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Ultrasonic study of normal-incommensurate-commensurate phase transitions
in [N(CH3)4]2MnC14
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The complete set of elastic constants of the single crystal [N(CH3}4]zMnC14 has been measured at 15
MHz in the temperature range 250—310 K, including the normal-incommensurate transition at
TI =292.3 K, the incommensurate-improper ferroelastic lock-in transition at Tl =291.7 K, and the im-

proper ferroelastic-improper ferroelastic transition at Tl =266.7 K. The Landau theory has been used
to explain the experimental data. In addition, the attenuation of the longitudinal wave associated with
the C» mode was measured as a function of temperature and frequency (12.7-71 MHz) around Tl and
analyzed in terms of a dynamic-scaling model. Above T& the results agree with both three-dimensional-
Ising and mean-field theory. In the commensurate phase the critical exponents have values consistent
with mean-field theory. The relaxation time of the amplitudon below TI has been determined to be
'Tg 'Tgp/( TI T) with Tgp 4X 10 s K.

I. IIV+RODUt:z. xON

Tetramethylammonium tetrachloromanganate
[N(CH3)4]zMnC14 (TMATC-Mn) belongs to the large
A 2BX4 family [where A =K, Rb, Cs, NH4, and
N(CH3}4, B=Se, Zn, Co, Mn, Ni, and Fe; and X =0, Cl,
Br, and F] and undergoes, similarly to other members of
this group, several phase transitions. ' The sequence of
phase transitions at atmospheric pressure is as follows:
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Phase 1, paraphase orthorhombic Dz'h6(Z=4} pman- ;
phase 2, incommensurate qo-(1 —5)a'/2; phase 3, com-
mensurate monoclinic Czh(Z =8)—P112,/a, improper
ferroelastic qo=a'/2; phase 4, commensurate monoclinic
C2&(Z =12}—P2, /n 1 1, improper ferroelastic qo=a /3;
phase 5, commensurate monoclinic Czh(Z =4)

P12, /a 1, fer—roelastic qo=a'. The crystallographic
axes are labeled in agreement with international stan-
dards (c (a (b ), where a = 12.333 A, b = 15.669 A, and
c =9.046 A (at T =293 K).

In the high-temperature "normal" (N) paraphase 1,
the MnClz tetrahedra are disordered and the structure is
isomorphous with that of [N(CH3)4]2ZnC14. On passing
through the narrow temperature range of the incom-
mensurate (INC) phase 2, the tetrahedra become ordered.
In the monoclinic commensurate (C}phase 3, the tetrahe-
dra alternately take one of the two configurations of
phase 1, leading to a doubling of the unit cell in the a
direction. The threefold superstructure in phase 4 is
characterized by the alternate rotation of the MnC14
tetrahedra about an axis parallel to the c axis.

The rather narrow incommensurate phase 2 was ob-
served by x-ray diffraction measurements. It is only-0.6 K wide, and qo is nearly constant at 0.483a*.

Dielectric measurements' of TMATC-Mn revealed

the similarity with other members of the tetramethylam-
monium tetrahalogenometal family, especially by the
unified reduced p-T phase diagram. Optical investiga-
tions including measurements of birefringence and angle
between the extinction position in different domains done
by Fuith et al. confirmed the existence of an INC phase,
showed the temperature dependence of the order parame-
ter, and proved the weak first-order character of the
phase transition at Tt . Recently, Vlokh et al. studied
properties of the INC phase of TMATC-Mn under uniax-
ial mechanical stress. A model of successive transitions
based on the free-energy calculations for TMATC-Mn
was proposed by Mashiyama and Mashiyama and Tan-
isaki.

Because of the ferroelastic nature of three successive
phases, appreciable effects on the elastic properties are
expected. Vlokh, Kityk, and Mokryi reported on the
influence of hydrostatic pressure on the birefringence and
elastic data (C„, C44, Cs5, and C66). An abrupt change
of the temperature dependence of C~ by high pressure
was explained by a shift of the point of condensation of
the soft mode in the Brillouin zone from (1—5)a'/2 to
(1—5)a'/3. Relaxation time values of the non-
Goldstone phason r&=(3.7-15)X10 " s have been ob-
tained for pressures between 170 and 250 Mpa.

Concerning the dynamics at normal pressure, the re-
laxation time of the amplitudons and fluctuation effects
were studied recently in another material of the
tetramethylammonium tetr ahalogenometal family, in
[N(CH3)4]zZnC14 by impulsive stimulated scattering. '

These measurements, which extended earlier ultrasonic
measurements, " were analyzed in terms of a dynamical
scaling theory of Possum. '

In order to complete the elastic studies in TMATC-
Mn, we have performed ultrasonic measurements of all
main-diagonal components of the elastic stifFness tensor
C;,- (i =1,2, . . . , 6) in the temperature range including
the three phase transitions at Tz, TL, and T&. In addi-
tion, we have studied the frequency dependence of the at-
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tenuation of the longitudinal wave associated with the
C» mode near T~, from which the relaxation time of the
amplitudon, ~„,was determined. Part of our results con-
nected with the acoustic dispersion were presented else-
where. '

II. EXPERIMENTAL PROCEDURE

Single crystals of TMATC-Mn were grown by slow
evaporation at (35+0.003) 'C from an aqueous solution of
the threefold recrystallized compounds N(CH3)4C1 and
MnClz. 4HzO. The samples for the ultrasonic experi-
ments were of good optical quality and were cut with a
diamond saw. The orientation of the crystal was ob-
tained using a polarizing microscope. The samples were
prepared by grinding with A1203 powder of sizes 12.5, 5,
and 3 pm in Diaplastol as a lapping Quid. The accuracy
of the linear dimension along the crystallographic axes
was better than +2 pm, and the end planes were parallel
to within 1X10 rad. The accuracy of the orientation
was better than +1'. The sample dimensions were about
4 mm X4 mm X4 mm; the density of the samples was
determined to be 1.327 g cm by the Archimedes
method.

Overtone-polished 15-MHz Y- and X-cut LiNb03
transducers (diameter 0.125 in. ) from Valpey Fisher were
bonded to the (100), (010), and (001) faces of the sample
by using glycerin and epoxy, respectively, for measure-
ments of the complete set of the elastic constants C,,

(i =1, . . . , 6). The specimen was mounted in the sample
chamber with controlled temperature gradient along the
sample. ' The measurements were performed by increas-
ing or decreasing the temperature at a rate of about 0.05
Kmin ' using either the manual pulse echo overlap
method with one transducer' or a home-built automated
apparatus. ' The values for attenuation were measured
manually.

Overtone polished 10-MHz Y-cut LiNb03 transducers
were used at their fundamental, third, Sfth, and seventh
harmonics for further measurements of the dynamical
properties of a longitudinal wave propagating in the
[100] direction around T~. The ultrasonic attenuation
coelcient was measured together with the velocity by us-

ing the exponential comparator method. ' The re6ected
pulses have shown a good exponential decay pattern in
the whole temperature range. In the vicinity of phase
transitions, where the ultrasonic attenuation becomes
large and only one echo could be observed (for higher fre-
quencies), the relative attenuation was determined by
measuring the change of the height of this first echo with
temperature.

The temperature of the sample was determined using a
platinum resistance thermometer of resistance 100 Q at
273 K with an absolute accuracy of +0.5 K and relative
accuracy of +0.005 K.

III. RESULTS

The results of our ultrasonic measurements are
presented in Fig. 1 showing the longitudinal components
of the elastic stiffness tensor C», C22, and C33 as a func-
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tion of temperature, and in Fig. 2 where the shear com-
ponents C44, C», and C66 are shown. The appearance of
the incommensurate phase manifests itself in a dip at Tz
in all longitudinal components C;;, while the temperature
dependence of transversal waves shows considerable
changes only in C66 and C44. The commensurate-
commensurate phase transition at T& =266.7 K leads to a
pronounced jump in all components of elastic constants.
The Srst-order character of this phase transition mani-
fests itself in the temperature hysteresis of about 0.5 K
(Figs. 1 and 2). The attenuation showed an anomalous
behavior near the normal-incommensurate phase transi-
tion for C», C22 C33 and C«only.

As one can see from the detailed temperature depen-
dence of the elastic constant C» measured at 12.7 MHz
(Fig. 3), there is a steplike change of C» only at the tran-
sition temperature Tz and no change at the lock-in tem-
perature TL This is co.nsistent with the Landau theory
of these phase transitions (see below).

The temperature and frequency dependence (12.7-71
MHz) of the attenuation a of the C» mode near the N-
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FIG. 2. Elastic constants of TMATC-Mn for transversal

waves measured at 15 MHz.
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FIG. 1. Elastic constants of TMATC-Mn for longitudinal
waves measured at 15 MHz.
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FIG. 3. Temperature dependence of the elastic constant C»
at 12.7 MHz around the normal-incommensurate phase transi-
tion.
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INC-C phase transition is shown in Fig. 4. Here one can
see a shift of narrow attenuation peaks toward lower tem-
peratures with increasing frequency.

In order to extract only the anomalous part of the at-
tenuation associated with the phase transition, the sa-
called critical attenuation a,„„we have subtracted the
constant backgraund ao from the measured values a.
The values of ao were taken from the attenuation
coefficients at much higher temperatures and were 1.8,
3.5, 4.5, and 6.5 dB/cm for 12.7, 31, 51, and 71 MHz, re-
spectively. The dependence of a,„,/f is shown in Fig. 5.
As one can see from Fig. 5, the values for a,„,/f 2 are in-

dependent of the applied frequency for
~
T TI ~

&0.5 K—
and shaw a dispersion in the very vicinity of TI. This in-

dicates that the relation oIq «1 fails close Tj. The mea-
sured data will now be further discussed on the basis of
the Landau-Levanyuk theory.
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FIG. 5. Temperature dependence of the critical sound at-
tenuation a,„,/f' for a longitudinal wave propagating along the
[100]direction around the normal-incommensurate phase tran-
sition TI for various frequencies.
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IV. REVIE% OF THE THEORY

A. Landau theory for TMATC-Mn

The Landau free-energy density for the phase transi-
tions in TMATC-Mn including the corresponding in-
teraction terms between strain u; and order parameter
components Q and Q' can be written

F= 'AQ Q + '—BQ Q —+ 'DQ Q'—+ 'A'R .R—'
4 0 0 ~ 0 0 2

+PI(QqRq. +Qq Rq. )+P3(Q I/3+Q I/3 )II4

+ p4(QO Qo ) %+Ip2(Q I/2 Q 1/2 )us

+ iQqQq ui+ z~ijQqQq nil+ 2Clj 1 ju&

where Rq. =(—
Pq Qq

/A') is the normal coordinate of the
hard mode with a wave vector q'=3q —1,
A =AI(T Tr)+K(q qo), and QI/2 QI/3 d Qo
are the normal coordinates of the soft-mode phasons in
phases 3, 4, and 5, respectively.

Substituting the normal coordinates of the incommens-
urate phase, which are the amplitudons and phasons, one
can derive the relations for the change of the elastic con-
stant and attenuation near the T~ point, ' '
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FIG. 4. Temperature dependence of the sound attenuation a
for a longitudinal wave propagating along the [100] direction
for various frequencies.

In the INC phase, the frequency of the amplitudon is
given by oI&(qo)=2A I(TI T). The relaxatio—n time of
the order parameter ~„=1„/co„and the order parame-
ter is given by Qo= A, (TI T)/B. oI is the ul—trasonic
frequency, p is the density of the crystal, a;%0 for
i =1,2, 3, and b;;%0 for i =1, . . . , 6.

The Eqs. (2) and (3) are valid also in the C phase.
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However, when analyzing the data in the C phase, one
should use' to„(q,&2)=2A, (To —T) and Qo= A, (To—T )/B, where TL & To & TI.

The first term in Eq. (2) yields a negative jump at TI
since the temperature dependences of Qo and co& are the
same. The second term leads to a change of slope at TI
with b, C proportional to Qo-(Tt —T). The relaxation
time of the amplitudon, ~„, has a temperature depen-
dence given by

and

ra =rao/(Tt T)— (4a)

~g =argo/( To T)— (4b)

in the INC and C phases, respectively.
From Eq. (3) one can see that the attenuation should be

anomalous for longitudinal waves only. This is consistent
with the experimental data; the anomaly in C66 arises due
to the additional coupling term iP2(Qi&2 —Qi&2)u„„ in

Eq. (1). Following the procedure of Lemanov and Esay-
an, ' one obtains

2PzQo
C66 ——

2 z, +b66Qo ~

tati(1+to rit )

~a66=(1/pv 6s) (~ ~R }
coii(1+to ti }

(5)

(6)

where co+ and vz are the frequency and relaxation time
of the upper hard mode.

B. Dynamic scaling theory

u hv = A t "(1+Dt )G(tow, p)
+B t ~ ~G(to&, y),

u ha/to=(p/zv) A t "(1+Dt }to~ F(cur, p)

+(y/zv)B t ~ rto+ F(cow, y), (10)

The phenomenological analysis of ultrasound near
phase transitions by Fossum' will be adopted here to de-
scribe the fluctuation contribution both below and above
TI'

For investigation of the fluctuation effect, one usually
starts with the data from the paraphase. The critical
fiuctuation contribution to the velocity and attenuation is
then given as' ' '

u b v = A + t "(1+Dt )G(tom+, p, ),
u ha/to=(p/zv) A+t "(1+Dt )tor+F(toe+, IJ, ), (8)

where v=(v+v )/2-const, t=~T Tt~/Tt is the —re-
duced temperature, 1+Dt ' gives the leading correction
to scaling, 'T ='Tp t is the critical relaxation time, and
G(to~, p) and F(tow, p, ) are scaling functions given by the
analytical approximation to the real and imaginary parts
of the relaxation function (1 icos) "~"'. The criti—cal ex-
ponent p, =a+2(P —1), where /=1 for non-symmetry-
breaking sound modes.

In the "ordered" phase (T & Tt }, the velocity and at-
tenuation contributions are

where t=~Tt —T~/Tt and t= ~To —T~/To in the INC
and C phases, respectively. The first terms describe the
fluctuation contribution and the second term the
Landau-Khalatnikov (LK) contribution. The relaxation
time r corresponds to the relaxation time of the ampli-
tudon, r„; in the mean-field approximation, r„=Ttr
The exponents P and y are the static critical exponents
for the order parameter and susceptibility. Since this
theory is phenomenological, the critical exponents can be
viewed as effective values describing the range of data
fitted and may differ from the expected asymptotic
values.

The amplitude of fluctuations A below Tz is related
to the amplitude A + in the paraphase. The A /A + ra-
tio equals 1.85 for the three-dimensional- (3D-) Ising
universality class, 0.97 for the 3D-XY universality class,
and 1.00 for the Landau mean-field theory. The relaxa-
tion time v has the same critical exponent zv as ~+ and
the amplitude ~p =

—,'~p+ in the conventional Van Hove
dynamics (zv= 1).

The theoretical analysis of Cowley and Bruce
predicts that critical behavior at the normal-
incommensurate phase transition should correspond to
the 3D-XY universality class. This would imply that
@=a=—0.026, zv= 1.36, P=0.345, and y= 1.316. Pre-
vious analysis of the acoustic anomalies at ultrasonic
frequencies in R12ZnC14, which belongs to the A2BX4
family, has shown that the critical exponents are more
consistent with the 3D-Ising model (p =a =0.11,
zv=1. 28, P=0.324, and y= 1.24). However, some prob-
lems arose there connected with the dynamical critical
exponent zv, which was consistent with the Van Hove
value zv=1 rather than the 3D-Ising value zv=1.28. Fi-
nally, the analysis in TMATC-Zn (Ref. 10) is consistent
with the incan-field theory (@=a=0.5, zv=1, P=0.5,
and y = 1},although the data above Tt can be fitted to the

3D-Ising model, too.

V. DATA ANALYSIS

Our experimental data can be qualitatively described
by the Landau theory as outlined above. Nevertheless,
Eqs. (2) and (3) are mean-field results and describe the
change of the elastic constant only due to the relaxation
processes of the order parameter (and its coupling to the
strain}. For a more detailed description of the phase
transition, one has to account for the fluctuation contri-
bution. This affects the results both below and above TI,
contrary to the relaxation part which is effective only
below TI. The fluctuation contribution is usually smaller
than the relaxation one (also here, see Fig. 4) and its
influence on hC and ha below TI is often neglected. '

Strictly speaking, we should subtract this part to obtain
the mean-field results, but at the first step we will not do
this, being satisfied with the first approximation only.
%'e will return to the problem of fluctuations later.

A. Mean-Seld analysis

Concerning the longitudinal waves near TI, one can
easily calculate the ratio a; lB (Fig. 1). The result
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a&.az.a3=3.5:1.6:1.4 shows that the coupling is the

largest for the a direction. Therefore we have used this
direction for the investigation of the dynamics near TI.
The coeflicients b;, are positive for both qp=a'/2 and
qp=a'/3, as follows from the temperature dependence of
C;; below TI and T, . The erst-order character of the
commensurate-commensurate ferroelastic phase transi-
tion at T, is demonstrated by the discontinuous change
of C;; at T& and the depression of the fluctuation region.

The transverse elastic constants C44 and C55 are de-
scribed by Eq. (2), while C6s is determined by Eq. (5).
From the temperature dependence of C44, the critical ex-

ponent of the order parameter P can be calculated. With
Qp-(TI T) ~—we have determined 2P=0.62+0.05 in a
wide temperature range. Strictly speaking, when analyz-
in the data in the C phase one should use

Qp-(Tp T) ~, wh—ere TL & Tp & TI. However, because
of the smallness of the INC region, this does not cause a
significant difFerence. The value of 2P is consistent with
the value determined by birefringence and similar to
other crystals of the A2BX4 family. ' This value difFers

from the mean-field theory value (2P=1}and may indi-
cate the necessity of using higher terms in the Landau
free-energy expansion (see, e.g., Ref. 25}. The values

b44 &0, b55 &0, and b66 0 are effective in both phases 3
and 4. The slight decrease of C55 above TI can be attri-
buted to the bilinear coupling term iP4(Qp Qp )us—, indi-

cating that the value of C55 is somewhat higher. Because
of the steep changes in the elastic constants near T„the
absolute values of C44 and C« in phase 4 were not deter-
mined unambiguously.

Before we analyze the dynamics of the acoustic
anoinalies quantitatively, we have to deterinine the tran-
sition temperature TI. Within the framework of the
Landau-Khalatnikov theory, the temperature T at
which the maximum in the acoustic attenuation occurs is
a linear function of the acoustic frequency, given by the
equation

Tm &wo+ TI

A plot of T versus ultrasonic frequency co is shown in
Fig. 6. A fit to these points using Eq. (11) is also shown.
The transition temperature determined from this fit is
Tr =(292.45+0.01) K. TI will be fixed at this value for
the further analysis of the data. It should be noted that
the contribution of the energy-density fluctuations, which
is addressed below, has very little effect on the position of
the attenuation maximum below TI and therefore the
value of TI determined from considering the LK contri-
bution only is correct also in the presence of fluctuations.
(There is a shift in Ti of about 0.02 K toward lower tem-
peratures when accounting for fluctuations. )

Using Eq. (11), one can calculate the relaxation time of
the amplitudons, ~z. From the shift of the attenuation
maximum (Fig. 6}, one obtains w„p={3.9%0.6}X10
sK.

The relaxation time ~„ is large enough to manifest it-
self in the dispersion of the attenuation. Figure 5 shows
the temperature dependence of the critical part of the at-
tenuation divided by the square of the frequency,
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FIG. 6. Frequency dependence of the temperature T of the

attenuation maximum.

a,„,/f . It is important to note that the condition
cow„«1 fails to hold for Ti —T &0.5 K and the disper-
sion manifests itself not only in the shift of the attenua-
tion maximum, but also in the ddFerent height of this
critical part of attenuation. These results are consistent
with the theoretical curve obtained from Eq. {3),which is
shown in Fig. 7. Here we have taken rz =r z pl( TI T)—
withe„p=3 9X10 '. sK.

Analogously, the dispersion should also appear in the
ultrasonic velocity, but we were not able to measure the
velocity very close to TI for higher frequencies because of
the high attenuation of the signaL

To compare our results to those in similar materi-
als, ' ' ' we note that the relaxation time is approxi-
mately the same as in R12ZnCI~ (~„p=6.8 X 10 ' s K) or
[N(CH3)g]2ZnC14 ('Tgp=1. 8X10 ' sK). However, in

[N(CH3)4]JZnC14 the authors" did not observe a disper-
sion in ultrasonic experiments because they were not able
to measure the attenuation close enough to TI for higher
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FIG. 7. Theoretical behavior of the relaxational part of the
critical attenuation a,„,lf ~ near the INC phase transition Tl
calculated from Eq. (3}for r„0=3.9X10 '0 sK ' and various
frequencies.
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frequencies.
Now we comment on the fluctuation effect in our data.

B. Fluctuation efFects

The above analysis has shown that the Landau mean-
field theory describes the experimental data quite well.
Nevertheless, there can arise a question whether other
models (3D-Ising or 3D-XY) are more suitable or not.
The fit of our velocity and attenuation data for T & Tt ac-
cording to Eqs. (7) and (8) in the limit co~ && 1 leads to pa-
rameters which are sensitive on the background velocity
and attenuation values as well as on the width of the
fitted temperature range. Satisfactory fits can be obtained
with parameters p =0.1-0.5, zv=0.9-1.5, and
r+=(4—7)X10 ' sK/(T —Tt). The results are con-
sistent with the 3D-Ising model and mean-field theory
but not with the 3D-XY model, which requires
p= —0.007. Figure 8 shows the fit of our data with the
mean-field exponents LM=0. 5, zv=1, and r+=6X10
s K/(T Tt). —

The results obtained from the attenuation a,„,/ro
below Tt indicate that the mean-field model is the most
appropriate at least for temperatures below TL (Fig. 9).
Because of the smallness of the INC region, it is diScult
to draw definite conclusions about the critical exponents
in the INC phase. Because of as «a + (for Tt —T & 0.2
K), one can write a,„,=a~ +as -=a" . According to
this model, a,„.,/ro ~t ' in the limit co~&&1, which
agrees with the experimental results (Fig. 9). The ex-
ponents of a,„,/ro for the 3D-Ising and 3D-XY models
are 2P—y —zv=1. 87 and 1.98, respectively, and do not
describe the data below Tt . In the INC phase, a further
analysis of the data is hampered by the crossover from
ver « 1 to cov & 1 (Fig. 9).

Taking into account the fluctuation contribution for
T & TI, one can reinvestigate the results for T & TI more
attentively. We have tried two cases: At first, we have
assumed that the ratio between the magnitudes of the
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mean-field values for critical exponents. The limit case co~&&1

for 3D-Ising and 3D-XYmodels is also shown.

fluctuation contribution below TI and above TI is given

by A /3+=1. 85, according to the 3D-Ising model.
Then, subtracting the fluctuation contribution from the
attenuation data for T & T, , one can obtain the pure re-

laxation part of acoustic anomalies. However, according
to the 3D-Ising model, the resulting values for the relaxa-
tion part of attenuation are negative in the temperature
range ~T Tt~ &0.—04 K and thus this possibility was

ruled out. For the second case, we have assumed

/A + = 1, which corresponds to mean-field or 3D-XY
behavior. The mean-field model gives good results: The
relaxational part of the attenuation is shown in Fig. 10
for frequency 31 MHz together with a fit to Eq. (3). The
temperature dependence of the attenuation which enters
through the relaxation time of the order parameter [Eq.
(3)] was taken to be proportional to (Tt —T) '. Since
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FIG. 8. Critical attenuation vs ET=T—TI for various fre-
quencies and for T& Tz. The fit was carried out with Eq. (8) for
data in the cow « 1 regime. The solid lines were calculated from
Eq. (8) for frequencies 12.7, 31, 51, and 71 MHz using re1axation
time v+=6X10 ' sK/(T —TI).

FIG. 10. Pure relaxational part of ultrasonic attenuation (6 )

in TMATC-Mn for 31 MHz obtained by the subtraction of the

fiuctuation part (dashed line) from the critical values of attenua-

tion: CI, experimental data; solid line, obtained from the Gt using

. (3).
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12.7
31
51

290.5-292.45
284.5-292.45
284.5-292.45

0.393
0.431
0.469

6.79
4.57
4.35

0.10
0.02
0.04

most of the data for T& Tz actually belong to the C
phase, one should better use (To —T) '. However, be-
cause of the smallness of the INC region, the difFerence in
the corresponding exponents is negligible. The corre-
sponding fit parameters of this pure relaxational contri-
bution according to Eq. (3) for measured frequencies 12.7,
31, and 51 MHz are shown in Table I. One can see that
the relaxation time of the amplitudon determined by this
method is nearly the same as calculated by neglecting the
fluctuation effect.

VI. CONCLUSIONS

We have measured the complete set of elastic constants
in TMATC-Mn in the temperature range 250-310 K in-
cluding the normal-incommensurate-commensurate
phase transition and the first-order commensurate-
commensurate phase transition. We have found that our
data can be explained in the frame of the Landau theory
including small fluctuations.

At the normal-incommensurate phase transition in
TMATC-Mn, we have obtained a frequency dispersion in

TABLE I. Fitting parameters used to describe the Landau-

Khalatnikov attenuation below Tz =292.45 K. The St for a/f
is based on Eq. (3) with A =a~r„o/2Bpv

&

Average

f Temperature range A 'T g o deviation
(MHz) (K) (dB s /cm) (10 io s K) (dB s /cm)

ultrasonic attenuation near Tt (see Fig. 5). This result
shows that the relaxation time of the order parameter
(which is the amplitudon in the incommensurate phase) is
rather large.

We have determined the relaxation time of the ampli-
tudon as r„=4X10 I s K/(rt T)—. Our result agrees
with those in the similar materials TMATC-Zn (Ref. 10)
and K2ZnC14 (Ref. 22).

We have tried to describe the critical ultrasonic veloci-
ty and attenuation according to the mean-field Landau
model, 3D-Ising model, and 3D-XY model. Above Tl,
3D-XY behavior was ruled out and the data could be
equally well fitted with 3D-Ising and mean-field theories.
Below the lock-in transition TI, the mean-field theory fits
the data best. In the very narrow (Tt Tt =—0.6 K) INC
phase, the results are not conclusive.

We have also estimated the relaxation time of the am-
plitudon, taking into account the fiuctuation contribu-
tion. The results are similar to the preceding ones, indi-
cating that the fluctuations are not very important for the
analysis in the temperature range T & TI.

Concluding, we hope that our results can contribute to
a better understanding of the phase transitions not only
in TMATC-Mn, but also in other similar materials, and
can motivate further experimental and theoretical work
in this field.
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