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Potts antiferromagnetic model on a family of fractal lattices: Exact results for an unusual yhase
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The three-state antiferromagnetic Potts model on a family of bipartite diamond hierarchical lattices is
investigated. This exactly solvable family of models exhibits a distinctive low-temperature phase of the

type predicted by Berker and Kadanoff for complex systems with a macroscopically degenerate ground
state. An analytic expression for the residual entropy is derived. We prove that there are some similari-
ties between this phase and that of Kosterlitz-Thouless, namely, the power-law decay of correlations, the
vanishing of the order parameter, and the absence of divergence in the specific heat. It is also shown

that the local order parameter has two distinct multifractal structures: one at the critical point and
another at the unusual phase.

I. INIRODUCrzON

Although the majority of macroscopic physical sys-
tems and statistical mechanics models obey the third law
of thermodynamics, there are notable exceptions like, for
example, the substances' ice, carbon monoxide, and ni-
trous oxide, some frustrated systems (e.g., Ising antifer-
romagnet on the triangular lattice, 2 spin glasses3}, some
Potts antiferromagnets, and some other classical
discrete spin systems. The study of statistical properties
of such systems is much more complex due to their
infinite macroscopic ground-state degeneracy. In partic-
ular, Berker and Kadanoff suggested, using a one-
parameter renormalization-group (RG) argument, that
systems with finite residual (i.e., at null temperature} en-
tropy per particle may present a distinctive low-
temperature phase with no obvious order parameter and
with a power-law decay of correlations. In fact, they ob-
tained, within a Migdal-Kadanoff RG approximation,
such unusual phase in the q-state (q & 2) antiferromagnet-
ic (AF) Potts model on d-dimensional hypercubic lattices
whenever d &d, (q), where d, (q) is the lower critical di-
mension for fixed q, below which there is no phase transi-
tion. However, Racz and Vicsek argued that the appear-
ance of the distinctive phase could be an artifact of the
one-parameter RG treatment. Since then, much work
has been done looking for this phase in the AF Potts
model on different Bravais (see, for example, Ref. 8 and
references therein} and fractal lattices. ' In particular,
many approximate calculations (see Ref. 8 and references
therein) for the q =3 case on the bipartite cubic lattice in-
dicate a continuous transition at T,AO from the
paramagnetic to the long-range ordered broken sublattice
symmetry (BSS) phase. The latter is characterized by a
kind of staggered order that breaks the sublattice symme-
try given by the predominance of one of the states in one
sublattice and of the other two states (randomly distribut-
ed with equal probabilities) on the other sublattice. Ex-
cluding Ono's simulations' (which, according to Ref. 8,
have an insufficient number of Monte Carlo steps) and
some indications for the divergence of the correlation

length below T, despite the nonzero order parameter,
there has not been found any evidence for the unusual
phase in the three-dimensional q =3 case or for any value
of q on a number of Bravais lattices. On the other hand,
the same is not true for some fractal lattices, where this
phase has been established by either exact RG transfor-
mations"' or by the Migdal-Kadanoff RG approxima-
tion. ' It is worth mentioning that the exact results of
Ref. 12 show that the distinctive phase is neither an ar-
tifact of a one-parameter RG treatment nor an artifact of
the Migdal-Kadanoff bond-moving procedure and can,
therefore, occur in a lattice, which is not a combination
of series and/or parallel bonds. The unusual phase was
detected in the RG procedures ' through an attractor
at a nonvanishing temperature —a feature which appears
also in the RG framework of Berker and Kadanoff.
Furthermore, it was also proved, ' for the Ising case, that
the correlations decay algebraically with distance along
the whole unusual phase. But a detailed study of this
phase including the exact temperature dependence of the
order parameter and other thermodynamical quantities
has not, as far as we know, been reported in the litera-
ture. In particular, it would be interesting to see if a BSS
ordering exists in the unusual phase despite the diver-
gence of the correlation length below the critical temper-
ature, like the MC data of Wang, Swendsen, and
Kotecky for the three-state AF Potts model on the cubic
lattice indicate. Furthermore, in the case of absence of
long-range ordered phase, it would be worth examining
up to what extent this phase is similar to that of the bidi-
mensional XYmodel.

Herein we consider the three-state AF Potts model on
a family of diamond hierarchical lattice (HL) types,
which belongs to a larger family of HL's on which the
Potts antiferromagnet presents" the distinctive phase.
Using an exact recursive procedure, ' ' we prove that
the BSS order parameter vanishes for a11 temperatures
and that the local magnetization distribution has a mul-
tifractal structure at the critical point different from that
along the unusual phase. We also calculate exactly the
average internal energy, the specific heat and the entropy
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per spin as functions of temperature.
The outline of this paper is as follows. In Sec. II we

define the model and the family of HL*s to be considered
herein. In Sec. III we prove that this family of systems
has a low-temperature phase with a power-law decay of
correlations. In Sec. IV we derive the recursive relations
for local average quantities whose iteration leads to mul-
tifractal local magnetization profiles. In Sec. V we calcu-
late, in an exact way, the order parameter, the internal
energy, the specific heat and the entropy. Finally, the
conclusions are given in Sec. VI.

II. MODEL

gin and Yang" considered the q-state AF Potts model
on the fractal family of diamond HL types whose genera-
tor is constituted by P branches in parallel, each of which
has L bonds in series. They showed that, for an odd L
and for 2 & q & q, (where q, is a cutoff value of q, which
depends on P and I.), there appears the type of phase pre-
dicted by Berker and Kadanoff. Herein we shall consider
the simplest family of HL's (with a minimum number of
I.) of this larger family on which the q-state (q being the
minimum integer below q, ) AF Potts model presents the
unusual phase. Its generator (or basic cell) contains
P ~ 10 branches of L =3 bonds in series (see graph G'",
for P =10, in Fig. 1},and the HL is constructed as fol-
lows. We start with a bond between the roots R ~ and Rz
(see G'0') and, in the next level, we replace it by the gen-
erator and continue successively substituting each bond
of a level by the basic cell. In the thermodynamic limit
(n —+~) this family of HL's has a fractal dimension'
df (P) given by

d (P)= (P&10), (1)

in particular, df (10)=3.09. . . .
Notice that the considered HL family is bipartite, i.e.,

each HL can be divided into two interpenetrating sublat-
tices A (represented by points in Fig. 1) and 8 (represent-
ed by squares) such that any site of one sublattice has as

nearest neighbors only sites of the other sublattice at any
level. Furthermore, contrarily to what happens in the
case of L=even, each point be1ongs always to a given
sublattice independently of the level n.

At each site i of the HL with P branches (P ~ 10), we
associated a Potts variable ~, =0, 1,2 and consider the
three-state AF Potts model described by the following di-
mensionless Hamiltonian at the n level:

P&'„'= 3I—C„' ' g 5(o';, e )

(~j)

(P= llk~T, E„' ':13J„' —'), (2)

where J„' '(0 is the AF coupling constant between
nearest-neighbor spins at the n level of the HL with P
branches, the sum is over all nearest-neighbor pairs (i,j )
of spins, 5(e;,a ) is the Kronecker 5 function, and T is
the absolute temperature.

III. THE DISTINCTIVE LOW-TEMPERATURE PHASE

Let us now prove that each system of the above-
mentioned family has an unusual phase, where the pair-
correlation function obeys a power-law decay. For this,
we consider the RG transformation defined by the renor-
malization of the basic cell (see, for P =10, n =1 of Fig.
1) (with reduced coupling constant E' ' between any pair
of neighbor spins) into the single bond (n =0) linking the
two roots with an effective reduced coupling constant
E' '. The RG recursive equation is obtained by impos-
ing that the trace of exp[ —P&,(K' ')] over the internal
spins (i.e., those different from the rooted ones) of G'" is

proportional to exp[ —P&0(E' '}]. This is equivalent to
preserve the correlation function between o z„and cruz
(Ref. 20) and it leads to

1 —[(1—t') l(1+2t')]Pt't, P =
1+2[(1 t') l(1+2t')—]

where we have used, for convenience, the thermal
transmissivity variable ' defined by

Q&&
&R 4

PABST, LLEL

FIG. 1. First steps of construction of the
studied diamond-type HL with P = 10
branches. G' ', 6"', and 6' ' are the corre-
sponding graphs obtained at the respective lev-
els n =0, 1,2. The sites of the sublattice A (S}
are represented by circles (squares} and, in par-

ticular, the open circle (open square} is the
root R& (R~}. The broken line at n =2 indi-

cates an arbitrary shortest path joining the

roots.

&RB
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e
—3K

t(K) =-
1+2e

(4)
where L is the chemical distance between the roots of the
basic cell (l. =3) and

Thus, if we fix P and t„(the thermal transmissivity at the
n level), we can obtain the transmissivities at previous
levels by iterating Eq. (3), namely, t„,=t'(t„),
t„z=t'(t„))=t( )(t„) and so on until to=t(")(t„),
which corresponds to the equivalent transmissivity be-
tween the roots of the HL with P branches at the n lev-
el. It is worth mentioning that our RG transformation
[Eq. (3)] is an exact one due to the recursive construction
of each HL and to the fact that the symmetries of the
ground state are preserved for this choice of cells. '

The analysis of the flow diagrams of t'(t, P) leads to the
appearance of an unusual phase for finite

df (P) & d, =3.025. . . , characterized by an attractor at a
nonzero temperature t~„' (for P =10, tA„' = —0.477. . . ),
in the range —

—,
' ~ t & t,' '. We shall use the index nota-

tion AF to designate the unusual phase, despite the fact
that the staggered magnetization is null along this phase
(as we will see in Sec. V). For transmissivities above t,( '

all points flow under successive RG iterations to the
paramagnetic attractor t~ =0, defining thus the paramag-
netic phase. In Fig. 2 it is shown the plots of the
transmissivity tzz and the critical transmissivity t,' '

versus the fractal dimension df(P). Notice that, as d~ di-
minishes tending to d„ the fixed points t~F' and t,' ap-
proach each other until they merge, for df =d„ into a
single marginal one. Observe also that, for df »d„ the
AF attractor converges to T=0. These behaviors
confirm those suggested by Berker and Kadanofl and are
similar to those obtained, ' in an exact way, for the q =2-
and 4-state AF Potts model on the m-sheet Sierpinski
gasket with side b =4.

The correlation length critical exponent v' ' can be
determined by

(p) 'lnL

lnr'P' '
C

(p) dt'(r&P)
C

The plot of v' ' as function of df(P) can be seen in Fig.
3. Similar to Ref. 12, v' ' diverges for df =d, as a power
law, namely, v' '-[0.841... ][df(P) d, ]— " as df
approaches d, from above.

Let us now prove, through a procedure similar to [12],
that the correlation function I „z between the two roots
of the HL with a finite number of P branches decays alge-
braically with distance along the unusual phase whose at-
tractor occurs at t~F'. We define the correlation function
between the roots of the HL at the n level and at the tem-
perature corresponding to the transmissivity t„,l 'zs(t„),
by22

(7)

where ( )„p means the thermal average taken at the
n level of a HL with P branches. On the other hand
r(zs(t„} is related to the equivalent transmissivity be-
tween o.zz and o.zz through: .23

(8)

where, as already pointed out, t„'"' is the nth iteration of
Eq. (3}applied to t„.

Expanding t'(t„}around the AF attractor we have

r (r» ) —OAF +r AF(t&& r AF } (r» —
OAF },

where

(p) dt'(r&P) (p)r~p—,0&r~p &1 .
'AF

The iteration of the above equation combined with Eq. (8)

—O. P

,'i
I ~

I ~

I ~

AF

I
)I

' ~

I
I

I

~ & ~ - - ~ - ~ -. a- ~ &I

+ AF

—0.5
3.0 d 3.5 4.0

3.0
C

4.0

FIG. 2. The fixed points t at the critical transmissivity t,' '

(represented by triangles) and at the attractor one t'„& of the
unusual phase (represented by squares) as functions of the frac-
tal dimension df(P) of the diamond-type HL with P branches.
The lines are guides for the eye.

FIG. 3. The critical exponents of the correlation length v' '

(represented by small circles) and of the order parameter P' '

(represented by squares), as well as the correlation function ex-
ponent g&z for the whole unusual phase (represented by trian-
gles) vs the fractal dimension df (P). The lines are guides for the
eye.
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leads in the fractal limit (n ~ oo }to

r„,=—[r'„",'(t„)—r'„",'(t „)]
(P) )n(t t(P) } L —e (10)

The function b,'-". ', a kind of correlation function, which
appears in this technique as a natural variable in the case
of the q-state Potts model (for q+2), ' is defined by

b;(")=3(5(o,,O)5(oJ, O})k p
—(5(o;,oj))k p . (15)

with

(P)
p)

lnp AF

ln3

In Eq. (13), the coefiicients a„, b„, c„, and d„are func-
tions of the coupling constant E„' ' at the n level of the
HL with P branches, which are given, expressed in terms
of the transmissivity t„,by

where L„ is the chemical distance between the roots of
the HL (L„=3"). This result is in agreement with the
suggestion of power-law decay made by Berker and Ka-
danoff.

Assuming that, similar to the asymptotic behavior of
r „t)(L„t)~ 00 ) in the d-dimensional Bravais lattices,

—(df —2+ OAF)r„,(L„,}-L„, (L„,~~) (12)

we obtain rl~„versus df(P) as shown in Fig. 3 by trian-
gles, which is similar to that found in Ref. 12. It is worth
emphasizing that this OAF exponent is valid for the whole
unusual phase ( ——,

' &t &t,' '), but not necessarily for
t=t,' ' (see Sec. VB}.

IV. LOCAL AVERAGE QUANTITIES

In order to characterize better this unusual phase, we
shall calculate in an exact way the order parameter and
other thermodynamical quantities as well. For this, we
shall use a recursive method developed initially for Ising
models' ' and, afterwards, extended to the Potts mod-
el' on HL's. This technique allows one to obtain exact
recursive relations for local average quantities, from
which one can derive global thermodynamical functions
such as the order parameter, the internal energy and the
specific heat. Let us, in this section, focus on the calcula-
tion of local average quantities.

=( I+2o„b„)m(')+(b„+2—c„)b,„'"„",
(13)

=(1+2o„b„)m„(")+(b„—+2c„)b,„("„"(k, l & n ),
where the spins o.

2 and o.
&

are aggregated at the n level,
while the spins p& and pz were created at previous levels l
(l & n) In Eq. (13.} we chose to define the local magneti-
zation m ' at site i of the k-level HL with P branches by

m )=(5(o, ,O))k p
—1/3 (14)

without the normalization factor 3/2, since it leads (as we
will see in Sec. VA) to a normalized order parameter.

A. Recursive relations

Using the recursive method' with the boundary condi-
tion of fixing the rooted spin 0.&„at the state 0, we ob-
tain the following system of coupled equations:

t„(1+t„) t2
Q„

t„'(1—t„')

(1+2t„' }(1+t„+t„')

t„'(1+3t„+t„'—2t„')

(1+2t2)(1+t„+t 2)

(16)

where the set jt„,t„„.. . , to] can be obtained fromt„,=t'(t„) with t'(t, P) given by Eq. (3).
Besides the coupled Eqs. (13), we also have the follow-

ing recurrent relation (which will be used in the calcula-
tion of the internal energy in the next section):

~ 5(P1 o2) ~,P (5(P2 o 1) ~,p

where

= (5(o i, o2) )„P
~ 5(P1 P2) ~ —1,P +f (17)

2~„—b„+1e„= „b +2c„and f:—
TI 3

(18)

We shall refer hereafter to the values of the coefficients
k„(where k„=a„,b„,c„,d„,e„,f„) evaluated at the criti-
cal temperature t, and at the attractor temperature tAF
as k, and kAF, respectively.

B. Local magnetization yro6les

The successive iteration of Eqs. (13) and (3) allows us to
obtain, for a fixed P, the local magnetization distribution
for both sublattices A and 8 at any level n for all tem-
peratures. In order to analyze this distribution, it is
sufficient to focus on any one of the shortest paths be-
tween the two roots R „and Ri) (represented by a broken
line in Fig. 1), since all of them are equivalent by symme-
try. Similar to Ref. 15, 16, and 17, we identify each site
of such a path by a pair (s, l) where l is the level at which
the site appeared for the first time and s is the chemi-
cal distance from the site to the root R„within the
level l. These sites can be arranged over the interval
[0,1] such that the pair (s, l) corresponds to the point
x—=s' 3 ' for a n-level HL (with l=l, , .2. . , n and
s=1,2,4, 5, . . . , 3'—1).

In Fig. 4 we show the profiles of the local magnetiza-
tions m versus x for a seventh-level HL with P =10

CT ~

branches at the critical temperature T,"0' [Fig. 4(a)] and
at the attractor temperature TA('F) [Fig. 4(b)] with the
boundary condition m(x=0)=2/3 .(a consequence of
o „„=0).Siniilar profiles are obtained for other values of
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0.7

m'")
T (n=7)

~ II I » I Ill ~ »»» ~ g»1J Ll~» J„ggJ„»ll Il»J„1(lJ»~IJ L 1~~}JJl

rn") P l »&ii y$ [. nr(»- . I le I ]-Ig P

—0 4
0

0.7
T (n=7)

0.6 1.4

m(")m
FIG. 5. The f(a} spectra at the critical temperature T,

(represented by circles) and at the attractor temperature TA&

(represented by triangles) for P=10. The lines are guides for

the eye.

—0.4
0 (b)

FIG. 4. The local magnetizations m'"' and m' ' of the spins
along a shortest path between the roots R& and R& of the HL
with P = 10 branches at the n =7 level vs the position x. (a) and
(b) were calculated at the critical temperature T, and at the at-
tractor temperature T„&, respectively. The positive magnetiza-
tions m'"' correspond to spins belonging to the sublattice A
and the negative ones m' ' refer to those of the sublattice S.

a;„(t,)=1—— (20}

and

zation distribution. Similar spectra are obtained for oth-
er values of P (P & 10). Notice that in previous
works' ' the multifractality associated with the magne-
tization profiles appeared only at the critical temperature,
while here there are two distinct f(a) spectra: one at T,' '

and the other at the whole unusual phase.
One can compute exactly the lowest Holder exponent

a;„,which is associated with the set of the largest mea-
sures, at both temperatures, namely,

P (P & 10). Notice that positive (negative) magnetizations
correspond to sites from the sublattice A (8). a;„(t~I,) =a;„(t,)+ ln

I+2(bAp a~F )

1+2(b, —a, )
ln3,

(1=1,2, . . . , 3"+I) . (19)

C. Multifractality

Covering the magnetization profile support at the n
level with boxes of size 1„=3 " so that within each box
there is one spin, one can define the local measure at the
ith box, at the n-level HL with P branches, by

/m

(21)

where P is the critical exponent associated with the global
order parameter shown in Fig. 3. For P =10 we obtain
a;„(t,)=0.642. . . and a;„(t~„)=0 747.

The largest Holder exponent a associated with the
set of smallest measures can also be calculated in an exact
way at the critical temperature, namely,

a (t, )=1+
V

(22)

As the box width goes to zero, or equivalently the HL
level goes to infinity, the measure at the box i scales as
p;-l ', where a,. is the Holder exponent at this box. In
the same limit, the number of boxes N with Holder ex-
ponent between a and a+da scales as N -1

Following the method of Chhabra and Jensen ' we
obtained the f(a) spectra for P= 10 at the critical and at
the AF attractor temperatures shown in Fig. 5. A de-
tailed analysis near the points where f(a}vanishes shows
that df (a)/da tends to infinity at these points for both
temperatures, as usually occurs in deterministic fractals.
We can see that at the AF attractor the f(a) spectrum is
sharper reflecting the higher homogeneity in the magneti-

where PM —= lny /lnr, satisfies the following equation:

[1+2a,y+(a, b, }y ][b,+[c,—(a, +b, ) d, b, ]yj—
—c,[(a, b, )y —y][(b, —a—, )y —(a, +b, )]=0,

(23)

which, for P = 10, gives the value of am, „(t,)= l.250. . . .
These exact results for the limit Holder exponents are in
excellent agreement with those obtained by the direct
computation of the f(a) spectra: the relative errors, for
P = 10, are 0.09, 0.03, and 0.05% for a;„(t,), a;,(t~),
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and a,„(i,), respectively. These results exhibit the su-
periority of this method over the box counting method
for computing the f(a) spectrum.

V. THERMODYNAMICAL QUANTITIES

Once we have calculated local average quantities, let us
proceed in this section to the derivation of the global
macroscopic functions.

A. order parameter

The ordering scheme suggested by Monte Carlo (MC}
simulations for the three-state AF Potts model on a bi-
partite Bravais lattice is the so called BSS, which consists
of having predominance of one of the states on the sub-
lattice A and of the other two states distributed with
equal probabilities on the sublattice S. A global order
parameter per site describing this type of ordering may
bedefined ' ' by

y &g~„O))—y &g~, ,o)) + y &S(~, , 1))—g &fi(~, , 1)) + y &g~„2))—g &5(u;, 2))
s iCA icB iCA icB iCA icB

(24)

The sum over i CA (i CS) refers to the sites at the sub-
lattice A (8) and N, is the total number of sites on the
lattice.

It is easy to show that Eq. (24} applied to the n level of
the HL reduces, due to our symmetry-breaking condi-
tion, to

where N,'„' is the number of sites at the n-level HL with P
branches. Note that the distinct order parameter pro-
posed by Ono' reduces, in our case, to gi =(3/4)M„and
(2 =0 (see Definitions (4.1) of Ref. 13).

Using the set of recurrent Eq. (13), one is able to show
that D„' ' also follows a recurrence equation given by

2D( )

M'"=
n +(p)

sn

with

and

D„'":ym ——y m
iC A iCB

(25)

(26)

D„'" D„'",=P—(a„—b„) —2
1

(a„ i b„ i)—
(28)

2P (3P)„+4P —2

3P —1 3P —1
(27)

Iterating this equation one arrives at the following exact
expression for the order parameter per site as function of
the temperature (implicit in the parameters a and b)

M'"=
n

~(p)
M''+

g(p)
sn

~(p)
s1 M(P)

~(p)
sn

X,'0 '
. . . . b; —a;

(p) Mo ' gP' ' g [1+2(b —a )] .
+sn i =2 1 1 j=1b —a

(29)

For a fixed point t ' of the renormalization, and for large
n, this expression reduces to

n

(p~ 2(3P 1)(1 i )(b a*) 1+2(b* 0 )

3 [P[1+2(b' —a ') ]—1]

(30)

where a* and b* are the coeScients an and b„calcu-
lated at a Gxed point t*. Evaluating this expression at
the fixed points we verify that lim„„M„' '(t,' ')
=lim„M„' '(t~z)=0, which proves the vanishing of
the order parameter per site M' ' for the whole range of
temperatures, namely,

M' '(r)= lim M„' '(r)=0—, &r ~0, yp~10.
n ~ oo

(31)

I

In Fig. 6 we show, for P=10, the behavior of the order
parameter per site M„" ' as function of temperature for
different levels of the HL, exhibiting an abrupt decay as
the level n increases.

Although M„' ' vanishes in the thermodynamical limit
for all temperatures, let us show that it exists a non-null
critical exponent P' '. First of all, we verified that, for a
fixed temperature T, M„' ' behaves as

M„' '(T)- A(T P)L

where L„=3"is the linear size of the n-level HL with P
branches, A (T,P) is a finite constant, and 0(T,P) is a
temperature dependent positive exponent. Besides that,
we have also observed that the inflexion point T„' '

(where d M„' '/dT ~,~
~=p0) approaches T,' ' as n~ oa

n

according to
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0.4

(1O)

(p) ~ n )np
bn (p) (p) (5(~i&~j })n,p

3 J„Nb
(37)

0.2

0.0
0 T

'(10) T' (10)
1 2

kBT/3 J

where Xb„' is the number of bonds in the n level HL with

P branches. Eb(„) satisfies [see Eq. (17)] the following re-

currence equation:

(38)

Successive iterations of the above equation leads to the
following exact expression for the dimensionless internal

energy per site in the fractal limit

E, = lim(p) . ~~n )n P

FIG. 6. The order parameter per site M„" ' as function of
temperature for consecutive levels n, 3 ~ n & 11, of the HL with

P =10branches. T," ' and TAF' correspond, respectively, to the
critical and attractor temperatures in the n ~ 00 limit.

(39)

The dimensionless specific heat per site in the HL with
P branches C,' ' defined by

Te(P) T(P)
5T(p) n e

n T(P)
C

—A'(P)L„' " (33)
a&%(„p)&„p

Cg = 11m (p)n~m 3k~/( BT
(40}

where v' ' has the value obtained in Fig. 3 for the correla-
tion length critical exponent. T„" ' plays, therefore, the
role of the rounding temperature, which appears in the
finite-size scaling theory (see, e.g., Ref. 28} as the temper-
ature at which the plot of a given quantity for a finite size
departs significantly from the corresponding thermo-
dynamical limit.

Combining expressions (32) and (33) we obtain the fol-
lowing asymptotic behavior for M„' ' in the neighborhood
of T, :

M„' '(T„' ')-8(P)(5T„' ')~

where the numerical estimate for p' ' is

P(P) &(P)e( T(P) P)—
(34)

(35)

which gives for P=10 the approximate value of 0.982.
Combining Eq. (34) with the recursive equation for D„'P'

[Eq. (28)] we obtain the following exact value for p'P'

lnI3/[I+2(b, —a, )]]
(P' '=0.982. . .), (36)

lnr,(~'

which agrees very well with the numerical estimate [Eq.
(35)]. In Fig. 3 we show the plot of the exact value of
p' ' as function of df(P). The asymptotic behavior of p
in the neighborhood of d, is P' '-[0.342 ](df(P)

)—0.387. . .
C

can be obtained by differentiating the recurrence for Eb„'
[Eq. (38)] and iterating it successively, leading to the plots
shown in Fig. 7.

The absence of latent heat and the continuity of the or-
der parameter at the critical temperature shows that the
transition is continuous. Similarly to the Kosterlitz-
Thouless phase (see, e.g., Ref. 29), the specific heat does
not diverge at this temperature.

The maximum of the specific heat occurs at a tempera-
ture T','„ lower than the critical temperature T,' . A
similar behavior is found in the q =3 anisotropic Potts
model with ferromagnetic and antiferromagnetic interac-
tions in the two respective directions of the square lat-
tice30 (whose ground-state degeneracy is infinite) and in

the F model of an antiferroelectric ' (which exhibits an
unconventional type infinite-order transition).

Assuming a critical behavior for the energy in the

0.12

c (P)

0.06

B. Internal energy and specific heat

The calculation of the internal energy of the n level HL
with P branches involves, according to Eq. (1), the
thermal average of 5((r;,(rj) over all the spins at the n
level. Since this average is the same for all bonds [Eq.
(17)], it follows that the dimensionless internal energy per
bond at the n level Eb„' is given by

FIG. 7. The dimensionless specific heat per site C,' ' of the
HL's with P = 10 (full line) and P =27 (broken line) branches as
functions of temperature.
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neighborhood of the critical temperature like Eb„'
-(5t„'r') ' ' the recurrent Eq. (38) leads to the following
exact expression for the specific-heat critical exponent
a(P)

a' =1—0 '=1+ lne,

lnr' '
C

(41)

(P) —3P (P)
C C (42)

Combining Eqs. (1},(5), (41), and (42) we derive that

On the other hand, it follows from the definition of e,' ' as
function of t,' ' [see Eqs. (16) and (18)] and from Eq. (3)
that

sion by the fractal one) for the whole family of HL's con-
sidered herein. Such law has already been numerically
verified for the ferromagnetic Ising ' and Potts mod-
els' on a number of HL's.

Although there is no proof that the scaling laws valid
for bravais lattices continue to hold for fractals, if we as-
sume that the Rushbrooke scaling relation [which, in
fact, has been verified for the Ising ferromagnet on the
Wheatstone-bridge HL (Ref. 33)] and the Fisher one are
valid for the considered family of HL's, then one would
obtain a value for the q critical exponent at t, which is
different from OAF' shown in Fig. 3. This would lead to a
discontinuity of ri at the critical temperature (for exam-
ple, for P = 10, ri, = —0.38, and riz„-——0.51).

d (P)v'r'=2 —a'"f (43) C. Entropy

which proves that the hyperscaling law for Bravais lat-
tices continues to be valid (replacing the spatial dimen-

Following a procedure similar to Ref. 34, we obtained
an exact expression for the entropy per site S,' ' given by

ks(3P —1) 1+2K,;
S,' '(T)= g . ~ in[3(1+A,;+A,;)]—I,; ink, ;(3P )i+1 1+A,;+X;

(44)

where A, , is the ratio of restricted partition functions
(A, ,:P; /Q; in —the notation of Ref. 34), which satisfies the
following recurrence equation:

2+6K,, +A,3

3(1+1,;+A,; )
[As=exp(3J'„'lks T)] . (45)

If one uses the thermodynamical relationship
C,' '(T) = TdS,' 'IdT one would recover the plots shown
in Fig. 7, as expected. From Eq. (44) we obtain the fol-
lowing analytic expression for the residual entropy so:

ktt(3P 1) " in[3(1—+1,;+1,; )]

(3P )&
+1

(46)

whose value for P =10 is 0.5496. . . , which corresponds
to approximately 50% of the entropy at the T~ oo limit

[S,(T=oo)=ln3]. Notice that this is a relatively big
value if we compare it with the q =3 AF Potts model on
the simple cubic lattice where it is found that there is
long-range order and that so=0.34S,(T~oo). Such
large residual entropy is usually characteristic of models
with no long-range order as, for example, the Ising AF on
the triangular lattice, where so =0.49S, ( T~ oo ).

VI. CGNCLUSIONS

We present an exactly soluble model defined in a family
of diamond hierarchical lattices, which has an unusual
phase like that one suggested by Berker and Kadanoff for
complex systems with nonzero residual entropy per spin.
In this phase, the pair-correlation function decays alge-
braically with a temperature-independent g exponent.
We calculate, in an exact way, the multifractal local mag-

netizations and a number of thermodynamical functions
together with their corresponding critical exponents.

We prove that the BSS order parameter vanishes for all

range of temperatures. We believe that the vanishing of
this order parameter along the unusual phase is due
mainly to the multiplicity of spin configurations, which
generates a tendency towards equiprobability for the
three states. We also prove the hyperscaling law for the
studied family of fractals.

As far as we know, there has been no report in the
literature concerning: (i) exact calculations of any ther-
modynamical quantity along the mentioned unusual

phase, in particular, of the order parameter, (ii) the tem-

perature dependence of the f(a) spectrum characterizing
the multifractality of the local average magnetizations-
the f(a} calculated at the critical temperature differs

from that at the unusual phase, (iii) the discontinuity at
the critical temperature of the critical exponent g, which
was derived assuming that certain scaling laws continue
to hold for this family of fractal systems.

Finally, we would like to point out the found similari-
ties and differences between the studied systems and the
ferromagnetic XY model on the square lattice (see, e.g. ,

Refs. 14 and 29}. The similarities are (i) the algebraic de-

cay of correlations along the low-temperature phase, (ii)

the vanishing of the order parameter, (iii) the absence of
divergence in the specific heat. The differences are (i) in

the XF model g varies continuously with the tempera-
ture, while in our family of systems, if the scaling laws

are valid, r}jumps to a different value at T„(ii}the corre-
lation length g diverges, as T, is approached from above,

as an exponential law in the XFmodel in contrast to the
power law obtained in the considered fractal family, (iii)

the peak of the specific heat in the XY model occurs
above the critical temperature, contrarily to what hap-



49 POTTS ANTIFERROMAGNETIC MODEL ON A FAMILY OF. . . 6697

pens in the studied family of systems. As the considered
fractal family is somewhat similar to the bidimensional
XY model, it would be interesting to look for a certain
type of topological excitations, the vortices, which at
1ow-temperatures occur for the XY model in tightly
bound pairs that unbind at the critical temperature. Al-
though these vortices were initially defined for a continu-
ous spin model, Kolafa extended them to the three-state
Potts antiferromagnet. The search for these vortices in
the considered family of HL's would require the use of
another technique, as, for example, Monte Carlo simula-

tions, since the symmetry-breaking condition used in our
recursive method does not a11ow us to distinguish the
state 1 from the state 2.
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