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Inner-space reconstruction of quasicrystal structure factors
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An inner-space approach to the structure-factor reconstruction in quasiperiodic crystals is pre-
sented. This approach is based on the representation of a quasiperiodic crystal as a higher di-
mensional periodic crystal (hypercrystal) whose hyperatom form factors can often be expressed as
continuous functions of the inner-space components of the scattering wave vector. Thus, the re-
construction of the structure factors is reduced to a convenient parametrization of these functions
(exemplified here by a Taylor series expansion) with the parameters to be determined through a
fit of the experimentally measured diffraction intensities. The fitting parameters may also include
locations of the hyperatoms, their chemical composition, and Debye-Wailer factors. As an illus-
tration, we applied this technique to reconstruct neutron scattering structure factors of icosahedral
quasicrystal i-Alp. syoCup. yosL10.3g2. We found consistent results with these obtained earlier using a
method based on periodic approximants of quasiperiodic crystals.

I. INTRODUCTION

The determination of atomic structures is still one of
the most fundamental open problems in the quasicrystal
field and much of the recent research ea'orts have been
devoted to developing various approaches for its solu-
tion. A solution of this problem may be broken into sev-
eral steps. One could begin by reconstructing the qua-
sicrystal structure factors &om the experimentally mea-
sured difFraction intensities. Next, by calculating the in-
verse Fourier transform of the reconstructed structure
factors, one would determine and analyze an approxi-
mate thermally averaged quasicrystal scatterer density.
Then, based upon the density analysis, one could model
the ideal quasicrystal structure and Quctuations around
it. Finally, one should provide a physical interpretation
of the obtained structure xnodel, for example, in terms of
its building blocks and principles of their packing. Many
investigations of quasicrystals start from the assumption
that they can be idealized by quasiperiodic crystals and,
thus, can be represented by higher dimensional periodic
crystals (hypercrystals). i s We shall also adopt this view
in the present paper and use the terms quasicrystal and
quasiperiodic crystal interchangeably. Then, the Erst
three steps of quasicrystal structure determination can
be carried out, and are indeed often sixnpler, on the asso-
ciated hypercrystal. In this paper, we shall continue our
earlier work on general structure-factor reconstruction
methods for quasicrystals. However, we shall formulate
and use here another, complementary, general method
that starts &om a similar idea to the ones developed inde-
pendently and difFerently by others. ' Like in Ref. 7, we
shall iDustrate our reconstruction method on the icosa-
hedral quasicrystal i-Alp 57pCup ypsLlp 322. However, we
are not focusing here on the structure determination of

i-Alp 57pCup yp8Lip 322 per se, and we shall report else-
where on the density analysisie and modeling i of this
quasicrystal.

The structure of a solid can often be represented by
p(r), thermally averaged density of scatterers, which can
be reconstructed from the structure factors Fct by the
inverse Fourier transform,

p(r) = ) Fcle '~',

where the sum is over the reciprocal lattice vectors Q.
The structure factor is generally a complex nuxnber, hav-
ing an amplitude and a phase, Fct ——~Fg~e's&&). How-
ever, a diffraction experiment measures the Bragg peak
intensities Ig, providing only the amplitudes of the struc-
ture factors, ~Fg~ = s/Ict, but not their phases. More-
over, the proportionality constant s ) 0 is often experi-
xnentally undetermined. A partial phase information can
be obtained using the contrast variation method which
is a standard tool for periodic crystals and also appli-
cable to quasiperiodic crystals. For periodic crys-
tals, the complete reconstruction of the phase informa-
tion froxn the diffraction data can be accomplished using
the Hauptman-Karle method. ' Unfortunately, this
method is not applicable to general quasiperiodic crystals
and alternative approaches have to be used. Although
a method of comparable generality is not yet known for
quasicrystals, a method was recently developed for a class
of quasiperiodic crystals for which structures of periodic
crystals approximating them are known. This method
has been successfully applied to the icosahedral qua-
sicrystal i-A1Q 57QCup qpsLip 322. Since periodic approx-
imants are not known for some quasicrystals, we shall
present in this paper another method which does not rely
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on the existence or knowledge of the approximants.
The method which we shall present is based on a rep-

resentation of a quasiperiodic crystal by a higher dimen-
sional periodic crystal (hypercrystal) that is built out
of hyperatoms, extended objects of codimension 3. (A
reader who is not quite Quent with the hypercrystal ap-
proach to quasiperiodic crystals may 6nd it useful to con-
sult the Appendix. ) Therefore, the structure factor can
be written as a product of the hyperlattice structure fac-
tor times the sum of the hyperatom factors within a unit
cell of the hypercrystal. Although highly irregular func-
tions of the physical scattering wave vector alone, the
hyperatomic form factors can often be expressed as con-
tinuous functions of the physical scattering wave vector
and its orthogonal complement in the hyperspace. For
the sake of motivation, let us consider an Ammann icosa-
hedral tiling with point scatterers located at its vertices.
The associated hypercrystal is a six-dimensional sim-
ple hypercubic lattice with a single hyperatom, an inner
space rhombic triacontahedron, per unit cell. Its struc-
ture factor, expressed as a function of the inner-space
wave vector, is simply the inner-space Fourier transform
of the triacontahedron. Indeed, while the structure fac-
tor is a pathological function of the physical scattering
wave vector shown in Fig. 1(a), it is a simple, contin-
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FIG. 1. The exact structure factor of the Ammann tiling
plotted as a function of the physical (a) and the inner-space
(b) scattering wave vectors for the six Miller indices ranging
between —2 and 2.

uous function of the inner-space wave vector shown in
Fig. 1(b). The small scatter away from a continuous
function, which can be noticed in the 6gure, is due to
the fact that although approximately spherical, the tria-
contahedron has only the icosahedral symmetry, so that
its Fourier transform depends not only on the magnitude
of the wave vector Q+, but also on its direction.

The above observation for the Ammann quasicrystal
has been transplanted literally to several real, centrosym-
metric icosahedral quasicrystals. s'~r Their (partial) scat-
tering intensities were plotted as functions of the mag-
nitude of the inner-space wave vectors and the nodes
where the structure factors should change the sign were
estimated. However, as pointed out in these works, in
addition to its obvious limitation to centrosymmetric
quasiperiodic crystals (for which the phase factors are
+1), such a simple approach may run into both technical
and conceptual difBculties with more general quasicrys-
tals. The main reason is that rather than falling on a
simple curve, the intensity data plotted as a function of
Q+ may be generally quite scattered. As a case in point,
we show in Fig. 2(a) the neutron scattering data~s for the
icosahedral quasicrystal i-Alo 57„-Cuo ~OSLio 322 Whereas
looking at the data in Fig. 2(a) one could reasonably
argue that there is a node near Q+=0.7 A ~, because
of the large scatter of the data it would be hard to pin-

point the node accurately. On the other hand it would

be much less convincing to argue either for the presence
or the absence of the nodes at the smaller values of Q+,
for example, between 0.3 and 0.4 A

In addition to the data scatter caused by the lack of
spherical symmetry already mentioned above, there are
obviously also the unavoidable random experimental er-
rors. However, there may be also more systematic sources
of the data scatter. In fact, since Q is a highly irregu-
lar function of Q+, as illustrated in Fig. 3 for a sim-

ple icosahedral lattice, any continuous dependence of the
diffraction intensity on Q would show up as an irregular
Q+ dependence. For example, in case of x-ray diffrac-
tion, there is a (weak) Q dependence of the atomic form
factors. The associated data scatter could be only par-
tially reduced by an appropriate average correction fac-
tor. Similarly, the thermal Buctuations of the atoms are
manifested in a Gaussian (Debye-Wailer) Q dependence
of the di8raction intensities which would also cause a
data scatter. Indeed, as shown in Fig. 2(b), if the data
are corrected for an average thermal Debye-Wailer factor
(taken from Ref. 7), the node near Q =0.7 A becomes
slightly more apparent.

It is more diKcult to eliminate the Q dependence
caused by the presence of more than one hyperatom per
unit cell of the hypercrystal. Not only will difFerent hy-
peratoms generally have difFerent atomic form factors
and the thermal Debye-Wailer factors, so that the afore-
mentioned average corrections will be only approximate,
but a Q dependence, and the accompanied data scatter,
will also be introduced through the phase factors asso-
ciated with the positions of the hyperatoms within the
unit hypercell. This can be clearly seen in Fig. 2(b),
where most of the data scatter remains even after the
Debye-Wailer correction. In fact, a careful examination
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FIG. 2. (a) Square root of the difFraction intensity measured for i-Alp. s7pCup. zpsLip. &zan (Ref. 18) is plotted as a function of
the inner-space scattering wave vector. (b) The same data as in (a) but corrected for sn overall thermal Debye-Wailer factor
with B = 0.012 A (Ref. 7). (c) The same data as in (b) but with the data corresponding to different branches identi6ed by
difFerent symbols, ss explained in the text. (d) The same data as in (c) but including the signs (phase factors) calculated in
Ref. 7.

reveals a "branching" of the data with a relatively small
scatter of data in each branch. Precisely such branching,
which can be easily separated from the one caused by the
"intrinsic" branching of the Q' vs Q dependence seen in
Fig. 3, is a manifestation of the presence of multiple hy-
peratoms in the unit cell of the hypercrystal. As will be
explained below, we show in Figs. 2(c) and 2(d) that the
branching in Fig. 2(b) is consistent with the assump-
tion that the structure of the hypercrystal is of the form
VE6B, with one hyperatom at the vertex, one at each of
the six edge centers, and one at the body center of the
six-dimensional hypercubic unit cell.

In order to deal with the data scatter, it has been sug-
gested that a quantitative estimate for the node locations
could be obtained by approximating the hyperatoms, to
lowest order, with spheres or ellipsoids placed at the
locations determined using other considerations, such as
hypercrystal Patterson functions. This approach can
be justi6ed when the diKraction data set is so small that
it alone might not be sufficient to determine the shapes
of hyperatoms more precisely. However, as a de facto
structure modeling, this approach generally leads to too
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FIG. 3. Inner-space components of the reciprocal hy-
perlattice vectors are plotted as a function of the physi-
cal space components. The same Miller indices as in Fig.
1 are used and the points with experimentally measured
i-A10.57OCuo ~08Li0.32$ intensities shown in Fig. 2 are circled.
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short interatomic separations, too large voids, or other
unphysical aspects of the resulting structure, thus requir-
ing more detailed and explicit modeling.

In order to separate as much as possible structure-
factor reconstruction from an actual structure modeling,
our philosophy is to first reconstruct the phases of the
structure factors directly in the reciprocal hyperspace.
In other words, rather than to model hyperatom shapes
using an insufficient diffraction data set, we approximate
their Fourier transforms, the inner-space atomic form fac-
tors. A systematic approximation can be made by a trun-
cated expansion of the form factors with respect to an
appropriate basis, such as, symmetry adjusted spherical
harmonics, Hermite functions, etc. In cases when the
hyperatoms are considerably extended in the inner-space
directions, their form factors are correspondingly local-
ized and can be well approximated by a Taylor series with
respect to the inner-space scattering wave vector. Then,
the expansion coefficients can be determined, and the
quasicrystal structure factors reconstructed, through a
fit of the experimentally measured difFraction intensities.
More generally, the fitting parameters may also include
locations of the hyperatoms, their chemical composition,
and Debye-Wailer factors.

As an illustration, we shall use this method to recon-
struct neutron scattering structure factors of icosahedral
quasicrystal i-Alp $7QCus qssLis ss2 ~ The structure fac-
tors that we shall obtain are consistent, as evident in
Fig. 4, with our earlier structure-factor reconstruction
which used a difFerent method based on periodic approx-
imants of quasiperiodic crystals. r The absolute scales de-
termined by the two methods are within the error bars
of each order, and the determined phases are identical
except for two very weak peaks.

Once the structure factors are reconstructed, the as-
sociated quasiperiodic density can be calculated by the
inverse Fourier transform. Moreover, with the fitting
parameters determined, the approximate form factor of
each hyperatom can be written analytically and, thus,
interpolated values for unobserved peaks can be calcu-
lated, leading to more accurate reconstructed densities
of individual hyperatoms. Although a structure model-
ing, such as the one for i-Alp sqoCus. msLio 3s2 which we
will present elsewhere, must rely on some additional
information and considerations, an analysis of the recon-
structed density can be used as an excellent guide. ~

We shall assume in the rest of the paper that the reader
is thoroughly acquainted with the basic notions about
quasiperiodic crystals summarized in the Appendix. For
the sake of completeness and in order to establish the no-
tation, we derive there a general expression for the qua-
sicrystal structure factor as a sum of the Fourier trans-
forms of the hyperatoms in the unit cell of the associ-
ated hypercrystals. In Sec. II we discuss the parameters
needed to describe the structure factors and, in particu-
lar, the Taylor expansion of the inner-space form factors.
It is shown how these parameters and the expansion co-
efficients can be determined by fitting the experimentally
measured difFraction intensities. Then, in Sec. III, we il-
lustrate our method by reconstructing the neutron scat-
tering structure factors of the icosahedral quasicrystal i-
AlQ 57QCuQ QQSLiQ 3~2 using the published neutron difFrac-
tion data. The results are discussed in Sec. IV and the
conclusions presented in Sec. V.

II. STRUCTURE-FACTOR EXPANSION
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The objective of quasiperiodic crystal structure model-
ing is to determine the locations of the hyperatoms (r„),
their chemical compositions (p„;), shapes (s„and v+),
and Debye-Wailer factors (e &' «'&). In principle, the
unknown parameters can be obtained by a brute-force fit
of the experimentally observed difFraction intensities Ig,
for example, by the weighted least-squares optimization
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FIG. 4. The scatter graph of the approximate
(parametrised) structure factors calculated here vs the struc-
ture factors reconstructed in Ref. 7 using the method of ra-
tional approximants.

(2.1)

where ocI is the experimental error for measuring IcI.
The greatest difficulty in such a brute-force approach
present the hyperatom shapes whose modeling requires,
a priori, an infinite number of parameters.

It is often possible to determine the number and the
locations of hyperatoms in the unit hypercell by studying
Patterson functions of the quasicrystal and the associ-
ated hypercrystal, ~s 2s ~s and by imbedding structures
of related periodic crystals into the hypercrystal. 7' '

Once the locations of the hyperatoms are known, their
symmetries can be easily determined and used to con-
strain the hyperatom shapes and the form of their Debye-
Waller factors. The Patterson functions may often sug-
gest more details about the hyperatom shapes. For ex-
ample, for all icosahedral and decagonal quasicrystals for
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which Patterson functions were evaluated, it is found that
to a good approximation hyperatoms are "flat", that is,
s(r+)—:0, in a particular coordinate system. We shall
show in the next section that this approximation is also
applicable to i-Alo 57oCuo ypsI lo 322.

Even after all symmetry constraints are applied, and
the hyperatoms are assumed flat, additional restrictions
must be made in order to model the hyperatom shapes
using a finite number of parameters. A restriction to el-
lipsoidal hyperatoms (i.e., ellipsoidal v„), which is some-

times used, is 24 allows for a finite parametrization (e.g. ,
by positive symmetric quadratic forms). However, us-

ing such simple hyperatoms, it is impossible to simul-
taneously assure that the model density is correct and
that the minimal interatomic separations are not vi-
olated. Consequently, more complicated hyperatoms
emerge naturally, for example, by eliminating portions
of the elliptical hyperatoms that cause too short inter-
atomic distances. Implementation of the restrictions on
the interatomic separations may be simplified by assum-
ing polytope shapes for the hyperatoms, but this still
requires a rather complex analysis. A great progress has
been made recently for several quasicrystals using poly-
tope modeling of the hyperatoms. ' We shall further
discuss this difBcult subject elsewhere.

We are concerned here with the solution of a more
modest problem, that of reconstructing the phases and
absolute scales of the structure factors at scattering wave
vectors at which diffraction intensities are experimentally
measured. In order to solve this problem, precise in-
formation about the hyperatom shapes is not necessary.
We shall consider the case where the components Q+
of Q fill the inner reciprocal space densely, and where
the hyperatoms are sufFiciently "nice" manifolds so that
the inner-space atomic form factor f (Q, Q ) defined by
Eq. (A4) is an analytic function of two continuous vari-
ables, Q and Q+. In particular, we shall consider fiat
hyperatoms, s(r ) = 0, so that f„can be considered a
(continuous) function of Q+ only. Therefore, we can rep-
resent f +(Q+) by an expansion into some basis functions
with the expansion coefBcients treated as fitting param-
eters. For example, we shall approximate f„(Q ) by its
truncated Taylor series expansion,

definition.
The expansion coefficients f„;;,, properly con--L(&)

strained by the symmetry of the hyperatom, together
with the densities n„, compositions p„i, thermal ellip-
soids 8„, and the scale s, can be treated as the fitting
parameters in Eq. (2.1). However, it is clear that the

inner-space Debye-%aller factor e ~ ~ cannot be
separated from f+(Q+) without some additional infor-
mation, so that in practice we must use the expansion

fJ (qJ )
—Q B„.Q

—1
ni ) pg ifi = gp& (2 5)

which together with the M constraints provided by
Eq. (A7) and another L constraints provided by Eq. (A8)
give the total of 2M + L constraints. They are gener-
ally insufhcient to fix all of the parameters and at least
(L —l)(M —1) parameters must remain undetermined
by the fit. In fact, only when M = 1 or L = 1 the
constraints are sufficient to uniquely solve for all of the
parameters. Generally, the scale s and its arbitrary phase
can be fixed,

in place of Eq. (2.2).
Furthermore, it can be seen from Eq. (A10) that if the

atomic form factors f, (Q) are not sufficiently strong func-
tions of the scattering vector Q, it may not be possible
to determine independently by the fit all the densities n„,
compositions p„i, and the scale s. For example, this oc-
curs in the case of the neutron scattering where the neu-
tron scattering lengths f; are constants. Then, it follows
from Eq. (A10) that only the combinations g„= s in„f„
of these parameters can be determined (up to an overall
arbitrary phase) directly by the fit Eq. (2.1). Therefore,
if there are M independent hyperatoms and L chemical
species, there are ML unknown p„s, M unknown n„'s,
and the single unknown s. Once g„'s are determined,
this total of M(L+ 1) + 1 unknowns is constrained by M
equations

(2.2)

The expansion coelficients f,-, , can be exphcitly re-&(&) ~ ~

lated to the hyperatom shape using Eqs. (2.2) and (A4),

8= ) nifi ) g~ )

P

and eliminated from Eq. (2.5),

,. n,f;.
n, g.p,*f' =9,

z gp

(2.6)

(2.7)

P'ii2" iI ZIv„

()
(
i J J) (2.3)

and the expansion can be expected to converge at least
for Q I ( 1, where l„(v„)~~ l is the character-

istic scale of the hyperatom. In particular, f„:—1 byx(o)

but one must remember that the number of independent
equations is thus reduced by 1.

Clearly, the phase reconstruction depends crucially on
the assumed truncation of the expansion and on the num-
ber of difFraction peaks Ig measured in the experiment.
With a larger number of difFraction peaks measured, it
is possible to keep higher order terms in the Taylor ex-
pansion and thus calculate the structure factors with a
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better accuracy. On the other hand, if the number of
fitting parameters becomes comparable with the number
of measured intensities, - any phase reconstruction would
result in an equally good fit. Thus, in order to evaluate
the goodness of the fit, besides the residual factor R~
calculated as it is usually done in crystallography,

Eg g4-
v Ig

(2.8)

III. STRUCTURE FACTOR
OF i-Alo.st Cuo. xosLio.sos

In this section, we shall apply the above analysis to
reconstruct the neutron scattering structure factor of
icosahedral quasicrystal i-A1Q570Cus. iesLios22. We be-
lieve that the idealization of i-AlQ 57QCuQ 1QSLiQ 322 by a
quasiperiodic crystal should be useful even if it is only ap-
proximate. This conclusion is supported by the follow-
ing experimental evidence. The i-AlQ 57QCuQ 1QSLiQ 322
difFraction peaks can be indexed to within 10 s k i us-
ing an icosahedral reciprocal lattice. At the same time,
the diffraction peak widths are also on the order of 10

i.is Moreover, the associated quasiperiodic Patterson
function is extremely simple when viewed in the hyper-

one should also consider statistical tests, such as the y~
test.

Even though some of the hyperatom parameters may
remain undetermined, the absolute scale and the phases
of the structure factors are completely determined and
the reconstructed structure factor can be easily calcu-
lated:

grec gl i ars(P~) (2.9)

Moreover, the approximate structure factor Eq, calcu-
lated with the parametrization described above, can be
used to interpolate the experimental data to the scat-
tering vectors which were not experimentally accessible.
Finally, combinations of the hyperatom parameters that
can be determined by our method provide useful con-
straints for any subsequent structural modeling of the
quasicrystal.

space, which would not be expected if quasiperiodicity
were a bad ass»mption. ' ' With the coordinate con-
vention described in Ref. 30, the hyperlattice is simple
cubic with its axes parallel to the Cartesian basis e~

(j = 1, . . . , 6) and with the lattice constant a = 7.15 A.
The hyperlattice is oriented relative to the physical space
so that the Cartesian lattice axes (e~) project into the six
icosahedral fivefold symmetry axes (e~). Similarly, they
project into the six icosahedral fivefold symmetry axes in
the inner space (e+).

An analysis of the Patterson function in the two-,
three-, and fivefold hypercrystal symmetry planes, which
contain the highest symmetry WickofF positions, is con-
sistent with the P53m spacegroup symmetry and the
hyperatoms located at the vertex, r~ ——0, edge cen-
ters, r@,. = hei (j = 1, . . . , 6), and at the body center,

r~ =
2 g i e~, of the hypercubic unit cell. is'22 2s s2 It

also strongly supports the assumption that the hyper-
atoms are "Hat, " that is, s„(r+)—:0, p, = V, E~, B, and
that they are considerably extended in the inner space.
Thus, following Eq. (Al), we can write the structure fac-
tor of the icosahedral quasicrystal i-AlQ. 57QCuQ. 1QSLlQ.322

+~ =Fv(&)+).(-I) '+a, (&)+(-I) ' '+~(&)

(3.1)

where Q = =P.m~ei and m's are the six Miller in-
dices.

An indirect verification of the assumption that the hy-
percrystal consists of the vertex, midedge, and body-
center hyperatoms can be seen in the branching of the
diffraction data mentioned in the introduction and shown
in Fig. 2(c). Indeed, as evident Rom Eq. (3.1), if we

assume that all hyperatoms are nearly spherical, their
physical space Debye-Wailer factors approximately equal,
say, exp( —BQ2), and there are no ofF-diagonal physical—
inner-space Debye-Wailer factors, then the measured in-
tensities, corrected for the physical space thermal motion,
IcIexp(2BQ2), should split depending on the number of
even Miller indices into seven continuous functions of Q
More explicitly

6 6

f~" q =Igvfv(Q')e "q + ) (-1) ' g~fk(Q')e " +
l

(-I) ' lg~fk(Q')e I' (3.2)
) E;"i J

takes one of the seven values

Io=lu f (Q ) ~ —6u f (Q )
~ +u f (Q )

Is= lgvfv(Q )e ~~ ~~fa(Q )e

Is = luvfv (Q )e ~~ + 6gafz(Q )e ~ +u~fa(Q )&

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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Therefore, every diffraction peak of
i-Alo 570Cuo qosLio 322 should fall into one of these seven
branches. This is indeed the case in Fig. 2(c) where we
used the value B = 0.012 A.2 taken from our previous
work. ~ This value is consistent with the typical values
found in related crystals of known structure. Although
the data set we use is not sufEciently large to clearly
demonstrate this, the resulting branching should gener-
ally deteriorate for larger q+, because the hyperatoms
are not exactly spherical, as well as for very small Q
where the largest Q's can be observed and, thus, the
differences between the physical Debye-Wailer factors of
different hyperatoms are the largest.

As a parenthetical remark, one can also observe in Fig.
2(c) that for small q+ there is an approximate overalp
of the pairs of branches,

~Ig —~Ig —~I3 ~I4 4/I5 ~I/ 0, (3.10)

three types of hyperatoms. The symmetry of the vertex
and the body-center hyperatoms is Yp and, as a conse-
quence, their thermal tensors B split into the physical
and the inner space scalar components B and B . As
explained earlier, the inner-space Debye-Wailer factor is
included into the expansion Eq. (2.4) which is liinited
here to fourth order in q+. The expansion simplifies due
to Yj, symmetry and Eq. (A10) takes the form

Fy(C}) =nyfy 1+ —c Q + —c Q e
W

(S.12)

and

Fg(Q) =ngfg 1+ —c Q + —c Q eB B
2 B 4

implying that either gB —g@ or g~ —3g@. However,
the approximate relationships

which can be also seen in the figure, eliminate g~ 3g@
because it would also imply Io I3 0, which is clearly
not the case in the figure. These observations alone per-
mit correct determination of the relative phases of the
seven branches of structure factors for small q+: Fo
through I'2 have identical signs, opposite &om the signs
of Fs through Fs, as shown in Fig. 2(d). This conclusion
is confirmed below by our explicit calculation.

We now turn to the explicit parametrization of the
I

Each edge-center hyperatom has a Ds~ symmetry that
has to be manifested in the forms of both its thermal
tensor and expansion of its structure factor. Therefore,
the physical space thermal tensor splits into two scalar
components, one longitudinal (B@i)and the other trans-
verse (B@i) to its fivefold symmetry axis coincident with
an edge direction e~. The inner-space thermal tensor,
which will be included in the expansion Eq. (2.4), splits
similarly with respect to the inner-space edge direction
e+. Although, unlike the Yp symmetry, the D5p symme-
try does not eliminate the physical inner-space cross term
of the thermal tensor, it forces it to have only a single,
longitudinal-longitudinal, component B&&. The expan-
sion Eq. (2.4) also simplifies due to the Dsq symmetry
and Eq. (A10) takes the form

c(4) (eJ- qJ-)4 + 2
('4) ("J qJ.)2(qJ 2 ("J qJ )2) + (4) (qJ 2 ("J qJ. )2)2

X
— 2BEt(~i ')(e~ .Q )+BE&(e~ Q) +BEt, Q —(e~ Q) (3.14)

All the edge-center parameters are independent of a par-
ticular edge direction (that is, of j) because of the overall
Yj, symmetry of the structure (for example, n@,

—= n@,
j =1, . . . , 6).

In our calculation, we shall use the neutron diKraction
data from Boissieu et al. , where 40 reBections were mea-
sured. Since the atomic forin factors f; are independent
of Q for neutron scattering, the hyperatom form factors
f„=P,. p„;f; are also independent of Q. Therefore, as
mentioned in the previous section, it is not possible to
fix all the chemical compositions p~, of the hyperatoms
by fitting the neutron scattering data alone. The fitting
procedure described in Eq. (2.1) allows us to deter-
mine the following 17 fitting parameters: (gy, g@, g~),

(2) (2) (2) (2) (4) (4) (4) (4) (4)(cy, c@i ) c@i) cia ), (cy ) c@i ) c@~) czar) cia ), and (By)
B@i) B@i, B&&) B~). The results of the fit are listed
in Table I. They correspond to a small residual factor

l

of R~ ——0.051, but the reduced y is somewhat worse

(g„= 2.47) because of the relatively low ratio of the
number of constraints (40) to the number of fitting pa-
rameters (17). The phases and the absolute scale of the
total structure factor, as well as the structure factors of
each hyperatom, can now be calculated using the param-
eters listed in Table I.

IV. DISCUSSION

With the parameters given in Table I, we Grst calculate
the overall absolute scale using Eq. (2.6),

n~ifAi+ ncufcu+ ni, )fi,) 71,5, 10 s g
—2= 7.1j5~ x 10

gV+ 6gE+ gB

(4.i)
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TABLE I. The 17 Btting parameters obtained from the
least-squares optimization of Eq. (2.1).

B[Aj

V
5.1(3)

0.011(1)

-8.2(4)

i9(2)

2.6(2)
0.013(2)

t: 0.0117(9)
x: 0.05(3)
I: —2(i)
t: —8.2(3)

-10(4)
t: 20(i)
lt: i5(2)

B
-2.5(7)

0.008(5)

-9(i)

19(4)

where the neutron scattering lengths for the three
chemical species are fA~ = 0.3449 x 10 A, fr,;
—0.203 x 10 A. , and fc„= 0.7718 x 10 A. , while
their number densities, derived &om the measured mass
density of 2.47 g/cms and chemical composition of i
A4 syoCuo gosLiQ 332' are n~~ = 3.451 x 10 L,nc„=
6.541 x 10 3 A. 3, and nr, ; = 1.950 x 10 A . Next,
we calculate the right-hand side of Eq. (2.7), nv fv ——

0.36(3) x 10 s A. 3, n@f@ = 0.19(2) x 10 A. and
nQ f~ = —0.18(5) x 10 A . Finally, we calculate
the approximate and the reconstructed structure fac-
tors using Eqs. (3.1, 3.12—3.14) and Eq. (2.9), respec-
tively. In Fig. 2(d) we plotted the experimentally ob-
served magnitude of the structure factors (in arbitrary
units) QIq, multiplied by the obtained phase factors
exp[i arg(Fci)] = +1.

The structure factors reconstructed in this paper are in
a good agreement with the ones reconstructed earlier us-

ing a different, rational approximant, method. This can
be clearly seen &om Fig. 4 where we show the approxi-
mate structure factor determined here plotted versus the
reconstructed structure factor determined in Ref. 7. All
the phases are in agreement except for the two associ-
ated with the weak intensities. They correspond to the
only two points in Fig. 4 that are in the second quad-
rant of the figure. In Fig. 2(d), these are the two points
with the largest q+ among the ponts with three even
Miller indices [(222111) and (333002)]. All the points
in Fig. 4 fall around a straight line through the origin
inclined at approximately +45, indicating that the ab-
solute scales are consistent. Indeed, the scales found here
and in Ref. 7 are 7.1(5) x 10 A. 2 and 7.4(1) x 10

, respectively. Smallness of the data scatter around
the straight line refiects the high quality of the fit accom-
plished with the parametrization described here. Finally,
thermal Huctuations of atoms calculated in this paper
[Bv = 0.011(1)A2, B@)= 0.013(2) A, B@t,——0.0117(9)
A. , and B~ = 0.008(5) A2] are also comparable to the re-
sult of the earlier rational approximant method, where
only an overall Debye-Wailer factor could be obtained
[B = Q.Q12Q(3) Q2].33

Although the inner-space Debye-Wailer factors cannot
be separated ft.om the inner-space atomic form factors,
ideally, they can be constrained by the expansion coefB-
cients in Eq. (2.4). For example, to second order c;;,
equals f„, , —B„;,, and we can use positivity of theJ (2)

quadratic form (x+z+) to obtain the matrix inequality

B.+.(2) (0P (4.2)

Similar tensor inequalities can be derived from the higher
order terms. However, these inequalities are exact only
for an infinite expansion. In practice, they must be con-

sidered only approximate since the coefBcients c„are
determined from a truncated expansion and are, thus,
approximate. The approximation is best for lower order
terms and it improves with increased order of the trun-
cation.

In particular, the second order terms with Yj, sym-

metry are constrained by (r ) ) 0 giving the approx-

imate upper bounds Bv & —zcI, = 4.11(3) A. and

B&+ & —2ez~
——4.74(8) A. . The second order terms

with Ds~ symmetry are constrained by (re+3) ) 0 and
(r&+3) ) 0 which lead to the approximate upper bounds

The value obtained in Ref. 7 for an overall inner-

space Debye-Wailer factor, B+ = 0.39(7) A.z, is consis-

tent with these upper bounds. Moreover, it is also con-
sistent with the lower bound B8& ) (Ba&) /B@~ = 0.2(2)
Az which assures positivity of the thermal tensor B@. Al-

though most of the more stringent constraints resulting
&om the fourth order terms are also consistent with the
above value for B+, they are the least reliable since we

truncated the expansion Eq. (2.4) at the fourth order. 4

As we already mentioned, the scale 8, the chemical
compositions p„;, and the physical space densities n„of
the hyperatoms cannot be all determined by the fit. They
constitute here the total of 13 parameters, connected by
the total of nine constraints, three resulting &om each
of the Eqs. (2.7), (A7), and (A8). Thus, at the most
nine parameters can be independently fixed. In order
to Gx the remaining four parameters, more constraints
must be obtained &om additional independent assump-
tions. For example, a consideration of the crystalline
R-Alp 564Cup ]y6Lip 32Q which is believed to be a ratio-
nal aPProximant of i-Alp SypCup yp8Lip 32» can Provide
appropriate constraints. When R-Alp 564Cup yy6Lip 32Q is
embedded in the six-dimensional hypercrystal, all the Li
atoms and some Al atoms, but no Cu atoms, are lo-

cated near the body center of the hypercell. ' If we

assume that the same compositional constraints apply
to the entire hyperatoms, we obtain three new con-
straints, p~g„——0, p~g; ——0, and p@LI. ——0, and only
one free parameter remains, say, pv~„/p@g„. These
constraints, combined with Eqs. (2.7,A7,A8) are suffi-

cient to completely specify the body-center hyperatom,
giving n~ = 2.6(1) x 10 A, p~z„. = 0.75(4), and

pgy~~ = 0.25(4). This information is most useful for the
modeling when translated into the body-center hyper-
atom volume v ~ = 3.5(2) x 103 A3 and the volumes
v ~r,; = 2.605 x 10 A and v ~~~ = 0.9(2) x 10 A. of
its Li and Al portions, respectively.

In the above example one might try to simplify the
analysis by neglecting any Al on the body-center hyper-
atom. This would add the fourth constraint, p~h~ ——0,
seemingly fixing all the parameters. However, this con-
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straint is no longer independent because we could now
determine the scale s not only by Eq. (2.6) [s = 7.1(5) x
10 A ] but also with s = [n&;fL,./g&~ = 16(4) x 10

or s = ~(nAlfzi + nc fc )/(gv + 6gz)~ = 6 2(4) x
10 s A, which are obviously mutually inconsistent in
this case. Conversely, we may use this information to
infer that some mixing of Li with Al or Cu must occur
within hyperatoms.

The approximate, parametrized structure factor can be
also used to help modeling of the atomic structure of the
quasicrystal. As already mentioned, since it is an ex-
plicit function of the quasicrystal scattering wave vector,
the approximate structure factor can be used to effec-
tively enlarge the diffraction data" set and interpolate
the structure factors at the values of experimentally inac-
cessible wave vectors. In this way, the truncated Fourier
series [Eq. (1.1)] can be extended to give more accurately
the (hyperspace) density of scatterers. Moreover, since
this method actually gives parametrized structure factors
of individual hyperatoms, which are continuous functions
of the inner-space scattering wave vector, it allows for a
more meaningful interpolation as well as some extrapola-
tion of the data. This, in turn, facilitates more accurate
determination of the inner-space density of individual hy-
peratoms. The hyperatoms are smeared into continuous
densities by the inner-space fluctuations, which we can-
not isolate and remove within this method. However,
since the physical space Debye-Wailer factors are deter-
mined by this method, the physical space fluctuations
can be removed fLom the structure factors, considerably
sharpening the density and, thus, providing useful guid-
ance in the modeling of the hyperatom shapes.

Further analysis of the hyperatom densities and of
the consequences of our results on the modeling of
i-Alo svoCup yo8Lio 322 will be presented elsewhere.
Here we only mention some obvious limitations. Because
of the relatively small data set we had available here, we

restricted our parametrization of the hyperatom struc-
ture factors to only fourth degree in Q+. In order to
reveal the true symmetry of the hyperatoms it is neces-
sary to carry out the expansion to at least sixth order.
This can be done with a larger x-ray data set which
also provides more stringent constraints on the hyper-
atom compositions. It is very important to emphasize
that the most severe limitation on the use of our results to
help structure modeling stems from the inevitable trun-
cation of the experimental data and, consequently, in-
accurate reconstruction of the scatterer densities. This
problem can be partially alleviated by a judicial choice
of the functional basis for the expansion to allow for a
significant extrupolation of the data set. However, this is
precisely where the borderline between structure model-
ing and structure factor reconstruction begins to blur.

V. CONCLUSION

In this paper, we showed how the inner-space
structure factors of hyperatoms can be approximately
parametrized and the parameters fitted using the experi-
mentally measured diffraction intensities of quasiperiodic
crystals. We thereby also presented a method for the re-
construction of the absolute scale and phases of structure

factors of quasiperiodic crystals, a method which comple-
ments a different reconstruction method based on peri-
odic approximants of quasiperiodic crystals. Although
the two methods are based on significantly different sets
of assumptions, we demonstrated on the example of i-
Alo s7oCuo go8Lio 322 neutron structure factors that they
yield consistent results: All 40 phases, except for two
that are associated with weak peaks, are consistent, and
the absolute scales and the physical space Debye-Wailer
factors are within the error bars. The parametrization we
used appears adequate as attested by the very good resid-
ual factor R~——0.051. We have also discussed to what
extent the results of the reconstruction can be used to
guide structure modeling, and we briefly considered i-
Alo s7'oCuo ]o8Lio 322 A more detailed analysis of the re-
sults of reconstruction and of the structure modeling of i-
Alo. s7oCuo. zo8Lio. 322 requires a separate publication.
We conclude that the method we presented here can be
particularly useful in cases where periodic approximants
of a given quasicrystal are not known. On the other
hand, even when periodic approximants are known, this
method can be easily combined with the rational approxi-
mant method by parametrizing the hyperatom structure
factors as described here and then applying the ratio-
nal approximant method to each hyperatom type. This
could yield more accurate information about the hyper-
atom structure factors. It is left for a future investigation
to formally integrate these two approaches into a single
more powerful method.

Note added in proof. Inconsistent values are reported
in the literature for the mass densities or isotope con-
tent of i-Alo s7oCuo zosLio 322 and R-Alo s64Cuo zz6Lio 32o
samples used here and in Ref. 7. However, this variation
does not affect our results signi6cantly.
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APPENDIX:
STRUCTURE FACTOR OF QUASICRYSTALS

As is well known, a quasiperiodic crystal can be viewed
as a cut through a higher dimensional periodic crystal
(hypercrystal). The quasiperiodicity dictates that the
cut is not parallel to any of the crystallographic planes
of the hypercrystal. This implies a one-to-one correspon-
dence between the reciprocal lattice vectors g = (Q, Q )
and Q of the hypercrystal and quasicrystal, respectively.
By de6nition, the hypercrystal structure factor I"q is
equal, up to an overall phase factor, to the quasicrystal
structure factor Fct. (Hereafter, all quantities with an
overbar are distinguished as hyperspace quantities, while
quantities with a J superscript are associated with the
"inner space, " the orthogonal complement to the physi-
cal space. ) On the other hand, since the hypercrystal is
periodic, its structure factor is given by a straightforward
generalization of the usual formula for periodic crystals.
Therefore,
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F~ —F~ —) F (Q)e~~ rv

P

(AI) f (9) =).» *f'(9)

where the sum is over all hyperatoms within the unit hy-

percell, r„ is the location of the pth hyperatom in the
unit cell, and F„(Q) its contribution.

If the cut through the hypercrystal is to produce point-
like atoms in the three-dimensional physical space, the
hyperatoms must be extended objects of codimension 3.
Therefore, a hyperatom must be characterized not only
by its chemical character, but also by its geometrical
"shape, "

r = s„(ri), r Qv„, (A2)

vi
Ap )

v
(A3)

where 6 is the volume of the unit hypercell. The hy-

peratom shape contributes a factor n„fi(Q) to F„(Q),
where fi(Q), the inner-space atomic form factor, is the
inner-space Fourier transform of the hyperatom,

which requires specifying the function s„(ri) as well as
the shape of the inner-space domain vi. The volume of

this domain, which we shall also denote by v„, deter-
mines the number density n„of the corresponding atoms
in the physical space,

where p„,. is the fraction of the chemical species i in the
hyperatom»s. These fractions must satisfy the obvious
relations

0(p~; &1 (A6)

and

(A7)

as well as the constraints imposed by the experimentally
accessible niimber densities n; of the chemical species in
the quasiperiodic crystal itself,

APPP3 ~ A3 ~ (AS)

Finally, F„(Q) contains a "Debye-Wailer factor"
e &'3&' ~ which results from disorder (thermal auctua-
tions) in the quasiperiodic crystal. The appearance of
Q rather than only C} in the exponent reflects the pos-
sible presence in quasiperiodic crystals of the "phason"
Buctuations in addition to the usual phonon Quctuations.
Putting all these factors together, we find

f-L(q) eacl r e|cl sy(r du
v~ (A4) F~(&) = n~f~(&)f, (&)e (A9)

In addition to the inner-space form factor, F„(Q) also

contains the usual physical space atomic form factor

f&(C}). It can be expressed in terms of the atomic form

factors f;(Q) of the chemical species i that compose the

hyperatom,
Fcl = ).n~f~(&) f, (Q)e*~'"e ~ (A10)

and the quasicrystal structure factor can be written more
explicitly as
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The fourth order constraints (r ) ) 0, for V and B hy-

peratorns, and (ri ) ) 0 and (r, ) ) 0, for E hyper-
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B„& z [
—c„—(c„)2—2c„]which gives Bv & 1.41(3)

A, Bz+ & 1.15(5) A, Bz~ & 0.0(l) A, and Bz, & 1.44(2)
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surprisingly, still consistent with B determined in Ref. 7.
The constraint (r ) ) (r ) and similar ones for

and ri yield still more stringent bounds, B„(~(—c„

k„[(c„) z—2c„]),where kv = kz = —,kzi ——2, and
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sors, emphasizing unreliability of the constraints derived
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