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An atomistic simulation model for evaluating the stability of crystal under uniaxial tensile force is
presented for diamond. The method is based upon the tight-binding approximation, and an interatomic
potential which explicitly has an additive cutoff term having a directional dependence is proposed. In
the static relaxation procedure for this model, a rigid tetrahedron placed at each atomic position is
moved toward the equilibrium configuration by six driving forces, where three are translational and
three rotational. As a result, there exists a critical strain of the crystal stability under the uniaxial tensile
strain of the [111] direction in diamond. In crystals including vacancies, the strength of the crystal de-
creased as predicted by Griffith’s theoretical treatment. The critical strength of the perfect diamond
crystal is found to be about 80 GPa. The nonlinear relationship between stress and strain of diamond
under larger external forces is obtained from the results for equilibrium states. The functional form in a
cubic polynomial of strain reproduces very well the calculated plots.

I. INTRODUCTION

The stability of crystal under an external force is a very
important problem in the engineering materials and this
provides some information for crack propagation or frac-
ture in crystals. In highly covalent crystals which are ex-
pected to be used as structural materials, fracture charac-
teristics play dominant roles in the applicability for prac-
tical uses. A theoretical approach to this problem is im-
portant for designing the materials having various physi-
cal properties. In the early stage, crystal stability had
been discussed in terms of theoretical strength!"? or as the
problem of ductile-brittle behavior.>* Later, there have
been many attempts for studying mechanical properties
or coordination configurations of covalent crystals by
atomistic simulation models using empirical interatomic
potentials.>~® Sinclair reported the atomistic model of
crack propagation in covalent crystal with the boundary
condition as being joined to the continuum model re-
gion'® and examined the effect of interatomic potential
form on crack propagation.!! A bond breakage means
the generation of dangling bonds and is an essential prob-
lem in fracture of crystalline materials. However, the
treatments have been complicated in the previous reports
in which the bond tension or the bond strain have been
employed as a cutoff parameter.

In the atomistic model simulations of macroscopic
phenomena such as crack propagation or fracture, the
number of atoms included in calculation would be neces-
sarily rather great.!! At the present stage, this demand
could not be satisfied in the model with the complex po-
tentials or with rather complicated calculation pro-
cedures in molecular dynamics, although some complica-
tions could not be avoided in the treatment of the co-
valent crystal because of its strong anisotropic bond char-
acter.

In this work, a simple atomistic model for evaluating
the stability of covalent crystals under uniaxial external
tensile force is proposed. The interatomic potential'? is
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based upon the tight-binding approximation model con-
sidering only nearest neighbor interaction.>!> And an ex-
tra term responsible for generating the dangling bonds is
added to this potential. The relaxation procedure is per-
formed by translation and rotation of the rigid tetrahed-
ron placed at each atomic site. And the model is applied
to investigate the stability of diamond as typical of a co-
valent crystal. How the vacancies introduced in crystals
affect the stability of crystal will also be evaluated.

II. METHOD OF CALCULATION

A. Potential and relaxation procedure

In the tlght-bmdmg approximation, an interatomic po-
tential is given as the interaction of sp* hybride orbitals
of connecting atoms. A total energy of the system, E,,,;,
is

total EE, ’

Et=52 Vija j=1’2’3y4,

VU=—‘{F(R,P,')P] Pij)+Edan8} ’

where E; is a site energy of site i, V; is a pair potential,
and F (R P, P; P,J) is a bond energy of the tight-binding
approxxmatlon 3 with Slater Koster terms which depend
on the bond directions.!* The distance between interact-
ing atoms is denoted by R. The terms P;, Pj, and P,-j are
the variables for the direction of interacting orbitals of

the atoms i and j as follows:
P,=ll;+mm;+nn, ,
P-=II-+mm.+nn- .
II +m;m; +n,nl ,

where (I,»,m,-,n,-) and (I;,m;,n;) are the directions of the
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interacting orbitals of each atom, and (/,m,n) is the
direction cosine of the bonding axis between two atoms.
The parameters in the function F are determined from
bulk modulus, cohesive energy, and equilibrium condi-
tion of crystal.!

The function F(R,P;,P;,P;) shows the asymptotic
behavior with an increase in atomic distance to the hy-
brid energy which is approximated by the dangling bond
energy here. It never reaches, however, the value at a
finite distance. For creation of a dangling bond at a finite
distance, a certain function should be introduced into the
bond energy V;;. It would be plausible to employ a func-
tion which depends upon the deviation of angle of in-
teracting orbitals P; and P; because of the strong direc-
tional bonding character of covalent crystals. The func-
tion Eg4,,, in additive form is introduced to see its effect
on fracture behavior. So far there has been no proposal
as to the functional form of such a function. As a first
approximation, E,,, is postulated in a simple form as
follows:

Egug=0a(1+PP)) .

This is the same as a w-like interaction of the Slater-
Koster terms present in function F without exponential
decay factor, where the constant a is determined from
the condition that ¥;; should be equal to twice the value
of hybrid energy when the bond is ruptured. It is also
postulated that bond breakage will occur when two in-
teracting orbitals of adjacent atoms deviate beyond a crit-
ical angle 6, defined as follows:

cosf, =R, /(R2+R})17%.

The situation is shown in Fig. 1, where the direction of
the bonding axis at equilibrium in a perfect crystal is §
and the atomic distance is R, and the plane perpendicu-
lar to the § axis is indicated as the £7 plane and R, is a
critical distance in that plane. R, is an arbitrary cutoff
parameter reflecting a rigidness of the material, and its
value is adopted here to be between 0.2 and 0.4 without
physical rationalization. It is a characteristic assumption
in this model that the cutoff length depends upon the de-
viation in orbital directions of the interacting atoms.
Schematic potentials are illustrated in Fig. 2 for different
values of deviation in the &7 gylane.

The hybrid orbitals of sp° form a tetrahedron whose
center is an atomic site, and each orbital is directed to the

EN plane
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FIG. 1. Critical configuration at which bond breakage takes
place.
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FIG. 2. Interatomic potential for some parameter values
representing the deviation of bond direction where R, is 0.4.

top of the tetrahedron. Only the nearest-neighbor in-
teractions are considered in the present model, and it is
assumed that a tetrahedron behaves as a rigid body in the
process of relaxation. It is displaced by three translation
forces and rotated by three independent torques. This
model would be referred to as a “rigid tetrahedron mod-
el.” The rigidity of the tetrahedron is sustained by keep-
ing the orthonormality condition of each hybrid orbital
through the relaxation process. This assumption might
be rather artificial but it reduces the number of calcula-
tion parameters and would enable the construction of an
atomistic model for evaluating the crystal stability with a
considerable number of atoms.
A net force, G;, acting on atom i is defined as follows:

172
G,= [z(F,3+T,3)] , k=1,2,3,

where the torque, T, means the differential of the poten-
tial with respect to the appropriate three components
among the expanding coefficients of the four hybrid orbit-
als by s and p atomic orbitals. It can be considered that
this quantity is a measure of instability of the atomic site.
When the maximum net force, G,,, among G; of all
atoms becomes smaller than the tolerance (5X1073
eV/A or 81077 dyn), the configuration is considered to
be the equilibrium.

B. Boundary and initial conditions

Because a covalent crystal has a very strong anisotrop-
ic character, bonding direction and rotation angles
should be referred to the fixed coordinate axes in the re-
laxation calculation. Three axes of Cartesian coordinates
are taken as corresponding to the crystallographic princi-
pal axes of diamond structure; x is [112], y is [110], and z
is [111], which is the direction of uniaxial strain. The
nearest atomic distance in the (111) plane is taken to be
unity in this calculation. A periodic boundary condition
can be adopted in the y direction because of crystal sym-
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FIG. 3. Atomic configuration in the (111) plane indicating a
periodic boundary condition in the y direction.

metry and we choose the minimum period (=1) as the
width of the crystal in the y direction (Fig. 3). The solid
and open circles indicate the atoms belong to the region
of relaxation and the adjacent atoms, respectively. The
small circles correspond to the atoms on the different
planes from large ones with respect to the [111] direc-
tion. The atoms 4 and 4, are relaxed in the same coor-
dinates of the x and z directions while their distance in
the y direction is fixed to be unity. In the same manner,
B, and B, are related by periodic boundary conditions to
atom B. When a point defect is introduced in a crystal, it
means a line defect in the y direction. In the z direction,
which is considered as a layer structure, the numbers
L=1 and L_,, correspond to the two opposing outer-
most layers. The z coordination of L =1 is taken to be 0
and the L, is always taken to be a multiple of 6 which
is the periodicity in the z direction of a perfect diamond
structure. The boundaries of the z direction are terminat-
ed by fixed atoms. On the other hand, because of lacking
any symmetry in the x direction, two extreme boundary
conditions (fixed and free) are adopted in this direction.
In the case of a free boundary condition, the atoms at the
outermost sites in the x direction have dangling bonds in-
itially.

In the present model, the strain of the z direction is
adopted as an external force parameter instead of [111]
tensile stress. The calculation is initiated by giving a
finite tensile strain, then all of atoms including just out-
side atoms are uniformly displaced in the z direction.
The strain in the z direction, S, is defined as S=AZ/Z,,
where AZ=Z_..—Z, Z, and Z,, are crystal
thicknesses in the z direction without and with external
strain, respectively. The region of calculation is a rec-
tangular form, while it extends infinitely in the y direc-
tion.

When the vacancies are introduced, the calculation re-
gion in the x direction is divided into the two parts. Re-
gion I, which has the size of I, corresponds to a vacancy
region and region II is the same as perfect. The origin of
the x direction is taken at the boundary between the two
regions. The middle level in the z direction is set at mid-
line between L., (=L, /2+1) and L, —1, and is
termed midplane, where the vacancies are introduced on
the layer L,..

III. RESULTS

A. Perfect crystal

The atoms which are initially displaced uniformly by
smaller S in the z direction are found to be slightly re-
laxed toward the opposite directions whose layers are an
odd number (positive direction in z) or even number (neg-
ative). And finally the equilibrium configuration is at-
tained when the net force acting on each atom is smaller
than the tolerance except for those acting on the fixed
boundary atoms in the case of a fixed boundary condi-
tion.

On the other hand, in the case of a larger strain, the
status is quite different. As an example of this situation,
the maximum net force G_,, as a function of iteration
number is shown in Fig. 4 with that for the stable state.
The calculation parameters of this case are as follows:
L_..=48, X, .x,=17, R.=0.4, $=0.184 for a stable
state and S=0.263 for an unstable state under a free
boundary condition in the x direction. The stability of
crystal under tensile stress depends on the magnitude of
strain provided initially and it indicates the existence of
critical strain, S,. S, for the perfect diamond crystal is
found to be 0.187+0.003 for this boundary size in which
about 4000 atoms are contained. The atomic structures
and their energies for an unstable state (S =0.263) are
shown in Fig. 5 at several iteration numbers where each
stage is shown in Fig. 4. The diameter of the circles at
each site is roughly proportional to the magnitude of the
site energy. The minimum circles indicate the atoms
which have negligibly small excess energies. The max-
imum circles correspond to the atoms whose energies are
larger than twice the value of dangling bond energy. The
energies caused by the dangling bond in the z direction
are omitted from the site energies of the atoms on L =1
and L, layers in this figure. At the stage of Fig. 5(a),
the distance of the interlayer is extended at each six lay-
ers reflecting the periodicity of the [111] direction. With
the progress in iteration, however, the periodicity of the
extended layer seems to change to 12, and the energies of
the sites facing to extended planes increase because of
dangling bond generation. It should be noted that these

Gmax (eV/A)

0.001

500 1000 1500

Number of iterations

FIG. 4. Maximum net force vs number of iterations for the
perfect crystal under the free boundary condition. The region
size is X ,, =17 and L ,, =48.
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situations do not simulate accurately the behavior of frac-
ture with molecular dynamics because the present treat-
ment is a static relaxation method. However, if the
simultaneous displacement in the z direction of all atoms
by external tension is assumed, these features would give
a rough sketch for the process of fracture. It seems that
the voids appear at the boundary and they behave as

[111] Direction
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open cracks. The relaxation process under the fixed
boundary condition in the x direction has also been cal-
culated. The results are shown in Figs. 6 and 7 for the
same calculation parameters as those of Fig. 5. Each
iterative stage of Fig. 7 is represented in Fig. 6. The ex-
tension of an interlayer begins at the neighborhood of the
boundaries but the voids stay closed because the edge

FIG. 5. Atomic structure and
energy diagram at several itera-
tion stages for the unstable state
of the perfect crystal under a
free boundary condition. Each
stage corresponds to the itera-
tion number denoted in Fig. 4.
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FIG. 6. Maximum net force vs number of iterations for the
perfect crystal under a fixed boundary condition. The region
size is X ., =17 and L ,, =48.

atoms are fixed. The critical strain for this case is found
to be 0.25610.003, which is rather larger than the value
for a free boundary condition. This suggests that the
boundary condition should be carefully considered for
the evaluation of the strength of a perfect crystal.

The boundary size might also affect the feature of frac-
ture of crystal. The critical strains are evaluated for the
boundary sizes of (X, =32, L, =48) and (X,, =32,
L,.,=60) under a fixed boundary condition. The values
of the S, are 0.256+0.003 for the former and
0.255+0.004 for the latter, and the numbers of atoms in-
cluded in these regions are about 7300 and 9000, respec-
tively. The critical strain does not depend on boundary
size, and the feature of the unstable state for three kinds
of the boundary size resemble fundamentally each other.
The atomic structure and their energies calculated by a
fixed boundary condition for the unstable state
(§=0.261) with greater region size (Xp,, =32,
L...,=60) is shown in Fig. 8.

B. Introduction of point vacancy

If the cluster length /., which is the width of region I,
is taken to be 1, the only one site exists on a vacancy lay-
er. Then the only one atom is removed from the L =L .
layer (it is 25 when L _,, =48) creating point vacancy and
the midplane of the z direction is located midway be-
tween L =24 and 25. When a smaller strain is given uni-
formly to this lattice, most of the atoms are relaxed, as in
the case of the perfect crystal, while some atoms in the
neighborhood of the vacancy move increasing the vacan-
cy volume as shown in Fig. 9. The calculation parame-
ters are as follows: boundary size is (X, =17,
L, .x=48),1.=1, R,=0.4, and S is 0.148 under the free
boundary condition. An asterisk indicates the vacancy
position and the sites 4, B, and C are nearest-neighbor
atoms of the vacancy. The energy of atom A is larger
than the others because it has two dangling bonds. On
the other hand, the status is different from that of the
perfects crystal in the case of the larger strain, S =0.158.
G max s a function of the number of iterations is shown in
Fig. 10 with that of the stable state. The value of critical
strain, S, is found to be 0.15140.003, which is smaller

than the value for the perfect crystal, meaning a reduc-
tion in strength. At the early stages of iterations, G,
for the unstable state decreases like that of the stable
state. Before it converges to a negligibly small value,
however, it begins to increase. And at a certain stage, the
bonds of some atoms facing the opposite side of the mid-
plane are ruptured generating dangling bonds in pairs.
The atomic structures and their energies for the unstable
state (S =0.158) are shown in Fig. 11 for several stages
indicated in Fig. 10. With the progress in iteration, the
number of atoms having the dangling bond increases and
finally the crack reaches both crystal edges which means
the fracture of the crystal. This situation displays the
crack propagation or the cleavage along the (111) plane
of the diamond crystal by a large external tensile force.

The diagrams of the net force acting on each atom, G,,
are shown in Fig. 12 at the stages corresponding to Fig.
11. The diameter of the site indicates the instability of
the atom. It can be seen that the unstable atoms concen-
trate near both edges of the void with the progress in
iteration. This may correspond to the stress concentra-
tion at the crack edge treated in linear elastic theory.

The effect of the boundary condition and of the calcu-
lation size on S, are examined. In this case, any clear
difference in S, cannot be observed by the changes of the
boundary conditions (fixed or free) and of the region sizes
Xpax =17, L, =48), (X.,=32, L.,,=48), and
(X max =30, L ., = 60).

C. Pairing of two vacancies

Aggregate of vacancies is termed vacancy cluster. The
larger size of the calculation region should be necessary
for the larger-scale clusters. Only small size clusters con-
sisting of pairs of two vacancies are considered in this pa-
per. There are two typical ways to form the cluster by a
pair of two vacancies. One is a linkage in the [111] direc-
tion and the other is in the [ 112] direction. The former is
termed longitudinal and the latter transverse.

We have special interests in the vacancy clusters aggre-
gated in the (111) plane (transverse type) because they
will be able to simulate the (111) crack or cleavage in the
diamond crystal. In this model, the cluster size of the
two vacancies in transverse type can be given by twice of
region I of the point vacancy. This procedure increases
the number of vacancies and total number of atoms under
consideration if the size of region II is fixed. The atomic
structures and their energies in the case of the vacancy
cluster length, /, =2, which means the transverse mode,
are shown in Fig. 13 at a certain stage of iterations for
the unstable state (S =0.142). The calculation parame-
ters are the same as those of the point vacancy except
1.=2 under the free boundary condition. The critical
strain of the transverse mode is found to be
S.=0.124+0.003, which is smaller than the value for the
point vacancy.

On the other hand, for the creation of the longitudinal
cluster composed of two vacancies, the atoms are re-
moved from the layers L=L,,. and L, —1 in region I
of I.=1. The critical strain is the same as the value for
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the point vacancy, S,=0.151+0.003. The atomic struc-
ture and their energies are shown in Fig. 14 for the same
strain as the value for the case of the transverse
(S=0.142). For the same value of the strain, the former
reaches an equilibrium state while the later shows crack

ATOMISTIC MODEL FOR THE EVALUATION OF THE . ..

propagation. The reason why the critical strain of the crack length.

[111] Direction
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longitudinal mode is larger than that of the transverse
mode may be due to a smaller number of dangling bonds
at an initial state. And this result agrees qualitatively
with Griffith’s macroscopic treatmen
ical strength of the crystal decreases with increase of the

t'* in which the crit-

FIG. 7. Atomic structure and
energy diagram at several itera-
tion stages for an unstable state
of the perfect crystal under a
fixed boundary condition. Each
stage corresponds to the itera-
tion number denoted in Fig. 6.
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D. The relationship between stress and strain

The internal stress distribution of the unstable state is
presented for the case of the point vacancy in Fig. 12. At
the equilibrium, all of the net forces acting on the atoms
in the internal region tend to be negligibly small, while
the forces acting on the fixed atoms on the boundary lay-
ers in the z direction remain to have finite values. The
sum of these forces in the z direction is considered a ten-
sile external force which gives the initial strain. A virtual
external stress in the [111] direction, o,;,, will be formal-
ly obtained with the total force acting on the outer layer
divided by the surface area as follows:

UIIIZZFZX'/(NXSG) ’

where N is a number of atoms on the L =1 layer and S,

[111] Direction

[112] Direction

FIG. 9. Atomic structure at a neighborhood of a point va-
cancy at equilibrium for S =0.148.
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FIG. 8. Atomic structure and
energy diagram at iteration
number =2000 for an unstable
state (S =0.261) of the perfect
crystal under a fixed boundary
condition. Where R.=0.4 and
the region size is X, =32,
L rax =60.
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is an atomic area in the (111) plane which is 5.41(A?) for
diamond.

The tendency of o;; with the progress in iteration is
shown in Fig. 15 for the stable (S =0.148) and the unsta-
ble (S =0.158) cases for the point vacancy system under
the free boundary condition. The curve for the unstable
state shows a plateau and then decreases and this might
reflect the starting of crack propagation. On the con-
trary, the curve for the stable state converges to a certain
value, o{;;, by the achievement of equilibrium. The rela-
tionship between initial strain and the corresponding con-
vergent value o}, for some equilibrium states are shown
in Fig. 16 with the values for the perfect and those for the
pair of vacancies in the transverse mode. The vacancies

10

0.1

Gmax (eV/A)

0.01

0 2000 4000 6000

Number of iterations

FIG. 10. Maximum net force vs number of iterations for the
crystal including a point vacancy under a free boundary condi-
tion. The region size is X,,, =17 and L ,,, =48.
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influence the crystal strength, but they do not practically
affect the relationship between stress and strain. The
straight line obtained from the experimental value of the
elastic stiffness constant of diamond,'® C,;=6.7 (eV/A3),
and the best-fit curve to the calculated points are also
shown in the figure. The result of the best-fit procedure
indicates the nonlinear form of a cubic polynomial as fol-
lows:
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0%, =5.08(1—1.35)%.

The coefficient of the linear term, S.O(eV/Az‘), is a little
smaller than the above cited one. The value of C;,, which
is the critical stren§th of the perfect diamond crystal, is
0.5 (eV/A3%=280(10" dyn cm %) =80 GPa, and it is small-
er than the value of the theoretical tensile strength, 106
(10'° dyn cm ~2), reported by Tyson.!

FLL¥S

uuuuuuu o % %

8g 84 8, Oy 0, 9y Oy B, 0, O, O, O

FIG. 11. Atomic structure
and energy diagram at several
S iteration stages for an unstable

state of the crystal including a
i point vacancy under a free
boundary condition. Each stage
corresponds to the iteration
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IV. DISCUSSION the potential function. In most of the reports concerning

this subject,”®>!! however, the authors proposed the

The stability of the diamond crystal under the external cutoff functions and the cutoff lengths in rather arbitrary
tensile force has been evaluated by using the “rigid manners. As mentioned above, the E,,,, proposed here
tetrahedron model” with the interatomic potential in-  is a kind of cutoff function which has directional depen-
cluding the extra term for cutoff. In the present model, dence. This directional dependence of the cutoff length
there are several assumptions at some calculation stages. arises from the model of the rigid tetrahedron, and this
The first basic problem is the form of the term Eg4,,, in kind of procedure would be more appropriate for atomis-
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g
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FIG. 13. Atomic structure and energy diagram for the trans-
verse mode of the double vacancies at iteration number=1500
and S =0.142.

tic simulation for a highly anisotropic crystal. The
differentials of this potential, the forces, are discontinu-
ous at the cutoff point. It is pointed out’ that this situa-
tion would be disadvantagous for a molecular-dynamics
simulation. Further trials may enable us to find a more
appropriate functional form of the cutoff.

The surface reconstruction after generation of dangling
bonds could not be discussed here because of the nearest-
neighbor approximation. This concept might be neces-
sary for the more detailed discussion, but it can be
neglected in the first-order approximation.

A boundary condition is one of the important problems
in atomistic model simulation. It has been pointed
out!"!718 that attention should be paid to the boundary
condition between a continuum region and atomistic one.
In this model, the outer boundary of region II corre-
sponds to it and atoms placed at just outside the bound-
ary are fixed or removed through a relaxation process de-
pending on the two extreme boundary conditions in the x
direction. The plausible situation might exist in a mid-
way between the two extreme cases. The boundary con-
dition affects the fracture behavior in the case of the per-
fect crystal because the atoms immediately adjacent to
the outer sites of the boundary are practically not in the
same condition as the remainder. In contrast, the effect
of the boundary condition can be neglected for the crystal
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FIG. 14. Atomic structure and energy diagram for the longi-
tudinal mode of the double vacancies at equilibrium (iteration
number= 1444, S =0.142).
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FIG. 15. Virtual external stress vs number of iterations for
stable (S =0.148) and unstable states (S =0.158) of the crystal
including point vacancy.

including vacancies. The effect of crystal size, X ,, and
L., on S, has also been evaluated for the cases of the
perfect crystal and the point vacancy system. The results
show that the effect would be negligibly small if it exists.
Thus, the boundary size X, =17 and L, =48 has
been adopted in present calculations except for special
cases. The effect of R, on S, is also examined for the case
of the point vacancy under the free boundary condition.
The value of S, is almost unchanged from R, =0.2-0.4.
This means that the coefficient a in E4,,, may not affect
seriously the value of critical strain.

When uniaxial external tensile force is applied to a ma-
terial, Poisson contraction will be an important problem.
In the case of the fixed boundary condition in the x direc-
tion here, this effect cannot be expected. On the other
hand, it may be worthwhile to evaluate this effect for the
case of the free boundary condition. The x components
of the displacement of the atoms on the neighbor layers
of midline in the z direction are examined for the case of
the point vacancy. It can be seen in Fig. 9 that the atoms
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and the double vacancies (). C,, C,, and C; represent critical
points in respective cases.
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in the neighborhood of the vacancy shift along an inward
direction from the initial positions while the values of dis-
placement decrease on going away from the center. The
strains in the x direction of the atoms at the outermost
region are estimated to be an order of 0.0001 and the
directions of displacement are not uniform. These results
signify that Poisson contraction does not occur in this
model. The reason may be considered that the elongation
in the z direction does not mean the elongation of the
bond orbital but the increase of the atomic distance in the
rigid tetrahedron model. That is that the extension in a
certain direction does not always result in the generation
of the driving force and the shortening of the atomic dis-
tance in the perpendicular.

The value of the critical strain depends on the initial
condition of the atomic configuration. The two kinds of
initial configuration are investigated besides the uniform
mode which is basically adopted here. One is termed
“step mode” which has a sharp step between regions I
and II at the initial configuration. All atoms in region II
are displaced in the same manner as in the uniform mode,
while the atoms in region I are displaced in the opposite
direction with respect to the midplane of the z direction
resulting additive distance of Z, between L,  and
L,,.—1 layers. This mode arises from the consideration
that the atoms just on and under the vacancies can move
freely because of the lack of bonding. The other is
termed “‘buffer mode” which has a buffer region between
regions I and II. The atoms in the buffer region are ini-
tially displaced in the quantities depending on the coordi-
nations in the (x,z) plane. The S, of the crystal including
the point vacancy are about 0.105 and 0.15 for the step
mode and the buffer mode of buffer size 2, respectively.
The S, for the uniform mode is 0.151. The uniform mode
might be the best initial condition in the present model
and this mode has been adopted here.
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The critical strength evaluated here for the perfect dia-
mond crystal is smaller than the theoretical value report-
ed,' but it is still larger than the recent experimental
value.!® The result that the critical strength decreases
with the increase of the number of vacancies might sug-
gest the possibility of evaluating Griffith’s relation be-
tween the crack length and the crystal strength in the
atomistic level. For this purpose, a wider calculation re-
gion and a longer vacancy cluster length should be exam-
ined. And the enlargement of calculation region will also
be necessary for the atomistic evaluation of correlation
between the crystal stability and the various imperfec-
tions of the crystal.

The nonlinearity in the relation between stress and
strain obtained in this work seems to be unusually large
for diamond which is believed to be very rigid and does
not show clear dislocation movement or plasticity in frac-
ture.’ It is considered that the cause of this discrepancy
might be responsible for the interatomic potential, espe-
cially the cutoff term.

There are many reports about a molecular-dynamics
(MD) simulation for isotropic materials like some metals
or inert-gas solids in which the interatomic potential de-
pends only on the interatomic distance. It can be said
that the “rigid tetrahedron model” is an initial step for
MD simulation of macroscopic properties like fracture
toughness for crystals which have strong anisotropic
bond character.
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