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We propose a numerical technique, the forced-oscillator method, to investigate finite-temperature

properties of quantum spin systems.

The space and time complexity of this method are linear

in the matrix dimension, which should be compared with the square or quadratic dependence of
conventional methods. We apply this method to calculations of the specific heat of the spin—%
quantum Heisenberg antiferromagnet on the kagomé lattice. We find only a single-peak in contrast

to a double-peak structure claimed in the literature.

I. INTRODUCTION

Frustrated quantum spin systems are of active cur-
rent interest. Mainly the ground-state properties are dis-
cussed in the literature, but finite-temperature behavior
also has unresolved aspects. We discuss the latter finite-
temperature problem in the present paper with our prin-
cipal focus on numerical techniques.

Numerical investigation of frustrated quantum spin
systems faces serious difficulties when one tries to study
systems with large numbers of spins. Direct numeri-
cal diagonalization requires enormous amount of com-
puter memory if the number of spins exceeds about 16
for § = 1/2 since all eigenvalues of the Hamiltonian
must be evaluated to know finite-temperature properties.
The quantum Monte Carlo method by Trotter decom-
positions has its own serious problem, the negative-sign
problem.}2 The decoupled-cell Monte Carlo simulation?
tends to reflect quite strongly finite-size effects of decou-
pled cells.

In this paper we present the forced-oscillator method,
which enables us to calculate finite-temperature proper-
ties with relatively small computational effort and thus
is supplementary to other numerical methods mentioned
above. This method was originally developed for cal-
culations of the density of states of classical oscillators
on various lattices.*® We show that the forced-oscillator
method is useful in quantum spin systems, frustrated
or not, if appropriate correspondence is assigned be-
tween classical oscillators and spin states. We apply the
method to the S = 1/2 quantum Heisenberg antiferro-
magnet (QHAF) on the kagomé lattice with up to 18
spins. Our result shows that there is only one peak in
the specific heat, which is in contrast to the conclusion
of Elser who found two peaks from direct diagonaliza-
tion of the 12-spin system and a decoupled-cell Monte
Carlo simulation® but is in agreement with Wang® who
used a variant of mean-field theory. We also investi-
gate the QHAF on the triangular lattice with parts of
interactions being weaker than the others. This model
has been a target of research in relation with the low-
temperature properties of *He adsorbed on graphite.”8
We find a small shoulder in the low-temperature side of
the specific heat. Further calculations must be carried
out to confirm the existence of the latter shoulder in the
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thermodynamic limit.

The forced-oscillator method is explained in the next
section. Applications to the frustrated QHAF are given
in Sec. III. Discussions on physical and technical aspects
of the problem are also found there.

II. ALGORITHM

The forced-oscillator method is based on the algo-
rithm developed in the study of fractons in percolation
clusters.®® The essential idea is that eigenmodes satis-
fying the resonance condition are excited in applying a
periodic external force. By counting the number of ex-
cited eigenmodes, we have found that we can obtain the
density of states around the frequency of applied field.
The number of excited modes is directly related with the
energy expectation value as explained below.

Consider the Hamiltonian (energy) H of a classical M-
oscillator system with unit mass,

M
1. . 1
H= ZI: Eulul + %: E@ululul' - Z Fiujcos(Qt), (1)

where u; is the amplitude of the Ith oscillator and ®;;-
is the spring constant between the I/th and !’th oscilla-
tors. The coefficient F; is the external force driving the
Ith oscillator and Q is the driving frequency. The first
and second terms in (1) represent ordinary harmonic os-
cillators, and the third one is the external driving force.
Varying this frequency €2, we have found that we can ob-
tain the density of states in an arbitrary range as follows.
When the matrix ®;- is positive definite and symmetric,
its eigenvectors always exist. Using the equation of mo-
tion and orthogonality of eigenvectors, we find

wie(X) =) du-er(N), (2)
=

where e;()) is the amplitude of the Ith oscillator in the
mode A. If we regard w? as Ej, this equation represents
the eigenvalue problem. This fact makes it possible to
evaluate the density of states of quantum spin systems by
the present method which deals only with classical num-
bers. After driving the system for a sufficiently long time
following the classical equation of motion of the oscillator
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system, we find that the average value of the Hamilto-
nian (1) asymptotically takes the form which is obtained
from orthogonality of random numbers [F; = Fj cos(¢;),

where Fj is a constant, ¢, is a uniform random number]:®
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where o is defined as Y, Fie;(A)/(€2* — w3). The last
expression is nothing but the density of states at 2. Thus,
by calculating the energy of an oscillator system, we can
evaluate the density of states.

It should be remarked here that the asymptotic form
(3) of the Hamiltonian is correct when ¢t > 1 and
47N /(wmaxt) > 1. The former constraint comes from
the fact that we should drive the system until resonance
sets in. The latter inequality implies that too small a
number of modes will be excited if one drives the forced
oscillation too long as compared to the largest eigenfre-
qUency wmayx, which prevents us from calculating the den-
sity of states as a smooth function of 2.

This algorithm may be applied to calculate the den-
sity of states of any symmetric matrix including quantum
spin systems. The idea is to regard a spin configuration
as a state of an oscillator system. These oscillators are
of course virtual ones. For instance, consider a two-spin
system with S = 1/2; the first state 0 of an oscillator
system is identified with a spin configuration 00(binary),
where 0 represents a down spin. The amplitude of the
spin state 00 is just the amplitude ug of the first oscil-
lator. The matrix element between 0(00) and 1(01) is
identified with ®¢ ;.

Once the density of states D(E)) is known, it is sim-
ple to evaluate the specific heat by calculating fluc-
tuations of the energy eigenvalues, [EZD(E\)dEx —
{[ ExD(E»)dE}*. We obtain more stable values by this
numerical integration than the numerical differentiation
of [ ExD(Ex)dE) , which is equivalent to the formula
above. For an arbitrary physical quantity A, the follow-
ing formula is useful:

4
S(wyr — Q) Ay =
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(4)

where Ay, is the eigenvalue of the arbitrary operator and
Ay is the matrix element in the u; representation. Using
(4), the expectation value of the given operator can be
calculated.

For a sufficiently large system it will be unnecessary to
take the average over all possible {¢;} explicitly because
of the self-averaging property. It suffices to use one ran-
dom choice of {¢;}. The system size M ~ 10° turns out
to be sufficient in the examples given below. Numerical
integration of the differential equations to describe time
development of the oscillator system also becomes stable
as the system size grows, because statistical errors play
less significant roles.

III. RESULTS AND DISCUSSION

We have applied our method to the QHAF on the
kagomé lattice. The Hamiltonian is

H=J)S;-8,, (5)

where the S; is a spin-1/2 operator. The sum is over
nearest neighbors of the kagomé lattice. We followed
Refs. 9 and 10 to cut periodic finite cells out of an infinite
lattice.

We first tested our method in the 12-spin system. This
system has 212 = 4096 states, which turns out slightly in-
sufficient to assure stable results with respect to the self-
averaging property mentioned above. The value of the
specific heat depends upon the random choice of {¢;}.
Thus we had to perform the sample average explicitly.
After averaging over several samples, we have obtained
the final values shown in Fig. 1 (points with diamond
symbols). The exact result by direct numerical diagonal-
ization is also shown for comparison. Qualitative agree-
ment is satisfactory including the existence of a peak at
kpT/J ~ 0.10. The peak value is seen to be somewhat
underestimated. This may come from the smallness of
the number of states of the given matrix. When the dis-
tribution of states is not dense, the states excited by the
external force do not distribute smoothly. Correspond-
ingly the asymptotic value of H/t after sufficiently long
time depends upon the initial condition. This lack of
smoothness leads to relatively large statistical uncertain-
ties at the lower temperature peak. This uncertainty is
expected to decrease rapidly with the system size since
the number of states increases exponentially with the
number of spins.

Increase of statistical stability as the system size grows
has actually been observed in the time development of the
classical oscillator system which we solved by numerical
integration. For N = 12, we have observed from time to
time that the value of H/t increases linearly in t after
some critical time ¢ > t., which is not allowed from (3)
if the system satisfies the self-averaging condition. For
N = 15 or larger, this type of instability was only rarely
observed.

In the case of the system with N = 15 spins, we find the
high-temperature peak almost at the same temperature
as in the 12-spin case (Fig. 2). The lower-temperature
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FIG. 1. The specific heat calculated by the forced-
oscillator method and direct diagonalization for the QHAF

on the kagomé lattice with NV = 12.
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FIG. 2. The specific heat of the QHAF on the kagomé

lattice with N = 12-18 with periodic boundaries. For N =
12 only, the data are from direct numerical diagonalization.
Statistical errors are of the order of 1/ vM , where M is the
number of spin configurations M ~ 2N, Thus the larger-
system data (N = 18) are much more reliable than smaller-
system counterparts.

peak found in the N = 12 system is not clearly observed;
only a small shoulder remains. The lower-temperature
peak disappears completely in the 18-spin system. De-
crease of this peak with system size is seen also in the
density of states (Fig. 3).

Our result up to 18 spins contradicts the conjecture
proposed in Refs. 9 and 3, and clearly shows disappear-
ance of the lower-temperature peak for large systems.
The lower-temperature peak may be simply a finite-size
effect. Wang noticed that the specific heat of the present
model calculated using the Wigner-Jordan transforma-
tion and a decoupling approximation has only a single
peak.® Our result agrees with his prediction on the lo-
cation of the high-temperature peak, but does not agree
quantitatively in the peak value. As suggested by Wang,®
the higher-temperature peak, which he assumed to corre-
spond to that at 2.5 mK in experiments of 3He adsorbed
on graphite,”® occurs from interactions between spins on
the kagomé net. The assumption of Elser® that the ex-
change interactions between spins on the kagomé lattice
and those on other sites are weak may be inappropriate
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FIG. 3. The density of states of the QHAF on the kagomé

lattice with V = 12-18 with periodic boundaries. If E; de-
notes the ground energy, the range of the density of states,
v/ E — E4, becomes large in proportion to V/N as the system
size grows. Thus the range of this density of states is normal-
ized by a factor v/N. The range around 0.2 for N = 12 causes
the low-temperature peak. The value of the density of states
in this range decreases with the system size. For N = 12 only,
the data are from direct numerical diagonalization.

FIG. 4. The bold lines constitute the kagomé lattice. The
thin lines between the points marked as A and kagomé lattice
are the weak interactions with exchange value 0.4J.

in the present system.

We therefore added spins at the center of the hexagon
of the N = 12 kagomé lattice to form a triangular lattice
with N = 16 spins (Fig. 4). The newly added interac-
tions are assumed to be 0.4J following Wang.® Our result
(Fig. 5) shows a small peak at the low-temperature side
(0.05 — 0.1)J. This is in qualitative agreement with the
calculations in Ref. 6. However, this N = 16 triangular
lattice has been formed from the N = 12 pure kagomé
lattice, and hence this result may reflect boundary effects
like the N = 12 kagomé cluster in Fig. 2. Therefore the
lower-temperature peak in Fig. 5 should be taken with
special caution. It is not easy at present to treat larger
triangular lattices.

It will be useful to comment on the efficiency of the
forced-oscillator method. This algorithm may be applied
to calculate the density of states of an arbitrary Hermi-
tian matrix including quantum spin systems. The only
constraint is that the matrix be positive definite and sym-
metric. Positive definiteness is easily achieved by adding
a constant to diagonal elements. For matrix dimension of
the order of M ~ 105 or larger, the asymptotic time com-
plexity is proportional to M x (maximum of the number
of nonzero elements at each matrix row). This complex-
ity is one of the smallest among the well-known methods
to calculate all eigenvalues.!! The memory requirement
is also small as compared with the conventional methods
to calculate all eigenvalues:!! The density of states can be
calculated under the same memory requirement as that
for calculating the ground-state energy. The weakness of
the method is in calculating the density of states near
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FIG. 5. The specific heat of the QHAF on the triangular
lattice with two kinds of couplings derived from the kagomé
lattice by adding weak (0.4J) interactions. This figure is for
N = 16 with periodic boundaries which corresponds to N =
12 on the original kagomé lattice. We can see a small peak at

0.05J — 0.1J.




654 BRIEF REPORTS 49

the ground-state energy, which comes from the relative
smallness of the number of states near the ground state
and resulting large statistical errors.

Imada and Takahashi’s quantum transfer Monte Carlo
method is also effective for calculating finite-temperature
properties.!? The system size one can calculate using his
method is the same as ours. The time complexity is com-
parable to our method. His method contains no Monte
Carlo procedure in the matrix transfer; thus it has no
difficulty such as the negative-sign problem.!'? However,
in the quantum transfer Monte Carlo method, the initial
vector is chosen as a random linear combination of the
basis vectors, which is a rather arbitrary process. Our
method does not contain such ambiguities.

In summary, we have shown that the forced-oscillator
method is useful to calculate physical properties of quan-
tum spin systems. Finite-temperature behavior can be

treated with the same memory requirement as that for
the ground-state problem. Application to the Heisenberg
antiferromagnet on the kagomé lattice has shown that the
specific heat has only a single peak.
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