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Spin excitations and sum rules in the Heisenberg antiferromagnet
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Various bounds for the energy of collective excitations in the Heisenberg antiferromagnet are present-
ed and discussed using the formalism of sum rules. We show that the Feynman approximation
significantly overestimates (by about 30% in the S=

2 square lattice) the spin velocity due to the non-

negligible contribution of multiple magnons to the energy-weighted sum rule. We also discuss a
different, Goldstone-type bound depending explicitly on the order parameter (staggered magnetization).
This bound is shown to be proportional to the dispersion of classical spin-wave theory with a q-
independent normalization factor. Rigorous bounds for the excitation energies in the anisotropic
Heisenberg model are also presented.

I. INTRODUCTION

In the past few years a considerable number of papers
have been devoted to the study of the Heisenberg model
for antiferromagnetism, especially in two dimensions.
This interest is mainly motivated by the need for a better
understanding of the antiferromagnetic behavior of the
undoped precursor insulators of the high-T, supercon-
ductors. After the pioneering works by Anderson' and
Oguchi, based on spin-wave theory, several theoretical
methods have been developed to study this problem.
These range from spin-wave theory up to second order in
I/2S to series-expansion methods from the Ising side and
to Monte Carlo calculations (see the review papers, Refs.
3 and 4, for exhaustive discussions and references).

The purpose of this paper is to discuss the elementary
excitations of the Heisenberg antiferromagnet at zero
temperature using a sum-rule approach. Only recently
systematic theoretical investigations of the dispersion of
spin waves in the whole Brillouin zone have become avail-
able. ' Recent experiments" in I.a2cu04 with neutron
scattering suggest that the dispersion follows the predic-
tions of classical spin-wave theory with a proper renor-
malization factor. Even at low q, where the dispersion
becomes linear, rather relevant questions still remain to
be clarified in a satisfying way. Among them we recall
the problem of the validity of the so-called "Feynman" or
single-mode approximation for the calculation of the spin
velocity and of the role of multiple magnon excitations.
These questions, first discussed by Hohenberg and Brink-
man many years ago in one-dimensional (1D) antifer-
romagnets, ' have been recently addressed by Singh in
the S =

—,
' square lattice. In this work we are mainly in-

terested in the 2D case and, in general, in systems with
broken symmetries.

The paper is organized as follows: In Sec. II we discuss
the Feynman approach to spin excitations and we prove
that it cannot reproduce the correct dispersion of spin
waves at low q because of the presence of multiple mag-
non excitations which affect the energy weighted sum
rule also in the long-wavelength limit. In Sec. III we dis-
cuss a different bound for the energy of elementary exci-

tations. This bound, first introduced by Wagner' many
years ago, has the form of a Goldstone theorem and de-
pends explicitly on the order parameter. It can be easily
calculated through the whole Brillouin zone and in par-
ticular it exhibits the same dependence on q as the one
given by classical spin-wave theory (SWT), with a proper
renormalization factor. In Sec. IV we present results for
the anisotropic Heisenberg model. In particular we
derive rigorous upper bounds for the mass gap in the
easy-axis antiferromagnet and for the gapless dispersion
law in the case of the easy-plane antiferromagnet.

II. THE FEYNMAN APPROXIMATION

In the following we investigate spin excitations in the
framework of the Heisenberg model for antiferromagne-
tism (AFM) characterized by the Hamiltonian

H =J g [s s'+l(s;"s "+sf')],
(ij )

where (ij }denotes a sum over all nearest-neighbor pairs
and J)0. The limits A, =O and A, = 1 correspond to the
most famous Ising and isotropic Heisenberg models, re-
spectively. At zero temperature the isotropic Heisenberg
model is believed to give rise to spontaneous sublattice
magnetization also in two dimensions (square lattice),
though quantum Nuctuations have a crucial role in reduc-
ing the value of the order parameter (actually the S =

—,
'

Heisenberg model has been rigorously proven to give rise
to spontaneous magnetization only in three dimen-
sions' ). In Secs. II and III we mainly discuss the isotro-
pic case (A, = 1 } and we assume the staggered magnetiza-
tion to be oriented along the z axis. This is also the case
for the anisotropic case if A. (1. Conversely when A, & l
(see Sec. IV) the axis of (spontaneous} magnetization lies
in the x-y plane (easy plane).

In the following we wi11 mainly consider excitations
generated by the spin operator:

(2)

These excitations are transverse with respect to the z-
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staggered magnetization axis. The most important
among such excitations are spin waves (magnons) that
represent the elementary excitations of the system.
Rigorous upper bounds for the energy of these excita-
tions can be obtained at zero temperature using the sum-
rule method.

The most popular bound is given by the Bijl-Feynman
ansatz, analog of the most famous approach employed to
investigate the propagation of density excitations in Bose
superfluids. ' It is obtained by applying the spin operator
(2) to the ground state of the system. One finds

1 (Ol[s" [H,s,"]]IO&

S (q)
(4)

and provides, at zero temperature, a rigorous upper
bound for the energy e(q) of the lowest state excited by
the operator sq. This can be directly shown by identify-
ing the numerator and the denominator of Eq. (4) as the
energy-weighted and non-energy-weighted moments of
the transverse dynamic structure factor

S (q, a))=g I( Olsqln &I 5(a)—a)„0) .

In fact, using the completeness relation, one can write

fS'(q, co)co d~=& (Ols', ln & I'~.o

and

=-,'&0[,[H, ,"]]IO&

fS'(q, ro)d~=&
I &Ols", ln & I'

=(Ols" s'IO& =S (q) .

Note that at T =0 the dynamic structure factor S~(q, co)
vanishes for co & 0.

The Feynman energy (4) has been already used by
several authors to study the energy of elementary excita-
tions in the Heisenberg model. ' ' ' ' The numerator of
Eq. (4) can be easily calculated employing the commuta-
tion rules for the spin operators. The result is

—,
' &oI [s"-,[H s,"]]Io&=z [f.(1—~y, )+f,(~—y, )] .

(7a)

Analogously, for the s" and s' operators one finds

—,'(Ol [s' „[H,s", ]]lo& =z [f,(1—Xy, )+f„(X—y, )],

—,'&Ol[s', [H, s', ]}lo&=Az(f„+f~)(1—yq),

(7b)

(7c)

where z is the number of nearest neighbors,

IF &= s'IO& (3)
S'(q) '

In Eq. (3} S (q}=(Ols",s'IO& is the transverse struc-
ture factor entering here as a normalization factor. The
excitation energy of the Feynman state is given by

e'p( q) = ( FIH IF &
—

& OI H I
0 &

y =(1/z) ps cosq 5 and we have introduced the quanti-
ties

fy = — (—sfsf+s &,
J

Jf,= ——&s,'s,'+s & .

Here 5 is the lattice vector connecting nearest neighbors.
In the square lattice one has yq= —,'(cosq„+cosq„), while
in the cubic lattice yq= —,'(cosq„+cosq„+cosq, ), having
set the lattice parameter equal ta 1. It is worth noticing
that the form of the energy-weighted sum rule relative to
sz differs from the one relative to s' and

spaz.
This follows

from the fact that the Heisenberg Hamiltonian (1) is in-
variant for spin rotation in the x-y plane.

In the isotropic case (A, = 1 ), Eq. (7a) becomes

—,'&Ol[s", [H,sz]]IO& =z(f, +fs)(1—
yz) . (9)

Note that even in the isotrapic limit A, = 1 the quantity f,
difFers from f ( =f„) if there is spantaneous magnetiza-
tion among the z axis.

At small q the energy-weighted sum rule (9) becomes
[we consider here for simplicity the square and cubic lat-
tices where y = 1 —(1/z)q +o (q )]

—,
'

& Ol [s",[H,s' ]] l0 &
=(f,+f, )q' (10)

and exhibits the typical q dependence characterizing the
most famous f-sum rule for density excitatians. '

The denominator of Eq. (4) is the Fourier transform of
the two-body transverse spin-correlation function. Its
behavior is dominated, at low q, by long-range correla-
tions associated with spin waves. Numerical results far
S (q), based on Monte Carlo calculations ' and series-
expansion methods, are now becoming available.

From a general point of view the Feynman energy (4) is
expected to provide a good estimate for the frequency of
elementary excitations in Heisenberg antiferromagnets.
This system can be in fact considered a relatively weakly
interacting many-body system as compared, for example,
to other strongly interacting quantum systems such as
superfluid He, where the Feynman approximation is
known to overestimate in a significant way the energy of
lowest excitations at high momenta.

An important question is however to understand what
happens to the Feynman approximation in the long-
wavelength limit dominated by the propagation of mac-
roscopic spin waves. While in superfluid He the Feyn-
man ansatz is known to reproduce exactly the phonon
dispersion (in terms of sum rules this means that both the
energy-weighted and non-energy-weighted sum rules for
the density operator are exhausted by phonons) the situa-
tion is different in the spin case. In fact the nonconserva-
tion of the spin current makes the contribution of multi-
ple magnon excitations particularly important in the
low-q limit. These excitations exhaust a finite fraction of
the energy-weighted sum rule (EWSR) and consequently
the Feynman energy (4) does not approach the correct
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dispersion law at small q. In the following we will discuss
such an effect in a quantitative way with the help of avail-
able microscopic calculations of the spin-stiffness
coefficient.

It is convenient to write the transverse dynamic spin-
structure function in the following way:

TABLE I. Matrix elements I(sq)„pl = l(nlsq IO}I, excitation
energies, and sum-rule contributions from one-magnon and
multiple magnon excitations at 7=0 in the isotropic Heisen-
berg antiferromagnet.

Magnon

cq

Multiple magnons

const

p, q/2c

2cm /p, q

p, /2c~

q

const

p, q /2c q

g l(&q4ol no psq /2

g l{s»q q)„ol /co„o m /2p, q const

m c/2p, q const

g I(sq —
q )~pl N~p m c /2p, const

S (q, co) = A(q)5(co —co(q ))+S (q, pi),

where we have separated the sharply peaked single-
magnon contribution characterized by the dispersion law
co(q} and strength A (q), from the smooth contribution
S (q, co) arising from multiple magnon excitations
[S (q, co) =0 for co ~ co(q)].

The main results for the single magnon and multiple

magnon contributions to the various moments of S (q, co)
at small q are summarized in Table I. The main point is
the q dependence of the strength associated with multi-
ple magnon excitations. This dependence differs from the
q4 dependence associated, for example, with multiple
phonon excitations in Bose superfluids. The difference is
due to the fact that the current is conserved in Bose
superfluids because of translational invariance. In the
case of spin excitations the quantity [H,s ], proportional
to the spin current [see Eq. (15) below], is not conserved
even in the low-q limit and this implies a stronger q
dependence for the strength associated with multiple
magnon excitations. A similar behavior is exhibited by
spin excitations in normal Fermi liquids. ' This result
implies that multiple magnon excitations affect the
energy-weighted sum rule with a term proportional to

2 18

The occurrence of a q contribution to the energy-
weighted sum rule due to multiple magnon excitations is

clearly exploited by the calculation of the double commu-
tator relative to the "longitudinal" operator

sq =(I /&N ) g; s e ' [see Eq. (7c)] for which we find,
at low q,

—,
' (Ol [s' [Hs' ]]IO & =(f„+f )q (12)

This contribution, quadratic in q, is entirely 6xed by mul-
tiple magnon excitations, since single magnons are not
excited by sq.

The low-q contribution to the transverse energy-
weighted sum rule, (5) and (10), arising from single mag-
nons is given by —,'p, q, where p, is the spin-stiffness

coefficient. This can be easily understood by using the
hydrodynamic expression for the spin velocity

C2- ps

y (0)

where

yi(q) =2 y (ols", ln & I'
nO

S (q, co)

(13)

(14)

is the transverse magnetic susceptibility. This sum rule is
expected to be entirely exhausted, at low q, by the one-
magnon excitation. If the energy-weighted sum rule, (5)
and (10},were also entirely exhausted by the one-magnon
mode at low q, then the ratio

g l(ols", ln &I'co„o
1 n

lim
q p q g l(0ls" qln &I /m„p

2(f, +f»)
X'(0)

should coincide with c . The comparison between the
quantities 2(f, +f» ) and p, then provides a direct and
quantitative information about the contribution of multi-
ple magnons to the energy-weighted sum rule. Both the
quantities (f, +f») and p, are now available through
difFerent theoretical calculations. All the various predic-
tions, based on spin-wave theory to second order in
1/2S, ' series expansion from the Ising side ' and
Monte Carlo calculations ' agree with the value
2(f, +f„)=0.25 in the S=—,

' square lattice. Vice versa
the most recent estimates for p, (Refs. 20—22) predict
values in the range 0.18-0.20. Since the non-energy-
weighted sum rule (6}, entering the denominator of the
Feynman bound (4), is expected to be exhausted by the
single inagnon [see Eq. (19) below], we then conclude that
the Feynman ansatz overestimates the spin velocity by
about 30%. In the S =1 square lattice the overestimate
is about 10%. In Table II we report, for completeness,
the values of various thermodynamic parameters relative
to the 2D Heisenberg model. These values correspond to
the predictions of spin-wave theory up to 1/(2S) (Ref.
23} and are rather close to the ones given by the series-
expansion method from the Ising side and by Monte Car-
lo calculations.

It is useful to study more explicitly the role of the spin
current and its connection with the spin-stiffness
coefficient and the energy-weighted sum rule. To this
aim let us start from the continuity equation for the spin
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TABLE II. Parameters of the isotropic 2D AFM Heisenberg model predicted by spin-wave theory

up to second order in 1/(2S)2 (Ref. 23). The Heisenberg coupling constant Jhas been set equal to 1 and

magnetization is taken along the z axis.

S=—'
2

S=1
—0.67
—2.33

0.30
0.80

0.061
0.092

ps

0.18

0.87

1.7
3.1

0.125

0.47

0.04
0.25

density (in the following the vector q will be taken along
the x axis):

[H, sq ]= —2iJ g s; sJ(e ' e—j )
N &;J&

—=qJ,"„(q) (15)

defining the component of the spin current parallel to q.
Equation (15) provides the following expression for the
spin current at q=O:

Jj," (0)= — g s,'s,~+s5, ,S ~ l l X (16)

where 5„=x;—x is the x component of the vector con-
necting the nearest-neighbor pair (ji }.

The key point is that the spin current (16) is not a con-
served quantity (it does not commute with the Hamiltoni-
an) and consequently, when applied to the ground state,
it can give rise to excitations with nonvanishing strength.
Such excitations are multiple magnon states, since spin
waves with q=0 cannot propagate.

Let us now calculate the static response relative to the
current j," (q). Due to the equation of continuity (15),

x

this is exactly fixed by the energy-weighted sum rule for
the spin operator sq

x(J," (q))=2& I&0lj,'(q)ln &I'
n nO

where we have taken the low-q limit (10) of the energy-
weighted sum rule. Both spin waves and multiple mag-
non excitations affect this quantity at low q. The spin-
wave contribution is fixed by the spin-stiffness coeEcient
(see the discussion above and Table I), while the multiple
magnon contribution can be calculated through the static
response of the q=0 component (16) of the spin-current
operator. In conclusion we get

p, =2(f, +f~)—g(j," (0)) . (18)

Result (18) for the spin-stiffness coefficient p, shares im-

portant analogies with the most famous expression
p, =p —p„ for the superfiuid density of a Bose liquid. In
Eq. (18) the quantity 2(f,+f~ ) plays the role of the total
density p, fixed by the model independent f-sum rule, '6

while the quantity y(j," (0) ) plays the role of the normal

density p„, defined as the low-q limit of the transverse
current response function. Note that in the case of an-
tiferromagnetism, where the current is not conserved, we

can safely take the q ~0 limit of the current operator for
the calculation of the multiple magnon contribution to
the static current response.

It is remarkable to point out that relation (18) was ob-
tained in an independent way by Singh and Huse ' start-
ing directly from the definition of the spin stiffness as hel-
icity modulus. The full agreement between the two for-
mal derivations provides further support to the theory of
spin hydrodyamics and at the same time emphasizes the
role played by multiple magnon excitations. Concerning
this last point it is worth noting that in the large-S limit
multiple magnon excitations are absent, y(j,' (0) )=0,

x
and p, coincides with 2(f, +f ). Actually, using the re-
sults of spin-wave theory, one can easily show that the
multiple magnon term y(j," (0)) is second order in 1/2S,

x
while the longitudinal sum rule (12), dominated by multi-
ple magnons, is first order in 1/2S. This different
behavior is likely associated with the fact that longitudi-
nal excitations are mainly two-magnon states, while the
multiple magnon component of the transverse response is
dominated by three-magnon states.

Another important result emerging from Table I con-
cerns the low-q behavior of the transverse spin structure
factor (6):

S (q)~ 0=—
q

1 Ps

2 c

accounting for the fluctuations associated with the propa-
gation of long-wavelength spin waves. The coeScient of
linearity has been directly calculated by Singh using the
series-expansion method. The resulting estimate is in
reasonable agreement with Eq. (19).

It is finally useful to stress that the results discussed in
this section using the sum-rule technique emphasize in an
explicit way the existence of a spontaneously broken sym-
metry in spin space. Different results would be obtained
if one instead decided to work with an isotropic ground
state, as happens, for example, in a numerical simulation
in a finite system. In this case the results for the excita-
tion energies, obtained through the evaluation of sum
rules, would correspond to an average between transverse
and longitudinal excitations and the information on the
dispersion law of elementary modes would be consequent-
ly poorer.

III. ORDER PARAjNIETER
AND EXCITATION ENERGIES:

The discussion of Sec. II on the behavior of the Feyn-
man energy in the low-q region is based on the analysis of
the spin-structure function. The existence of spin waves
with linear dispersion must be, however, assumed in or-
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This inequality introduces the "conjugate" operator sq
where g is the antiferromagnetic vector fixed by the con-
dition e'g' = 1 when R connects sites in the same sublat-
tice and —1 when it connects sites in diferent sublattices.

Using inequality (20) and (21) we then obtain the useful
rigorous result

& [s"-, [H s",]]& & [s»,—,[H s», —,]]&

co (q) ~

A major advantage of inequality (22) as compared to the
Feynman bound (4), is that it involves commutators both
in the numerator and denominator. In particular the
quantity

(22)

]. i g.r,.([s"q, s» ]&=i —gs,'e ' =im
N

(23)

coincides with the staggered magnetization (assumed
here along the z axis), i.e., with the order parameter of
the problem, and is independent of q.

The full q dependence of the bound (22) is then entirely
fixed by the double commutators entering the numerator.

der to discuss such a behavior and cannot be predicted
using this method, unless one exploits numerically the
rather difBcult low-q regime. For this reason it is useful
to derive alternative bounds for the excitation energies
which exploit more directly the long wavelength regime.
Such bounds can be obtained with the help of an inequali-
ty due to Bogoliubov and point out a crucial feature
characterizing antiferromagnets as well as other systems
with spontaneously broken symmetries: the existence of
an order parameter. This phenomenon is known to be at
the origin of Goldstone modes which, in the antiferro-
magnetic case, take the form of spin waves with a linear
dispersion at low q. This approach was proposed by
Wagner' to prove the existence of Goldstone modes in
an important class of physical systems. To our
knowledge it has never been used to investigate the full q
dependence of the excitation spectrum of Heisenberg an-
tiferromagnets.

The starting point is the introduction of an upper
bound for the energy co(q) of the lowest excitation with
wave vector q, in terms of the ratio between the energy
weighted and the inverse energy-weighted sum rules rela-
tive to the operator s":

fS (Q, co)codco ( [s" [H sx ]]&

~'(q) ~ =, . (20)

fS'(q, co) dco-
In Eq. (20} we have made use of Eq. (5) and used
definition (14}for the transverse susceptibility.

The upper bound (20), holding at zero temperature, is
stronger than the Feynman one [see Eq. (4)], being based
on the inverse energy-weighted sum rule y (q} rather
than on the non-energy-weighted sum rule S (q). Its
determination requires however the diScult calculation
of the q dependence of y (q). In the following we will
combine the bound (20} with the Bogoliubov inequali-
ty' ' for the static response relative to the operator sq

y'(q)([s»s q, [H, s»q s]]& ~ ~([s',s» ]&~'. (2l)

Such commutators have been already calculated in Sec. II
[see Eq. (7)]. Noting that yz

= —y we find the follow-
ing result:

2z(f, +f») 2(f, +f )
co(q)~ 1 —y = co (q),

m ~ mSJ
(24)

where co (q) =zJS+1—y is the dispersion law of clas-
sical spin-wave (SW) theory and we have used the prop-
erty f„=f .

The following remarks are in order here.
(i) The rigorous bound (24) exhibits a linear behavior in

q for q~O, provided the order parameter is di6'erent
from zero (Goldstone theorem). Furthermore this bound
is symmetric by exchange of q with g

—q and hence pre-
dicts the vanishing of elementary excitations also at the
staggered wave vector g.

(ii) The q dependence of this bound is entirely con-
tained in the classical law cps (q), the coefficient of pro-
portionality being independent of q. In particular from
Eq. (24) we obtain the bound

2(f, +f») sw —(f, +f»)c& ' ' csw=2&2z
SmJ m

(25)

for the spin velocity in terms of the quantities (f, +f» )

and m(c =&2zSJ is the prediction of classical SW
theory}. Using the numerical results of Table I for
(f, +f») and m we find c 1.6c in the S =

—,
' square

lattice. The bound (25} overestimates by -30%%uo the
value of the spin velocity calculated through Eq. (13)
(c =1.2c ). In the S =1 square lattice result (25) yields
c ~1.2cs, while Eq. (13) gives c =1.1c . At small q
the quality of the new bound is hence similar to the one
of the Feynman approximation. From a conceptual point
of view it has the advantage of exploiting directly the
low-q behavior with the only assumption of the existence
of a broken symmetry. It is also interesting to remark
that, using the result of second-order spin-wave theory,
the bound (25) for the spin velocity coincides with the ex-
act value (13) up to first-order terms in 1/2S. Deviations
from the exact value are associated with multiple magnon
effects [terms in 1/(2S) ].

The dispersion of magnon excitations in the S=—,
'

square lattice Heisenberg model has been the object of a
recent Monte Carlo calculation. The authors of Ref. 8
have fitted their results with the law co(q)-1.2' (q)
(similar results have been very recently found also by the
authors of Ref. 10), consistently with the value of the spin
velocity obtained from Eq. (13). The upper bound (24) is
then found to overestimate the magnon dispersion by the
same amount ( —30%) in the whole Brillouin zone. In
Fig. 1 we report the prediction of the Goldstone-type
bound (24) together with the fit to the results of Ref. 8
and the predictions of the Feynman approximation taken
from Ref. 9. It is interesting to remark that the Feynman
approximation is much more accurate near the maximum
of the dispersion curve rather than in the low-q region
where, according to the discussion of Sec. II, it overesti-
mates the linear dispersion by -30%.

(iii) Inequality (24) becomes an identity in the large-S
limit (f, =

—,'S2, f„=f =0, m =S) where it coincides
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In fact, since the magnon matrix element (Ols" ~ln )
behaves like ~q at low q [see Table I and Eq. (19)],it fol-
lows that the sum rule (29) can be satisfied only by a
divergent behavior of the magnon matrix element

(nlsq slO) (multiple magnon excitations give rise to
higher-order contributions) according to the equation

U~ 2
3 (nls', , lo) = (ols', , ln') =— (30)

0.2 0.4 0.6 0.8

holding for q ~0. Here
l
n ) and l n

' ) are single-magnon
states with opposite wave vector and we have assumed,
without any loss of generality, the matrix element
(Ols"

~ l
n ) = ( n'ls"

q l0) to be real. The magnon contri-
bution (30}dominates the divergent behavior of the spin-
structure factor near the staggered vector that then takes
the form

FIG. 1. Dispersion of spin excitations in the S =
2 square lat-

tice (q„=q~ ). The long-dashed line corresponds to the
co(q) =1.2' (q) fit to the Monte Carlo results of Refs. 8 and
10; the squares (taken from Ref. 9) correspond the Feynman
bound (4), while the full line to the Goldstone-type bound (24).
The prediction of classical spin-wave theory m(q)=co (q) is
also reported (dashed line).

with the prediction of classical spin-wave theory.
The Bogoliubov inequality (21) can be used to provide

directly a bound for the transverse susceptibility y (q).
Using the relation yq I= —

yq one finds

2m

2z(f, +f )(1+y )

At q =0 Eq. (26) yields

2m

4z(f, +f }
(27)

while near the staggered vector g one finds the typical
divergent behavior

Nlx'( g-q )-
2(f, +f )q

(28)

=([s"q, s~ l) =im . (29}

characterizing the transverse staggered susceptibility.
Once more these inequalities become identities if one

works with spin-wave theory up to first order in I/2S.
Deviations from the exact results for these formulas are
the direct consequence of the role of multiple magnon ex-
citations.

It is finally useful to complete the analysis of Sec. II
concerning the contribution to the various sum rules
given by the single-magnon and multiple magnon excita-
tions in the region of the staggered vector g. The results
are reported in Table I. We note that single magnons ex-
haust the transverse structure factor and susceptibility
sum rules characterized by typical infrared divergencies.
The result for the spin-structure factor near the staggered
vector can be obtained with the help of the sum rule (23)

g [(ols" ln &(nls&, lo) —&ols', ln)(nls", lo) ]

s'( lg
—

ql ),
2Ps

(31}

The above results are consistent with the rigorous in-

equality

&'(q)&'(
I g —

ql ) (32)

following from the uncertainty principle and holding for
any value of q and for any antiferromagnetic system. Ac-
cording to results (19) and (31), the uncertainty principle
inequality becomes an identity in the q~0 limit. The
coefficient of the 1/q law (31) has been recently calculat-
ed in the S =

—,
' square lattice by Singh using the series-

expansion method from the Ising side. His prediction
turns out to be larger by ( -20%%uo) than the value predict-
ed by Eq. (31). This discrepancy remains to be under-
stood.

Result (31) can be used to study the quality of the
Feynman energy (4} near the staggered vector g. One
finds

4z (f, +fy
)y'(0)

~+( g
—

q ), 0=, cq, (33)

where we have used expression (13}for the spin velocity
c. Result (33) overestimates the spin velocity by -30%%uo

in the S =
—,
' square lattice. The enhancement coincides

with the ratio between the left- and right-hand sides of in-
equality (27) for the transverse susceptibility and follows
from the multiple magnon contribution to the energy-
weighted sum rule.

IV. RESULTS FOR THE ANISOTROPIC
HEISENBERG MODEL

The energy-weighted sum rule (7) for the Heisenberg
model has an interesting behavior at low q in the aniso-
tropic case (A&1). In fact at q =0, Eqs. (7a) and (7b) be-
come

(34a}

and

liin —,'(Ol[s" q, [H,s~]]l0) =z(1—A)(f, f„) . —
q~0

(34b)

lim —,'(Ol[s" q, [H,sq]]l0)=z(1 A, )(f, f~)— —
q~O
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Conversely the EWSR relative to s' vanishes with q,
since the Heisenberg Hamiltonian (1) conserves the z
component of the spin operator.

Note that the quantities f, f»—and f, f—„must be
positive for A, &1 and negative for A. ) 1. This is a
rigorous stability criterium imposed by the positivity of
the energy-weighted sum rules (34).

Result (34} can be used to derive a rigorous upper
bound for the mass gap when A. &1. In fact in this case
Eq. (22) yields

~(q =0) ~ tt/ (f,' f» )&—1 —A.',
m,

(35)

where we have explicitly specified that the magnetization
is along the z axis (easy axis) and used the property

8
This upper bound exhibits the typical nonanalytic

behavior predicted by SWT near A, = l. In the
S =

—,
' square lattice the coeScient of proportionality of

the upper bound (35} is equal to 1.9, compared to the
value 1.3 obtained in Ref. 28 using the series-expansion
method.

Using the Bogoliubov inequality (21) it is also possible
to obtain the rigorous bound

2
J. Z

2z (f, f )(1—
A,
—
)

(36}

for the transverse staggered susceptibility.
Both results (35} and (36) apply only to the case A, ( l.

It is also interesting to discuss the behavior of the system
beyond the isotropic point A, = 1 where one expects the
spontaneous magnetization to occur in the x-y plane (easy
plane}. In the following we assume the magnetization
axis to coincide with the x axis. One can find in this case
a rigorous Goldstone-type upper bound similar to Eq.
(24). This bound is obtained starting from inequality (22),
by replacing the operator s" with s' (the replacement fol-
lows from the new direction of the magnetization axis):

( [s', [H,s' ]]) ( [s», [H, s»q s ]])

I(["„",, ])I'
(37)

Using results (7) for the corresponding double commu-
tators and the identity

( [s',s» ] ) = i —g—s;"e ' =— im„—i g.r,.

c ~ &zA(1+A, )Q(f„+f )(f„+f, ) .
m„

(39)

Result (39) coincides with result (26) in the A,~l limit
and provides a nontrivial result also in the A.—+Do limit
(XYmodel).

Another interesting result can be obtained for the
behavior of the derivative of the energy with respect to
the transverse coupling constant A, . This behavior is im-
portant because it characterizes the nature of the phase
transition at the isotropic point. The derivative can be
calculated starting from the general Feynman formula

dE(A, ) z(f„+f ), — (40)

which straightforwardly follows from the form of the
Heisenberg Hamiltonian (1) and definitions (8) for f„and
f . When A,~l one has f„=f Af, , while when
A,~ 1+ one has f„+=f, and f,+ =f+ =f» . This finally
yields

dE(k)
dA,

dE(A, )+
(f +f )

dA.

(41)

Using the values for f, and f reported in Table II (cor-
responding to spontaneous magnetization along the z axis
and hence to f, and f, respectively) we find
dE(A, ) /d A, = —0.32 and dE(A, )+/dA, = —0.50. These
values are in excellent agreement with the results ob-
tained in Ref. 30 through a direct Monte Carlo calcula-
tion of the energy as a function of the coupling constant

fact that this system, characterized by an anisotropy of
the Hamiltonian in the z direction and by a spontaneous
staggered magnetization along the x axis, exhibits two
different branches in the excitation spectrum: one excited
by the operator sz and for which Eqs. (37) and (38) pro-
vide a rigorous upper bound, and one excited by the
operator s . The bound for the second branch is easily
obtained by replacing, in Eq. (37},the operator ss with s»q

ands~& q
with ss q. This corresponds to replacing q with

g
—q and hence, in Eq. (38), y with —yz. Notice that

this second branch is gapless at the staggered vector g.
Equation (38) provides a rigorous upper bound for the

spin velocity holding for an arbitrary value of A, (larger
than 1 of course}:

(staggered magnetization along the x axis}, we obtain

4'~'(q) ~, (f„+f»)(1—yq)
m

X[f,(1+Ayq)+f„(A, +y )] (38)

yielding a linear dispersion for co(q) at small q (the oc-
currence of gapless spin excitations for the easy-plane an-
tiferromagnet has been recently pointed out in Ref. 29).
It is worth noticing, however, that, difFerently from Eq.
(24) holding in the isotropic case, the bound (38) is not
symmetric by change of q with g —q and in particular it
is not gapless at the staggered point g. This reflects the

V. CONCLUSIONS

In this work we have derived several new results con-
cerning the propagation of elementary excitations in the
Heisenberg antiferromagnet. In particular:

(1) We have proven that the Feynman approximation
does not yield the correct dispersion of long-wavelength
spin waves, due to the role of multiple magnon excita-
tions which contribute to the energy-weighted sum rule
(EWSR) even in the low-q limit. Physically this behavior
originates from the fact that the spin current is not con-
served. Actually the multiple magnon contribution to
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the EWSR is fixed by the static spin current polarizability

y(j," (0)) [see Eq. (18)]. Due to this effect, second order

in 1/2S, the Feynman approximation turns out to overes-
timate the spin velocity in the S =

—,
' square lattice by

about 30go.
(2) We have derived (Sec. III) a Goldstone-type bound

for the energy of spin excitations. This rigorous bound
depends explicitly on the order parameter (staggered
magnetization) and is proportional to the classical disper-
sion of spin-wave theory with a q-independent normaliza-
tion factor. It consequently vanishes at q=O as well as at
the staggered wave vector q=g. This bound is shown to
have an accuracy similar to the one of the Feynman ap-
proximation.

(3) We have obtained useful results also for the aniso-

tropic case (Sec. IV). In particular for the easy-axis anti-
ferromagnet we have derived a rigorous bound for the
mass gap. Vice versa the upperbound in the easy-plane
antiferromagnet is proven to be gapless in agreement
with the general statement of the Goldstone theorem.
We have also explicitly calculated the discontinuity of the
derivative of the energy with respect to the transverse
coupling constant at the isotropic point.

A more systematic investigation of the structure of ele-
mentary excitations in the anisotropic case (including the
XYmodel) will be presented in a future paper.
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