoretical analysis of some issues raised
by the existence of these quantum transitions.

CLRO to CQD quantum transition

An important ingredient in determining the universal-
ity class of this transition is the analytic structure of the
n field self-energy Zy as T ~ 0 in the Neel phase and the
quantum-critical point. We consider (2.13) in the limit
m m 0, and T ~ 0 when the frequencies become con-
tinuous variables, and the Matsubara summations can
be converted to integrations. It is evident that Zf(q, iu)
is an even function of ~. Moreover, it is not difficult
to show that there are no in&ared divergences in either
BZf/Bq ~z

—~—o or BZf/Bu2~~ o ~o. This implies that
for q, ~ small we have

Zf(q, i~) = Zf(0, 0) + biq + b2~ + (3 7)

FIG. 6. Contribution of the n 6eld to the structure factor,
S(q), in the IQD phase. We use the coupling constants of
Fig. 2 at ks = 0.3. The temperatures are (a) T = 0.5, (b)
T = 0.2, and (c) T = 0.02. The jagged double peaks in (c)
are an artifact of the plotting routine.

sharp peak moves to ~ 4 + q /(2b, ) and acquires a
finite width; there is absorption at all &equencies greater
than A.

The spectral properties of the IQD phase are essen-
tially identical except that the role of the point q = 0
is replaced by q = q; in obtaining this result it is, of
course, necessary to replace Go by G in (2.13).

C. Quantum transitions

Our results in Figs. 2 and 4 show two sequences of
quantum transitions with increasing doping: CLRO-
CQD-IQD and CLRO-ILRO. In the second case there
should eventually be a ILRO to IQD transition, but for

Thus the gapless fermion particle-hole sea has not in-
duced any nonanalyticities in Zy to this order. There
are indeed nonanalytic terms present at higher order in
Zf which are signaled by infrared divergences in higher
derivatives of Ey, we will discuss the form of such terms
below. For our purposes, it is sufficient to note here that
all such higher gradient terms are expected to be irrel-
evant at the CLRO to CQD transition. Thus the gap-
less fermion particle-hole excitations have had a relatively
innocuous effect: They have mainly lead to renormaliza-
tions of the spin-wave velocity and spin stiffness. The
universality class of the CLRO-CQD transition is thus
expected to be the same as that in the undoped 0 model.
This is a transition with dynamic critical exponent z = 1
and its leading universal properties have been discussed
in some detail by Chubukov et al. All of the scaling
functions of Chubukov et al. should therefore also apply
to the present doped antiferromagnet. The main efFect
of the fermions has been to change the value of the ef-
fective coupling constant and renormalize the spin-wave
velocity. Consistent with this identification, observe the
linear dependence of m with T in Fig. 2 at ky ——0.2 over
a wide temperature region. This value of k~ places the
system quite close to the quantum-critical point as the
value of 4 is very small. At the quantum-critical point of
the o model, it is predicted that ( = CqkgyT/hc with
Cq 1 a universal number. The slope of m versus T
at k~ ——0.2 in Fig. 2 is about 0.65 this matches with
the expected result if there is renormalization of spin-
wave velocity c/co —1/0.65. A renormalization of the
spin-wave velocity of order unity is to be expected, as
the fermionic polarization y in (2.17) is not suppressed
by a factor that vanishes as b ~ 0.

Differences between the quantum transition in the
doped and undoped antiferromagnet do however show
up at the correction to scaling level. The higher-order
nonanalytic terms in Zy will have a form which is quite
specific to the doped model. One such term can be ob-
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tained by analytically continuing to real &equencies and
computing ImZy at the critical point. We find

vanishes at the CQD-IQD boundary leading to double
minima at incommensurate points in the IQD phase.

ImZy(q, u) qu at the quantum-critical point.

(3.8)

S. Lifehitz point

The existence of a direct CLRO to ILRO transition in
Fig. 4 has a strong consequence for the phase diagram of
the SS model. As both phases can be transformed into
their quantum-disordered partners simply by increasing
the value of g, we conclude that there must be a point
in the phase diagram where all the four phases CLRO,
CQD, IRLO, and IQD meet. Such a point is called a
Lifshitz point. 2 Lifshitz points have so far been studied
primarily in the context of thermal transitions in clas-
sical spin systems. An important result is that such
points can exist only above a lower critical dimension de-
termined as follows: A system in D dimensions, with
incommensurate instabilities in m of those dimensions,
has lower critical dimension 2+m/2. This result appears
to be in conflict with our results here for the doped an-
tiferromagnet. For we have incommensuration in m = 2
spatial dimensions, giving a lower critical dimensionality
equal to the spacetime dimension D = 3. So how can a
Lifshitz point exist?

The answer to this apparent inconsistency lies in the
form of Zy. At the Lifshitz point we clearly have
Bt /Bq ~~

—o, —s ——0. Thus the leading q dependence
of G at small q will come &om higher-order terms in
Zy. Let us assume that G ~ + qJ' at the Lifshitz
point. Inserting this fully renormalized G in the result
(2.13) for Zy we find by power counting

Zy(q, 0) = Zy(0, 0) + biq + bsq ~~ + (3.9)

Consistency now demands that p = 4 —p/2 which yields
p = 8/3. This differs from the value p = 4 use in classical
spin systems. With this modified form of G we may
repeat the calculation of Grest and Sak and verify that
spacetime dimension D = 3 is above the lower critical
dimension which is D = 7/3. Thus it is possible to have
a Lifshitz point in D = 3.

Finally we note that a point where CLRO, ILRO,
CQD, and IQD phases meet was also found in the large-
N, Sp(N) theory of frustrated, two-dimensional quan-
tum Heisenberg antiferromagnets. The nature of this
point appears to be quite difFerent &om the Lifshitz point
in the present theory. In particular, the IQD phase of
the Sp(N) frustrated antiferromagnets2s contains decon-
fined, bosonic, spin-1/2 spinons, while here we have found
massive, triply degenerate n quanta. Perhaps related
to this difference is the fact that the large-N, Sp(N)
theory finds no softening in the spinon spectrum at
the CQD-IQD boundary. Instead, at the boundary the
parabolic spinon spectrum splits into two parabola with
minima at incommensurate points; the curvature at the
minima of the parabola always remains finite. Con-
trast this with the behavior of the n spectrum found
here: The curvature at the minimum of the n spectrum

IV. CONCLUSIONS

The most notable features of our results on the
Shraiman-Siggia2 model lightly doped antiferromagnets
are the quantum disordered phases with a spin pseudo-
gap. These phases possess fully gapped, triply degen-
erate, spin-1 magnons, and gapless, spin-1/2, charge-e
fermions. Several other investigators have also re-
cently explored models of the normal state of the lightly
doped cuprates which have spin gaps and/or pseudogaps.
This interest in pseudogaps is of course motivated by nu-
merous experiments on the underdoped cuprates showing
gaplike features in the normal state. ~ There are also
interesting trends in the doping and temperature depen-
dence of uniform spin susceptibility of the cuprates.

For completeness we review some of the previous theo-
retical results, and point out the difFerences to our results.
A number of the models24 are related to resonating-
valence-bond-type mean-field theories; there is a BCS-
like pairing of spin-1/2, neutral spinons in the norxnal
state at low doping, leading to a gaplike feature in the
spectrum at finite temperature. However, unlike our re-
sults, this state extrapolates to a true gap at T = 0. An
extension of these models to a three-band, Cu02 layer
model2s did possess gapless, spin-1/2, charge-e fermionic
excitations on the oxygen sites. However the above-gap
spectrum in all of these models 4' consists of unbound
spin-1/2, neutral fermions; in contrast, the spin spec-
tral weight above the gap of our model is dominated by
a spin-1, bosonic magnon. Millis and Monien have at-
tributed the gaps to interlayer couplings in the yttrium-
based cuprates. The recent work of Sokol and collab-
orators " is perhaps closest in spirit to ours, although
their scenario for the mixing between the n quanta and
the fermions appears to be somewhat different.

Also relevant to our result is the recent high-
temperature series analysis of the CLRO to CQD tran-
sition in the t-J model. This work provides some evi-
dence in support of our result that z = 1 at this transi-
tion.

Finally, if our model is to provide a complete picture of
the cuprates, it should also explain the nature of the pho-
toemission spectrum. For this one needs to understand
better the connection between the bare electron ejected
in the photoemission and the (nt, C„) fields. This prob-
lem is currently under investigation.
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