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Envelope solitons formed by anharmonic intramolecular vibrations in gyrotropic molecular chains are
investigated. The amplitudes of the circularly polarized modes obey a nonlinear Schrodinger equation
which possesses bright- and dark-soliton solutions. The dependence of the solutions on the carrier wave-
length and the gyration coefficient is analyzed. Linearly polarized solitons are described by a pair of
conjugated circularly polarized pulses whose dynamics is governed by a system of coupled nonlinear
Schrédinger equations. The system is studied analytically and numerically and different evolutionary
patterns are obtained, corresponding to a coupled or an uncoupled single-soliton solution or a coupled
two-soliton solution. The process of collision of circularly polarized solitons is also investigated.

I. INTRODUCTION

Solitary waves (solitons) in one-dimensional molecular
chains have been the subject of intensive studies for over
two decades. Widely investigated are Davydov-type soli-
tons formed of a vibrational or electronic molecular exci-
ton bound to lattice phonons.! 2 The influence of the
intramolecular anharmonicity on the properties of vibra-
tional solitons has been investigated in Refs. 6 and
11-13. In Refs. 2, 14, and 15 the Pauli character of elec-
tronic excitons has been taken into account, resulting in
an additional nonlinear exciton-exciton interaction.
Vibronic-type solitons formed of electronic and vibration-
al intramolecular excitations have been studied in Ref.
16. In contrast to the Davydov-type solitons where the
interaction with the lattice is essential, solitons formed
only of nonlinear intramolecular excitations can be re-
ferred to as exciton solitons. Most previous works on sol-
itary waves are restricted to long-wavelength excitations
near the center of the Brillouin zone with parabolic
dispersion. More complicated dispersion mechanisms
have been considered in Refs. 17-19 for the case of lat-
tice solitons and in Ref. 20 for polariton solitons.

The effects of gyrotropy on the optical properties and
spectra of crystals both in the visible and in the infrared
region have been widely investigated.?!”2* Most com-
mon of these are the rotary power dispersion, the circular
dichroism, and the eigenmode frequency splitting linear
in the wave vector. They have their origin in the lifting
of the degeneracy of circularly polarized modes for finite
wave vectors. Due to their small values in the optical re-
gion (compared to the dimensions of the Brillouin zone)
these effects, although observable, are usually small. For
larger values of the wave vector a considerable separation
between the phonon branches may occur?>?® which in-
creases the role of gyrotropy. In this paper we examine
the effects of gyrotropy on the vibrational soliton dynam-
ics in molecular chains with chiral symmetry. In Sec. II
we derive the nonlinear equation which governs the soli-
ton dynamics of circularly polarized modes and analyze
the dependence of the solutions on the carrier wave num-
ber and the gyration coefficient.
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The analysis carried out in Sec. II is the first and neces-
sary step in the investigation of the dynamics of envelope
solitons formed of linearly polarized excitations. As it is
well known,2l?%22427 these excitations are degenerate
along the optical axis in uniaxial gyrotropic crystals. The
degeneracy is lifted for circular polarizations which diag-
onalize the linear part of the Hamiltonian. The total
Hamiltonian contains also anharmonic terms which de-
scribe different nonlinear interactions between the two
circular modes and which depend on the symmetry of the
system. These terms can be determined from a group-
theoretical analysis similar to the one carried out in Ref.
28. In Sec. III, we determine the allowed anharmonic
terms in the Hamiltonian for arbitrary cyclic symmetry
of the molecules. We derive a system of coupled non-
linear Schrodinger-type equations for the circular vibra-
tional amplitudes and obtain soliton solutions. In Sec. IV
we present the results of numerical simulations of the sol-
iton dynamics of a discrete molecular chain and give a
criterion for the different types of dynamic behavior.
Section V contains some concluding remarks.

II. CIRCULARLY POLARIZED EXCITATIONS

We shall consider a linear chain of molecules possess-
ing n-fold rotation axis along the chain and lacking a
center of inversion. The system thus belongs to one of
the point groups C, or D, and exhibits gyrotropic prop-
erties. The Hamiltonian of a system of left or right circu-
larly polarized intramolecular vibrations can be written
in the Heitler-London approximation in the following
way:2h2

H=#w0,S BB,+ S M, B!B, +(g/2)3 B!B!B,B, ,

n,m

(1)

where #iw is the intramolecular excitation energy and B,T
(B,) are the corresponding creation (annihilation) Bose
operators (for simplicity we consider chains with one
molecule per unit cell and take into account one vibra-
tional mode of the molecule). The second term in (1) de-
scribes the resonant intermolecular interaction (M,,, are
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the corresponding matrix elements) responsible for the
exciton dispersion. The last term in (1) describes the non-
linear interaction between the vibrational excitons associ-
ated with the quartic anharmonicity. To a very good ap-
proximation this interaction can be considered local and
hence only diagonal nonlinear terms are taken into ac-
count. The intramolecular excitations have usually nar-
row energy bands (|M,,, | <<#iw) and only terms conserv-
ing the number of particles are kept.
The equation of motion for the operator B, yields

i#2-B, =g, + 3 My B, +gBIB,B, . @)
m

In gyrotropic systems the matrix elements M,,, have a
nonzero imaginary antisymmetric part, in addition to the
symmetric one (M,,=M,, +iMZ, om =M
M =—MZ). M, characterizes the resonant dipole-
dipole interaction between the molecules, while MJ5 is
associated with the dipole-quadrupole interaction which
is different for intermolecular exchange of left and right
circularly polarized excitations.?*?° The matrix elements
M;,. and M7 depend in general on the molecules’ dis-
placements from equilibrium, but in order to simplify the
analysis and to study the intrinsic properties of exciton
solitary waves we shall consider only the case of fixed
molecules. The presence of lattice phonons and the
exciton-phonon interaction leads to an additional (in-
direct) interaction between the excitons, the effect of
which can be included in the anharmonicity constant g.

For a linear chain with one molecule per unit cell and
nearest-neighbor interaction the nonvanishing matrix ele-
ments can be represented as

My =My =M, 3)
M::+1=_M:s+lm=q:7 » M,y—real,

where the two signs in front of ¥ correspond to excita-
tions with different handedness.

As the intramolecular vibrations obey Bose statistics
and an arbitrary number of excitations can be localized
on one molecule, the averaging of Eq. (2) can be carried
out with the help of a wave function involving on-site
coherent states’® 112

|W(2)) =TT 18.()) ,

4)
B, (1)) =exp[ —1|B,(1)|*lexp[B,(1)B}1l0) ,

with the property
B,|B,(1))=B,(1)|B, (1)) .

This results in the following equation for the amplitudes:

i By =h00f, + M(B, 11 +B, ;)

Fiv(By+1—Bn-1)+8|B, B, . (5)

We shall consider the case of weak nonlinearities and
look for solutions in the form of amplitude-modulated
waves with slowly varying envelopes
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B, (t)=elkr=og (1), 6

where k and o are the wave number and the frequency of
the carrier wave (the lattice constant equals unity). In or-
der to simplify the analysis we shall consider the case
when ¢, () is a real function. Solutions of Eq. (5) corre-
sponding to complex amplitudes have been obtained nu-
merically in Sec. IV, where considerable modifications of
the initial envelopes and phases take place. Further we
shall employ the semidiscrete approach introduced in
Refs. 31, 32, 17, and 18, in which the carrier wave is
treated exactly on the basis of the discrete model, while
the envelope is determined in the continuum approxima-
tion. This removes the restriction for long carrier wave-
lengths and permits the study of envelope solitons with
arbitrary wave numbers inside the Brillouin zone.

Substituting (6) in (5), expanding ¢,4,(?) into Taylor
series around ¢@,(¢) and turning to the continuum ap-
proximation through ¢@,(t)—@(x,?), we obtain the fol-
lowing nonlinear equation:

9 ., 32
1ﬁ—é%=(ek~ﬁw)¢p—tbksf+bk5;%+gq)3, (7

where
€, =fiwy+2b; ,
(8)
by =M coskty sink

is the energy of the noninteracting excitons and

, de k .
by=——=2(—M ssinkty cosk)
ok
is their group velocity. Near the center of the Brillouin
zone (k << 1) by, reduces to

by=M+yk—(M/2)k? .

The term proportional to y is associated with the gyro-
tropy and depending on the structure ¥ can be either pos-
itive or negative. In what follows we shall consider y >0
and according to the common conventions*® the upper or
lower sign will correspond to excitations with right or left
circular polarization. It should be noted that the phase
velocity of the right-handed excitations is larger.

In addition to the standard nonlinear Schrodinger
equation, Eq. (7) contains also the first spatial derivative
of the function. It decomposes into the following pair of
differential equations:

2
(€ —ﬁm)¢+bk%%+g<p3=0 : ©)
ﬁ%?=2(M sink Ty cosk )%f : (10)

which determine completely the soliton dynamics.

The nonlinear equation (9) has two types of soliton
solutions which depend on the sign of the ratio b, /g.
For b, /g >0, Eq. (9) has a bell-shaped bright-soliton
solution [Fig. 1(a)]
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FIG. 1. Envelope soliton solutions. (a) Bright soliton and (b)
dark soliton.

X —vt

@(x,t)=g@ysech (11)
It corresponds to a pulse of nonlinear excitons with den-
sity @?(x,?) and width 2L, propagating with a constant
velocity v. The substitution of (11) in (9) leads to the fol-
lowing relations between the soliton parameters:

b
Gk'—ﬁa)+z‘5= , (12)
by
2?—g¢)0=0 . (13)

Combining (12) and (13), the following expression for the
carrier-wave frequency is readily obtained:

o=%" e, +ggi/2) . (14)

The amplitude @, of the soliton is related to the num-
ber of the excitons N, in the chain through the normali-
zation condition

[ ¢¥x,t)1dx=29}L =N, . (15)

From (15) and (13) the following relation for the bell-
soliton width holds:

L=4b, /(gN,) . (16)

It is worth mentioning that the slowly varying amplitude
condition L >>1 leads to small nonlinear terms in (9),
(12), and (14).

The total energy, stored in the bell soliton calculated
from the Hamiltonian (1) with the wave function (4) in
the continuum limit is

2
E=(W(|H|W(1)) =N, +-5—N3 . 17
48b,

In the case when b /g <0, Eq. (9) has a solution with
the shape of a kink (dark soliton) [Fig. 1(b)]
x —uvt

A

This solution corresponds to the formation of a region
with a decreased exciton density with a profile @*(x,?)
which propagates with a constant velocity v. The substi-

@(x,t)=@tanh (18)

tution of (18) in (9) leads to the following relations:

o=%" Ye,+go}), (19)
by

If we consider a chain with N molecules and N, excita-
tions (same as in the case of bright solitons), the ampli-
tude @, of the kink can be determined from the normali-
zation condition

f_”:/zqﬂ(x,t)dx =@ N—2L)=N, . @1

If the chain is much longer than the width of the dark
soliton (N >>2L), ¢? is approximately equal to the aver-
age exciton density in the chain (p?~N, /N), which for
one and the same N, is much smaller than the exciton
density in the bright soliton @3. According to (21) and
(20), the width of the dark soliton is

L=(—2b,N/gN,)""?. (22)

If we compare the bright- and dark-soliton solutions cor-
responding to excitations with equal exciton numbers N,
and wave numbers k, but opposite signs of the inter-
molecular interactions or the nonlinearity (i.e., opposite
sign of the ratio by /g), we can see that the width of the
dark soliton (22) is much larger than the corresponding
bright-soliton width (16) and the nonlinear corrections
for the dark soliton are much smaller, i.e., it is in general
a much weaker nonlinear formation. The energy of the
dark soliton is

E=(¥(1)[H|¥(t))
4b
=ekNe+gN,_,2/2N+—3—k|g/2bk|”2(Ne/N)3/2. (23)

The second term in (23) gives the main nonlinear correc-
tion to the energy, while the last term, which has the op-
posite sign, can be neglected.

The anharmonicity constant g is usually negative and
corresponds to attraction between the excitons, in which
case the energy of the bright or dark solitons is lower
than the free N,-exciton energy.

The velocity of both bright and dark solitons deter-
mined from Eq. (10) is

v=2#"!(—M sink+y cosk) (24)

and coincides with the group velocity of the excitons. In
the long-wave limit (k <<1) it may be approximated by

v=2% Yty —Mk) .

The above results show that the type of the solution
and the soliton parameters (velocity and width) depend
strongly on the gyration coefficient . The type of the
solution is determined from the sign of the ratio b; /g.
Being local, the anharmonicity constant g is independent
on the wave number. The dispersion coefficient b, how-
ever, is wave-number dependent (Fig. 2) and within our
model it changes sign at a given point inside the Brillouin
zone which is the cutoff wave number separating the
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FIG. 2. Exciton disperson curves for M =0.1 and ¥ =0 (solid
line), ¥ =0.1 (dashed lines) (b;, M, and ¥ measured in units of
#iwy). The long (short) dashed line corresponds to right (left) po-
larizations.

different soliton solutions. The sign of b; near the center
and near the boundary of the zone is determined from the
sign of the symmetric part of the intermolecular interac-
tion M. For intramolecular (optical) phonons M is usual-
ly positive, while the anharmonicity constant g is usually
negative and thus dark solitons are formed near the
center and bright solitons—near the boundary of the
Brillouin zone. If one of the quantities g or M changes
sign, the bright and dark solitons change places. These
results are consistent with the results of Ref. 34.

The presence of gyrotropy influences considerably the
cutoff wave number and the soliton parameters. The
values and the sign of the soliton velocity (24) near the
center and near the boundary of the zone are determined
exclusively by the gyration coefficient and in these re-
gions solitons with different handedness will have oppo-
site velocities. Near the cutoff wave number the widths
of the solitons go to zero (Fig. 3) while the amplitudes
and the energies diverge. In this region, however, the
slowly varying amplitude condition is violated and the
corresponding solutions may not be valid.

300

200 1

100 1

FIG. 3. Width of the solitons (in lattice constants) for
£=0.001, N,=1, N=1000, and M=0.1. The solid, long-
dashed, and short-dashed curves correspond to those in Fig. 2.
The zeros are the cutoff wave numbers separating the bright-
and dark-soliton solutions.

III. LINEARLY POLARIZED EXCITATIONS

The transverse linearly polarized intramolecular vibra-
tions in the system can be described in the harmonic ap-
proximation by the following Hamiltonian:

Hy=#w,S (a}a,+bb,)
n

+ 3 (M, (afa, +blb, )+ ME (b, —bla,)],

(25)

where fiw, is the intramolecular excitation energy of the
two degenerate modes, and a: , @, and b,’: ,b, are the cor-
responding creation (annihilation) Bose operators. The
antisymmetric matrix elements M, mix the two linearly
polarized modes and are responsible for the gyrotropic
properties of the system.

The Hamiltonian (25) is diagonalized with the help of a
transformation to right and left circularly polarized
modes with operators AJ , 4, and B,I , B,:

A,=(a,+ib,)/V2, B,=(a,—ib,)/V2 (26)
and takes the form

Hy=1#w,3 (A} 4,+B!B,)
n

+ 3 (M5, +iMZ,) A A,, +(M;,, —iM%, BB, .

27

It can be seen that the intermolecular-interaction terms
associated with exchange of right and left circularly po-
larized vibrations are different and this leads to different
phase velocities of the two waves.

The formation of solitons in the system is due to the
anharmonicity of the intramolecular vibrations. As these
excitations have narrow energy bands, the possible
lowest-order nonlinear terms in the Hamiltonian which
conserve the number of particles are

H,,=(g,/2)3(A}4}4,4,+B!B!B,B,)
n
tpt
+g2 2 Aan Aan
n
+(g3/2) 3 (A} 4B, B, +BB} 4, 4,). (28

The first term (~g,) describes the nonlinear interac-
tion between quasiparticles of one and the same type and
it governs the formation of left or right circularly polar-
ized solitons. The second and third terms describe the
nonlinear interaction between quasiparticles of different
types, where the term proportional to g, conserves the in-
dividual number of particles, while the term proportional
to g5 conserves only the total number of particles. The
symmetry-allowed nonlinear terms can be determined
from group-theoretical considerations similar to these in
Ref. 28.

Using the standard relations between circularly
(9m+91m) and linearly (g,,,,4,,,) polarized normal coordi-
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nates and the corresponding operators (26) together with
the second-quantization form of the linear coordinates

Gem =(a} +a,)/V2, q,,=b)+b,)/V2 (29

the following relations for the circularly polarized normal
coordinates can be obtained:*3

Gm =4, +BI)/V2, ¢, =(A}+B,)/V2. (30)

The normal coordinates g,, and g;, are transformed
as the basis functions of a pair of complex conjugated

representations of the symmetry point group® of the
molecules C, or D,. For the great majority of molecules
n=1,2,3,4,6, however, molecules with different n also
exist. The generic element of the cyclic point groups has
the form exp(2i /n). The product g,,,4q,,, is invariant for
all systems with cyclic or axial symmetry and so are all
the powers of this product. Thus the quartic anharmonic
term g2,g2, in the potential energy will always give a
nonvanishing contribution and with the help of (30)
yields the first two nonlinear terms in (28) with g, =2g,.
If cubic anharmonic terms (which do not conserve the
number of particles) are taken into account through the
perturbation theory, they lead also to terms of the same
type, so in general we can consider g,72g,;. In mole-
cules belonging to the point groups C,, D,, C, or Dy,
anharmonic terms of the type ¢}, and g}, are also invari-
ant and they lead to the last term in (28). For all other
point groups C, and D, (with n72,4) such terms are not
allowed and for them g, =0.

Thus the system of left and right circularly polarized
anharmonic excitations in molecular chains with arbi-
trary chiral symmetry with n52,4 can be described by
the following Hamiltonian:2®

H=#w,3 (Af4,+B)B,)
n

+ 3 (M, +iM%) A 4, + (M, —iMZ%,)B!B,, ]

n,m

+(g,/2)3(4t4t4,4,+B!B!B,B,)
+g,S A4/Bf4,B, . 31)
n

In what follows we shall consider this case only and we
shall study the soliton dynamics under the influence of
the nonlinear terms proportional to g, and g,. The
influence of the term proportional to g; will be the sub-
ject of a future investigation.

The equations of motion for the operators 4, and B,
lead to the following system of coupled nonlinear equa-
tions for the averaged vibrational amplitudes a,(¢) and

B,(1):

da,,
ifi 3 =fiwya, +M(a, +a, _)—iyvla, 41—, 1)
+(g1la, 1> tg,18,1)a,
., 9Bm '
it Y =‘ﬁ(0(ﬁn+M(Bn+l+Bn_1)+1y(ﬁn+l_3n_—l)

+(g11B,*+g;la, 1?8, , (32)
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where M and y are the nearest-neighbor intermolecular
interaction constants defined in (3). As in the previous
section, we shall look for solutions in the form of slowly
varying amplitude-modulated waves

i(kyn—w,t)

a,(n=e""1"""0 (1), B()=e ¥, () (33)

and employ again the semidiscrete approximation. The
real parts of Egs. (32) lead to the following system of cou-
pled nonlinear equations:

2
(=i )by S5+ (g, +34)p=0
X

(34)
2
(&= )pby S+ (g 07 +,97)=0,
x
where
€,,=fwg+2b;, , b, =M cosk,,tysink,, . (35)

The velocities of the solitons can be determined from the
imaginary parts of Egs. (32):

ft%?=2(Msink1—y cosk,)%f , 56
ﬁ%% =2(M sink, +7v cosk, )%% .

In the following part of this work we shall concentrate
on the bright-soliton solutions which are of greater physi-
cal interest. The terms proportional to g, describe the
nonlinear interactions between the two types of excita-
tions and they influence the soliton dynamics only when
the two pulses overlap. For this reason and in order to
study the evolution of a linearly polarized pulse we shall
pay special attention to the case when the initial condi-
tions for the two pulses are identical. For vanishing g,
the nonlinear equations (32) are uncoupled and their solu-
tions correspond to noninteracting left and right circular-
ly polarized solitons whose properties were studied in the
previous section. If the initial carrier wave numbers are
equal (k, =k,), the solitons will propagate with different
frequencies, widths, and velocities in accordance with
Eqgs. (14), (13), and (24).

An exact analytical solution of Egs. (32) with nonvan-
ishing g, can be obtained if the two solitons coincide and
have equal velocities and widths. The bright-soliton solu-

tion has the form
x —vut x —vt
L

and yields the following relations between the solitons pa-
rameters:

k,=k,+2arctan(—y /M), b, =b,=b, €=¢,=€,
2b
L2(81+82) ’

@(x,t)=gysech , P(x,t)=1pysech (37)

o1=w,=# Ye+b/L?), Vi=¢f=

(38)
v=—2%" (M sink, —y cosk,)

= —2#" (M sink, +y cosk,) .
Equations (37) and (38) describe a coupled single-
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soliton solution with identical envelope functions
@(x,t)=1y(x,t) and different carrier wavelengths. The
type of the solution depends on the values of the
coefficients in Egs. (32) and on the initial conditions. The
uncoupled (11)-(13) or the coupled (37) and (38) single-
soliton solutions hold for corresponding identical initial
conditions. If the initial conditions are different from
(11)-(13) or (37) and (38), then other solutions are also
possible, like many-soliton solutions, periodic solutions
and combinations of them. A linearly polarized pulse is
equivalent to two conjugated circularly polarized pulses
with identical envelopes and phases and in the presence
of gyrotropy its initial amplitude distribution does not
correspond exactly to any of the solutions (11)-(13) or
(37) and (38). The possible evolutionary patterns of such
a pulse for different values of the parameters are studied
numerically in the next section.

IV. NUMERICAL RESULTS

We have studied the dynamics of two conjugated circu-
larly polarized soliton pulses on a discrete chain, solving
numerically Egs. (32) with periodic boundary conditions.
The highly stable Adams predictor-corrector method>®
has been employed with variable order and integration
step, adjusted to the local error. We have considered the
case of positive effective mass of the excitations (M <0)
and negative (attractive) nonlinear interactions (g, , <0).
The results will hold also for M >0 and g, , >0. As ini-
tial distribution we have chosen the bright-soliton solu-
tion corresponding to g, =0 and ¥ =0. The first several
examples (Figs. 4-7) reveal the evolution of a linearly po-
larized pulse, described by two conjugated circularly po-
larized pulses with initially identical envelopes and car-
rier wave numbers, launched at the same place in the

a,, t=600
B., t=600
an, Bn, t=0
1 n 120

FIG. 4. Time evolution of weakly interacting bright solitons
with k=0.6, M=-0.1, =001, g,=-—0.005," and
g8, =—0.001. Plotted are the squared real parts and the squared
envelopes of the amplitudes.
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chain. The last example (Fig. 8) shows the process of col-
lision of conjugated circularly polarized pulses launched
at different places in the chain. In all cases the widths of
the pulses are of the order of ten lattice constants, so that
both the slowly varying amplitude condition is fulfilled
(L >>1) and the boundary effects are eliminated (L <<N).
The precision of the calculations has been controlled
through the conservation of the number of particles with
deviations below 1073 for the time intervals under study.

t = 4000
t = 3000
t = 2000
(a)
t = 1000
|a"|2’ |ﬂvl|2’ t=0
1 n 500

Rea,, t=1000
AV/LMAVAVA
ik .
ReB,, t=1000

Jﬂ Rea,, RefB,, t=0
VvVA\_’A

1 n 250

FIG. 5. Coupled propagation of interacting solitons with
k=0.6, y=0.01, and g,= —0.005. (a) Squared envelopes. (b)
Real parts.
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Rea,, t=1000

VV"V
RefB,, t=1000

AAM\[\AM“

e

Re ay,, Re B,

t=0

A
I

1 n 250

FIG. 6. Uncoupled propagation of interacting solitons with
k=0.6, y=0.03, and g, = —0.005.

fiw, scales the energies and @, ! — the time.

Figure 4 illustrates the evolution of two weakly in-
teracting (g, = —0.001) right and left circularly polarized
solitons. The solution corresponds to the uncoupled
propagation of noninteracting solitons described in Sec.

|an)?, t = 8000
N k
1Bal?
Jog|?, ¢t = 2000
|Bal?
|aal?, t=1000

N

18nl*

M

|an|2 ’ |ﬁn'2 , t=0

1 n 500

FIG. 7. Coupled two-soliton solution for kK =0.6, y =0.015,
and 82 =— 0. 005 .
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II. The two pulses conserve the values of initial wave
number and the individual exciton numbers N, (equal to
the surface under the squared envelopes). The presence
of gyrotropy leads to different values of the dispersion
coefficient b, (8) and hence to different velocities (24),
widths (16), and amplitudes (15). The values of these pa-
rameters obtained numerically deviate less than 2% from
the theoretical ones.

— t = 600
—
t = 400
—
-
t = 200
—
- (a)
-
Bal?
1 n 120

. /\
v e
- (b)

t= 200/\/\-4

t=0 — Ref,

/N /\
Rea, VvV —
1 n 120

FIG. 8. Collision of interacting solitons with k£=0.2,
¥=0.05, and g, = —0.02. (a) Squared envelopes. (b) Real parts
of the amplitudes.
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Larger values of |g,| (Fig. 5) lead to a coupled motion
of the two solitons described asymptotically by the
analytical solution (37). The process of coupling of the
two pulses can be monitored from Fig. 5(a). As the two
pulses have different initial velocities, they start to move
separately until the nonlinear interaction g, pulls them
together. This process is accompanied by an emission of
about ; of the total number of the excitons into plane-
wave trains from the front or rear tail of the pulses.
After T=4000 the shape of the pulses practically does
not change. The velocity and the final shape of the two
coupled solitons agree within 1% with these obtained
from (38) for the reduced exciton number. The carrier
wave numbers of the two pulses are modified according
to (38) and one becomes smaller and the other—Ilarger
than the initial wave number [Fig. 5(b)]. It is interesting
to note, that (i) the modification of the wave numbers
takes place at an early stage of the process of coupling of
the pulses (¢ =1000), before the final adjustment of the
envelopes, and (ii) the wave numbers and hence the veloc-
ities of the tails are different from these in the central
part of the pulses and this is the cause for the emission of
plane waves.

An increase of the gyration coefficient (y =0.03, Fig. 6)
leads again to an uncoupled propagation of the two soli-
tons. The wave numbers in the central part of the pulses
are equal and the shape of the solitons is similar to the
one in Fig. 4. The influence of g,, however, may be no-
ticed in several minor effects: (i) asymmetric front and
rear tails of the solitons; (ii) different wave number of the
tails; and (iii) different velocities of the solitons compared
to these for g, =0.

The two types of dynamic behavior depend on the bal-
ance between the kinetic energy of the relative motion of
the solitons related to the gyration coefficient ¥ and the
nonlinear (potential) energy of their interaction which is
proportional to g,. Neglecting small nonlinear correc-
tions, the effective masses of the solitons can be written as

N,
2(M cosk t+y sink) ’

where the k-dependent exciton effective mass (m,,) is
defined as the inverse second derivative of the energy (8).
The reduced mass which describes the relative motion of
the two solitons is

N,
4M cosk

The kinetic energy of the relative motion of the solitons is
pAv2/2 and the potential energy of their interaction
|g,|N,. The difference in the velocity of left and right
circularly polarized solitons with equal carrier wave
numbers according to formula (24) is Av =4y cosk. The
two solitons will couple if the potential energy exceeds
the kinetic one which yields the condition

2y%cosk
8,M

m,=N,m =— (39

u= (40)

R= <1. (41)

If the opposite inequality holds, the two solitons will be
uncoupled. The values of R for the parameters used in
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Figs. 4, 5, and 6 are 1.65, 0.33, and 2.97, respectively,
which explains the observed dynamics.

The criterion (41) gives only a rough estimate of the
behavior of the system and it works better for stronger
inequalities. This is due to the fact that the solitons are
not rigid point masses as assumed above but, rather
finite-size deformable objects. In the intermediate region
(R ~1) the picture gets more complicated. Figure 7 illus-
trates the evolution of the system for g,=—0.005 and
¥=0.015 (R =0.74). The amplitude distribution in this
case can be classified as a coupled two-soliton solution.
There are two pairs of conjugated solitons coupled to
each other which move with different velocities. A con-
siderable asymmetry in the amplitudes is also observed.
The relative velocity of the two pairs is constant and
equal to 0.1, which is five times smaller than the relative
velocity of the uncoupled single-soliton solution corre-
sponding to ¥ =0.015 and g, =0. With the increase of ¥
and the decrease of g, the asymmetry of the two-soliton
solution increases and it turns into an uncoupled single-
soliton solution. A more careful observation of the re-
sults in Fig. 6 reveals that it is in fact a strongly asym-
metric coupled two-soliton solution with deviations
4-5% in the amplitudes and 3-9 % in the velocities,
compared to the single-soliton solution.

The three types of nonlinear dynamic behavior of the
system, which we have obtained, correspond to different
physical situations. As the two initial circularly polar-
ized pulses are identical to a single pulse with a linear po-
larization, the above results show, that for weak gyrotro-
py and strong nonlinear interaction |g,| the linearly po-
larized pulse propagates as a single pulse with a rotating
plane of polarization, while in the case of strong gyrotro-
py and weak nonlinear interaction it decomposes into a
pair of left and right circularly polarized solitons moving
with different velocities. In the intermediate region,
where the kinetic energy of the relative motion is compa-
rable to the potential energy of the soliton interaction,
the initial pulse decomposes into a pair of elliptically po-
larized pulses, propagating with different velocities.

We investigated also the stability of left and right cir-
cularly polarized solitons against collision. The two soli-
tons have smaller wave numbers k =0.2 and due to the
strong gyrotropy (y =0.05) have opposite velocities. The
difference in their momenta in this case is quite large and
even a considerable nonlinear interaction (|g,|=0.02)
does not lead to coupling of the solitons. The shape of
the envelopes practically does not change during or after
the collision [Fig. 8(a)]. However, when the solitons
overlap, a strong phase modulation takes place [Fig.
8(b)]. Thus the wavelength of B increases, while the
wavelength of a decreases and Rea acquires an addition-
al zero. For larger values of |g,| the collision of the soli-
tons is accompanied by a noticeable broadening and a de-
crease of their amplitudes, and they regain their initial
shape after longer time intervals.

V. CONCLUSION

We have investigated the dynamics of a circularly and
linearly polarized envelope solitons in gyrotropic molecu-
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lar chains. In the first part of this paper we have eluci-
dated the properties of solitons formed of left or right cir-
cularly polarized excitations. We have employed the
semidiscrete approximation in which the exciton carrier
wave is treated exactly and we have studied envelope soli-
tons with arbitrary values of the wave number. We have
shown that the system possesses bright- and dark-soliton
solutions, located in different regions of the Brillouin
zone and we have determined the soliton parameters such
as energy, velocity, width, and amplitude.

Linearly polarized solitons are treated in the second
part of this paper as an equivalent pair of left and right
circularly polarized pulses with nonlinear interactions be-
tween them. A group-theoretical analysis yields the al-
lowed nonlinear terms in the Hamiltonian for the
different point groups of symmetry. We have considered
molecules possessing n-fold rotation axis with n+2,4, in
which case there is no energy transfer between the soli-
tons. The presence of gyrotropy tends to separate the
pulses, while an attractive nonlinear interaction tends to
keep them together. The balance between the kinetic en-
ergy of the relative motion of the solitons and the poten-
tial energy of their interaction gives the possible evolu-
tionary patterns: a coupled or uncoupled single-soliton

solution when stronger inequalities hold, and a coupled
two-soliton solution in the intermediate region where the
kinetic energy is nearly equal to the potential one. Our
results show, that for weak gyrotropy and strong anhar-
monicity the initial pulse will propagate as a single linear-
ly polarized pulse with a rotating plane of polarization,
while in the opposite case it will decompose into two
separate circularly polarized pulses moving with different
velocities. In the intermediate case the initial pulse will
decompose into a pair of elliptically polarized pulses.

We have investigated also the process of collision of
right and left circularly polarized solitons. Up to large
values of the nonlinear coupling constant the solitons
remain stable after the collision, while during the over-
lapping a phase modulation and a broadening of the soli-
tons takes place.
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