
PHYSICAL REVIEW B VOLUME 49, NUMBER 10 1 MARCH 1994-II

First-principles calculation of magnetocrystalline anisotrop3t for rare-earth-iron ternary compounds
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Crystalline electric field (CEF) parameters and magnetic anisotropic energies for rare-earth atoms R in

R2Fe»Lq compounds are calculated based on first-principles electronic-structure calculations. The pa-
rameter 320 of CEF is obtained by using the real charge distribution from the corresponding cluster-
model calculation and by directly calculating the crystal CEF parameters from the expansion coefficients
of the local potential in the embedded-cluster model. The magnetic anisotropic energy is studied by tak-

ing the spin-orbit coupling as a perturbation into account in the semirelativistic embedded-cluster ap-
proach. The obtained results are in agreement with the experiments.

I. INTRODUCTION

Since the discovery of Nd2Fe&4B in 1983, an intensive
search has been made for new high-performance magnet-
ic materials. The nitride RzFe, 7Ns (R is the rare-earth
atom, 5 is the concentration of the light element N)
discovered in 1990 (Ref. 1) is the most promising of the
hard-magnetic compounds. Two intrinsic properties are
necessary for applications, a high Curie temperature, and
easy-axis magnetic crystalline anisotropy (MCA). In
R2Fe, 7 compounds, the uptake of nitrogen leads to an in-
crease in the Curie temperature by a factor varying be-
tween 1 and 5 for difFerent R elements, and to transition
to easy-axis MCA from easy-plane MCA for R=Sm
only, at room temperature.

Some theoretical research based on the electronic
structure has been done to study the enhancement of
the Curie temperature after uptake of nitrogen in these
compounds. In some of these calculations, substitution
of Y for the rare-earth element gives the necessary ex-
change enhancement. However, a more dificult task is
the calculation of the MCA, which must involve unusual
4f-electron properties. Gu and Lai treated the 4f elec-
tron in two limiting cases, a highly localized and a band
electron. This calculation introduced an error as high as
15% in the magnetic moments, and did not examine the
MCA.

There have been other efforts to study the MCA of
rare-earth —iron —light-element (R-Fe-L) compounds
based on their fundamental electronic structure. Early
studies based on empirical parameters have been replaced
by evaluation of the effect of the crystalline electric field
(CEF) in first-principles electronic-structure calculations.
Zhong and Ching calculated the crystal field parameters
for Nd2Fe&4B based on a tight-binding energy-band
method. A similar method was also applied to calculate
the MCA of R2Fe,7N„(R =Sm, Nd; x=0,3) by Huang
et a1., and the result is in qualitative agreement with ex-
periment. However, the problem of self-consistent first-

principles calculation of the electronic structure and
proper uniform treatment of the 4f electrons is still open.

Generally speaking, the MCA in R-Fe-L compounds
arises from the 4f electrons of the rare-earth atom in the
crystal field. Although the f electron displays strong lo-
calized features, the mixing between 4f and other states
is not small. The f electron has to be considered as a
valence orbital in the self-consistent procedure in the cal-
culation rather than as a frozen-core state. In this paper,
the MCA of R-Fe-L compounds has been studied by two
different approaches:

(1) Evaluation of the CEF based on the results of a
self-consistent first-principles electronic-structure calcu-
lation for the corresponding crystal.

(2) Direct determination of the anisotropy constant
from a total-energy calculation by taking the spin-orbit
coupling as a perturbation in the semirelativistic approxi-
mation.

In the evaluation of the CEF parameters, we adopt two
methods. First, the parameters of the local CEF are cal-
culated using the charge distribution around the rare-
earth atom R from the corresponding embedded-cluster
model, which is similar to Ref. 8. Second, the CEF pa-
rameters are obtained directly from a harmonic expan-
sion of the local crystal potential of the rare-earth atom
considered in the embedded-cluster model. When loca1
CEF parameters are known, the MCA can be obtained by
the usual CEF theory. The results of applying these
methods to R2Fe, 7L& compounds are discussed.

II. THEORETICAL METHOD

Due to the complexity of the crystal structure of
R2Fe&7L5 compounds, it is difficult to consider the ener-

gy band of the crystal with sufficient accuracy. Accord-
ing to electronic-structure studies on the R2Fe&7L& com-
pounds, there is charge transfer between atoms. ' The
magnitude of this effect is dependent on the specific rare-
earth and light-element atom. s, and may be the source of
the variant magnetic behaviors of the compounds
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R2Fe,7L&. In this work, we will discuss the MCA on the
basis of an electronic-structure calculation using the
discrete variational method (DVM) cluster approach. '

As the MCA mainly comes from the rare-earth atom in
R2Fe,7L& compounds, we take the cluster centered at the
rare-earth element R, consisting of R (6c)-Fe(6c)-
6Fe(18f)-9Fe(18h)-3Fe(9d)-3L (9e) (RFe»L 3), embedded
in a crystal containing 1500 atoms of the R2Fe, 7L& com-
pound in this calculation. The embedded cluster of
R (6c)-Fe(6c)-6Fe(18f)-9Fe(18h)-3Fe(9d) (RFe») is con-
sidered for the R2Fe&7 compound. Here the notations 6c,
9d, 9e, 18f, and 18h are representative of nonequivalence
atomic sites in a unit cell, respectively. The electronic
structure and charge density distribution are solved by
DVM self-consistently.

In our calculation, the 4f state is considered as a
valence orbital. The basis sets we used are the valence or-
bitals 4f6s5d for rare-earth element, 3d4s for iron, and
2s2p for the light element. The other electrons are con-
sidered to be in their atomic status, in the frozen-core
procedure.

The Hamiltonian for the system can be written in the
molecular field H approximation as

H=Hp+gL S+VcEF+2S H +(L+2S) H, , (1)

V(r, O, y)=B2p02p+ ' ' ' +B66066+ (3)

B„are the crystal field parameters which are related to
the MCA. In this work, the parameters B„are calcu-
lated by two approximate methods.

(1) In one first method, the integral in Eq. (2) can be
performed simply by an average orbital radius approxi-
mation as done by Zhong and Ching. In this approxima-
tion, the r is replaced by the average orbital radius
rp=(r) of the electrons considered (4f electrons for
rare-earth atoms). Then from Eq. (6)—(9) in Ref. 8, the
CEF parameter is obtained as the sum of two parts

B„'"'=81(r")A„'"', R )rp, (4)

where H0 is the Hamiltonian of the single atom, H, is the
external magnetic field, VcEF is the crystalline field poten-
tial, and g is the spin-orbital coupling constant.

The first approach is to evaluate the CEF as the start-
ing point for study of the MCA. In traditional crystal
field theory, when the crystal field VcEF is known, the ei-
genvalue and eigenfunction of the Hamiltonian (Eq. 1)
can be solved by standard methods, and the MCA can be
obtained from calculation of the total energy of the sys-
tem. The problem we are confronted with is how to get
the CEF with enough accuracy. As an improvement on
the point-charge approximation, the CEF due to the en-
vironmental charge p(R) can be written as

(2)r —R
where (r, O, y) represent the coordinates of the local elec-
tron, the integral extending over the whole crystal. As
usually, the crystal field potential Vca„=V(r, O, y) can be
expressed in terms of Stevens operators O„as

where 8~ are the Stevens factors, and (r") is the radial
average of r". 3„'" and A„'"' are given by

A '"'= — Z (8,4)d R,
2n +1 R "+' (6)

fR "p(R)Z„(8,4)dR,
2n +1

and Z„ is the tesseral harmonics including the numeri-
cal factor as defined in Ref. 3.

The p(r) in Eqs. (6,7) includes the nucleus, core, and
valence electrons. In order to reduce the error in the nu-
merical calculation, we subtract the spherical charge den-
sity of the corresponding atom; this does not influence
the MCA which comes from the aspherical distribution
of the charge density around the rare-earth atom. ' The
CEF parameter B„defined in (3) is simply the sum of

OUt and JP
IQ

(2) We propose here a different method of calculating
parameters 8„.We can also calculate the CEF parame-
ter directly from the Coulomb potential surrounding the
atom concerned (the rare-earth atom in this work), after
the self-consistent cluster electronic-structure calculation.

The crystal field potential acting on the local electrons
of the concerned atom R can be expanded in terms of
spherical harmonic functions according to the local crys-
tal symmetry of R2Fe&7L& compounds:

In the usual crystal field theory, we are interested in
the matrix H,". The CEF part of matrix H; is
( f; ~

V cE~F~1.(). We define

VrM= f VrM(r)~R(r)~ r dr,

where R(r) is the 4f radial function of the concerned
atom. One can express the V(r, O, y) in terms of the irre-
ducible tensor operators Y~~ with the radial average
Vz~ instead of Vl~ itself as follows:

V(O, y) =f V(r, O, qr) ~R(r)
~

r dr

V00 Y00+ V20 Y20+ + V66 Y66 .

The VrM can be obtained by multiplying Yr'M(O, y) on
both sides of Eq. (11}when using the well-known nor-
malization of spherical harmonics, and integrating over 0
and qv,

VIM =f V(O, y)Yr*M(O, y)sinOdOdy

= f V(r, O, y)~R(r)~ Yz~(O, p)dv . (12)

V(r, 8,$)= Vpp(r) Ypp+ Vrp(r) Y2p

+ + V6s(r) Y66+ (8)

where V(r, O, y} is the crystal field potential VcE„, and

Yr3r = Yz~(O, y) are sPherical harmonic functions.
In the ~- o of rare-earth atoms, the wave function of

4f electrons in tiI~ EF is a linear combination of
Y& (O, qr)(l=3) as

$4f g C R43(r)Y3~ p
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These integrations over total volume can be performed
conveniently in the discrete variation manner.

In practice, we calculate the crystal field potential
V(r, 8,y} self-consistently using the embedded-cluster
model. The relation between the coeScients VLM in Eq.
(11)and the 8„ in Eq. (3) is as follows:

&nm=~nm . (13)

=g(r}l s . (14)

Although the coupling constant g(r}, which depends
on the gradient of the potential, can be obtained in the
self-consistent calculation, it is di5cult to get a value ac-
curate enough. In this preliminary work, the experimen-
tal value g of the spin-orbit splitting constants from opti-
cal spectra of the trivalent rare-earth ions are used in our
calculation.

The anisotropic total energy can be expressed as

E,(8}=Ko+K, sin 8+

where 8 is the angle between the moment and the c axis
and E& determines the direction of magnetization. The
total energy of the cluster is calculated using the usual
method described by Delley et al. '

In order to determine the E&, and then the direction of
magnetization, we calculate the total energy where the
moment is set in the direction specified, [001]or [100],re-
spectively. Then the anisotropy constant E& is

K, =E,([100])—E,([001]) (16)

The constant of higher-order expansion can be obtained
if a more specific direction such as [111] is taken into
consideration.

The main crux of this method is to get enough pre-
cision for the integration of V(r, 8,qr). In the DVM cal-
culation, we take about 73 integration points per electron
for each rare-earth atom and 23 points per electron for
other kinds of atoms in the cluster. After calculating the
coefficients, one can obtain the MCA following Yamada
and co-workers. '

Another direct approach to investigate MCA is given
by us. One can obtain the MCA by comparing the total
energies with the direction of the magnetic moment along
the different crystalline axes. Since the relativistic effect
is important for the rare-earth atoms, a semirelativistic
local-spin-density approximation (LSDA) cluster code
has been used to obtained the zero-order approximate re-
sult ~lsjm ) in the self-consistent calculation for the em-
bedded cluster with rare-earth atom. The spin-orbit
correction, small compared to the zero-order energy, is
treated as a perturbation in the total-energy calculation.
Then the spin-orbit interaction has the form

e 1 dV(r) I
2tn c

TABLE I. The calculated effective ionic changes in R2Fe)7L„
(R =Sm,Nd; x =0,3).

Site R (6c) Fe(6c) Fe(9d) Fe(18j) Fe(18h) N(9e )

Sm2Fe)7
Sm&Fe»N3

Nd2Fel7

Nd2Fe)7N3

0.24
0.65
0.42
0.66

0.11
0.20
0.24
0.20

0.06
0.19
0.24
0.08

0.11
0.17
0.13
0.23

—0.05
0.02 —0.45

—0.03
0.05 —0.54

TABLE II. Calculated radial averages (r") for 4f atomic
wave functions of Sm and Nd in binary and ternary compounds.

7,2 r4 p6 —17'
—37'

pounds R2Fe, ~). The calculated effective ionic charges
on all the different sites in R2Fe,7N„(R =Sm,Nd;
x =0,3) are listed in Table I, as obtained from self-
consistent calculations for the corresponding embedded
clusters R2Fe2ON„. These effective ionic charges are ob-
viously different from the assumed values used in the ap-
proximate point-charge model calculation. '

The calculated radial averages (r") for 4f atomic
wave functions of Sm and Nd are listed in Table II.
These values are used to calculate 8„ in Eqs. (4) and (5)
in the first approximate method of calculating the CEF.
From these equations, we can get the values of the
second-order crystal field parameter 820 as 1.38, 0.95,
2.24, and —3.17 for Nd2Fe&7, NdzFe&7N3, Sm2Fe&7, and
Sm2Fe, 7N3, respectively. The positive parameter 820 in-
dicates easy-plane anisotropy for NdzFe, 7,Nd2Fe&7N3,
and Sm2Fe&7, and the negative parameter 820 for the ni-
tride compound Sm2Fe&7N3 corresponds to easy-axis an-
isotropy; this is in good agreement with the experimental
value of 820= —4.8 K in Sm2Fe»N2, obtained by Coey
and Otani. '

In Ref. 8, the environmental charge density is deter-
mined as the difference between the electronic charge
density in the crystal from the non-self-consistent tight-
binding band calculation and the charge density of the
free rare-earth atom. In this work, the effect of the as-
pherical charge density is considered not only on the sur-
rounding atoms but also on the rare-earth atom itself, ob-
tained from the results of a self-consistent electronic-
structure calculation for the corresponding cluster model.

The charge density distribution (in Fig. 1) of the cluster
model concerned can provide an intuitive feature about
the MCA. Figure 1(a) is the contour plot of charge densi-
ty on the (101) plane. The distribution along the c axis
for SmzFe, 7N3, which comes from charge transfer be-
tween R and N atoms, implies c-axis easy magnetization.
On the other hand, the charge distribution of Sm2Fe&7
shown in Fig. 1(b) leads to a basal-plane anisotropy. The
same idea is also described by Coehoorn. '

The second method to calculate the CEF parameter
from the crystal field potential is carried out for
Gd2Fei7N„(x =0,3). The coefficients defined by Eqs.

III. RESULT AND DISCUSSION

These approximate methods sketched above are used
to evaluate the magnetic anisotropy of R zFe&zN
(R =Sm, Nd, Gd; x =0,3} (x =0 means the binary com-

Sm2Fe» 0.87717 2.50692
Sm2Fe»N3 0.87488 2.49290

Nd2Fel7 0.88033 2.10305
Nd2Fe»N3 0.88046 2.11370

18.26746 1.65836 12.48399
18.14465 1.65841 10.57422
11.64345 1.57753 10.03925
11.80610 1.57794 10.37639



6744 Z. ZENG, Q. Q. ZHENG, AND W. Y. LAI 49

(11) and (16) are —38.14 K for GdzFe, 7 and —55.3 K for
GdzFe, 7N3. The strength of the CEF in the nitride
GdzFe&7N3 is larger than that in the alloy GdzFe, 7. The
experimental results for Azo=( —60+40) K for the
binary compounds RzFe&7 with R=Dy, Ho, or Er are
comparable with these calculated values. Since the spin-
orbit coupling perturbation is inversely proportional to
the interval between the energy levels constrained by
selection rules, the distribution of energy levels will effect
the strength of the MCA. The energy distribution below
the Fermi level of the GdFe&9N3 cluster is closely concen-
trated, and the corresponding energy intervals of the
GdFe&9N3 cluster model are smaller than those of the
GdFe&9 cluster model. This leads to stronger spin-orbit
interaction, i.e., stronger MCA affected by the CEF, in
GdzFe&7 after Nz uptake.

As an example, the magnetic anisotropy energy was
evaluated from direct total-energy calculation for
R2Fe&7N„(R =Sm, Nd; x=0, 3) and Nd2Fe&7C3. When
there is no spin-orbital coupling term in the Hamiltonian,
the nonrelativistic total energies for different directions of
magnetic moment are almost the same. This result indi-
cates that the precision of our energy calculation is ac-
ceptable. The spin-orbit splitting constants g of R + ions

(~)
0

a [1001

(b)

TABLE III. The magnetic anisotropy constant K l for
R2Fe»L„(R =Sm, Nd; L =N, C; x =0.3).

Sm2Fe, 7

Sm2Fe»N3
Nd2Fe»

Nd2Fe»N3
Nd2Fe&7C3

g (eV)

0.146290
0.146290
0.109107
0.109107
0.109107

Kl (eV)

—0.0888
0.0506

—0.0111
—0.0176
—0.0199

in RF3 crystals are used in this work. The coefficients E,
obtained are listed in Table III.

The energy levels split and rearrange when the pertur-
bation of the spin-orbit interaction is introduced into the
Hamiltonian, and the MCA depends on the ordering of
the energy levels. The occupied f state below the Fermi
level is f, z z, in the SmFe&9 cluster model used to

y(y —3x )

simulate SmzFe&7. This xy-plane behavior will result in
planar MCA when the spin-orbit coupling operator is
turned on with the spin moment sites in the ab plane.
Due to the mixing between samarium and nitrogen in the
SmFe»N3 cluster model (related to SmzFe, 7N3), the occu-
pied f state below the Fermi level changes to f ~5, z „z~

This state including z-axis behavior will exhibit c-axis
MCA with the spin-orbit interaction considered. In the
NdFe»N3 cluster model, which is related to the
NdzFe&7N3 compound, because of the fewer electrons of
Nd compared to Sm, the occupied energy levels below
the Fermi level are similar to those in SmzFe&7, i.e., the
state f

~

z 3 z~; thiscompoundshowsplanar MCAalso.x(x —3y )'
The results of this analysis are shown in Table III; only
SmzFe&7Nz 6 shows c-axis MCA and all the other com-
pounds in Table III exhibit basal-plane easy magnetiza-
tion. This agrees with the experimental results. The er-
ror of this calculation (larger MCA values than experi-
ment) may result from the selection of the approximate
spin-orbit coupling constant g and the correspondence
between the one-electron states and the multiplet of the
many-body system for rare-earth atoms.

In summary, the results for MCA from erst-principles
electron-structure calculations using the two approaches
described above may explain the magnetocrystalline an-
isotropy of RzFe&7L& compounds reasonably well. The
strong MCA of SmzFe, 7Nz 6 mainly comes from the an-
isotropic behavior of the 4f electrons in the CEF,
enhancement of magnetocrystalline anisotropy with up-
take of Nz takes place, and the c-axis easy magnetization
is an effect related to the charge transfer between samari-
um and nitrogen as well as to the change of CEF. The re-
sults obtained by us show that the two approximate
methods of calculating the CEF are reliable and efficient
in the investigation of MCA in rare-earth-iron com-
pounds.
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