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First-principles study of hydrogen ordering in p-YH2+„
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The phase stability is studied for the P-phase YH, +„system based on first-principles total energy cal-
culations. Our study predicts that the DO», "40",and D1, structures are stable near x =0.25, 0.5, and
0.8, respectively. Using the effective cluster interactions obtained from the Srst-principles total-energy
data, the phase diagram for the DO» and "40" ordered phases is calculated by the cluster variational
method. The calculated order-disorder transition temperature at x =0.1 for the DO» structure is
around 280 K, which is consistent with the recent observation of the metal-semiconductor transition
near 230-280 K and resistivity anomalies near 200-250 K for the system with x near 0.1 [Daou and Uaj-
da, Phys. Rev. B 45, 10907 (1992}].

I. IN.i.acODUtaiON

Hydrogen readily dissolves into many transition and
rare-earth metals to form metal hydrides. Some super-
stoichiometric metal dihydrides, expressed as MH2+„,
form interesting systems due to the sensitive dependence
of their physical properties on x. ' A large collection of
metal dihydrides, MH2, crystallizes in the CaFz structure.
The metal atoms form a face-centered-cubic (fcc) struc-
ture with all the tetrahedral sites occupied by H. The x
excess H, which occupies the octahedral sites, was found
to play an important role in determining the magnetic,
transport and structural properties of the system. '

Unusual metal-semiconductor (MS) transitions have been
found in CeH2+» (0.75 &x & 0.8, 200-240 K} and

LaH2+ „(0.8 &x & 0.9, 200-260 K) and were ascribed to
the formation of a superlattice of octahedral vacancies
below the transition temperature. The recent experi-
ment on the resistivity of the YH2+„system by Daou and
Vajda' also showed that the system (for x-0.1) under-
goes an interesting MS phase transition in the region
230-280 K, and it was speculated that the observed MS
transition is driven by an order-disorder transition of oc-
tahedral hydrogen between 200-250 K determined by
resistivity anomalies. Therefore, an investigation of the
ordering possibility of octahedral hydrogen is important
for the understanding of the MS transitions in the system.

The spatial distribution of the octahedral H may have
a long-range order at low temperatures, i.e., form some
kinds of superlattices. Despite of the great interest, the
direct measurement of hydrogen ordering is still very lim-
ited; hydrogen orderings have only been confirmed for a
few systems. A recent neutron-scattering study of
TbD2+ „(0.1 & x & 0.2) showed positive signs of a TiA13-
type ordering (structurbericht symbol D02z or space-
group notation I4/mmm), which can be characterized
by the ordering of (420) planes where every fourth (420)
plane is occupied by hydrogen. Both NiMo and Ni4Mo-
type orderings, where every other (for NiMo at x =0.5)
and every fifth (for Ni4Mo at x =0.8) (420) planes are
empty, have been observed in the PdD„system and the
latter structure was also suggested for the LaHz+„sys-

tern. These experiments suggest that (420)-plane order-
ings are likely to be important in similar systems and
deserve special attention. For the YH2+„system, no ex-
perimental measurements of H ordering are available yet,
and therefore it is not known if the octahedral hydrogen
orders and what the ordered structure would be. It is
tempting to expect that certain (420}-plane ordering
occurs in the YH2+„system because of the similarities in
the electronic structure among some of the systems.

In this work, we investigate the possibility of octahe-
dral hydrogen ordering in YH2+„and, more importantly,
calculate the x-T phase diagram for the identified ground
state structures. The phase diagram study has been a ma-
jor subject of research in the areas of metallurgy and con-
densed matter physics. In particular, the x-T phase dia-
gram is of vital importance for the applications of alloys.
The most recent development in these studies is to obtain
the energetics of difFerent structures from quantum
mechanical electronic structure calculations. Then, the
ground-state phase stability analysis can be done by com-
paring the formation energies of a group of ground-state
candidates. Because searching through the 2 possible
states of an ¹itelattice system is a formidable task com-
putationally, one has to limit the search by defining a
search set, which contains a subset of the 2 structures.
The most ambitious effort up to date in ab i'nitio stability
analysis used search sets of the order of ten O(10) struc-
tures. ' Though the results of the study can depend on
the choice of the search set, the approach is, in general,
successful when care is taken in selecting the structures
in the search set.

The phase-transition calculation requires the
knowledge of the free energy of the system. Constructing
a free-energy functional from the cluster expansion '
provides a convenient way to treat the finite-temperature
properties of an Ising system. Both the energy and entro-
py can be expanded in terms of the cluster functions. In
practice the expansion has to be truncated, but systemat-
ic improvement of calculations is possible, at least in
principle. The method has been used to study the oxygen
ordering in the high-T, superconducting material" and
the hydrogen ordering on metal surfaces' with empirical
energy parameters. However, in this paper, we will use a
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series of total-energy calculations to determine the pa-
rameters in the energy expansion. The latter approach
has been successfully applied to many systems such as
znetal and semiconductor alloys. ' '

We applied this method to the study of the phase dia-
gram in the hydrogen-metal system. A phase stability
analysis of eleven ordered structures of the octahedral hy-
drogen in P-phase YH2+„was first performed based upon
first-principles calculations. Among the structures inves-
tigated, we found that the D022, "40",and Dl, structures
are the lowest-energy ordered states at x =0.25, x =0.5,
and x =0.8, respectively. (Refer to Fig. 1 for the group
symmetries of these structures. ) Using the free energy
constructed from the cluster expansion and the first-
principle total-energy data, the order-disorder phase
transitions for both the DOE& and "40" structures are cal-
culated by the cluster variational method (CVM). ' '
Our study provides a theoretical prediction of the D022,
"40", and D1, orderings in the system. The D022 order-
ing deserves special attention because it has been ob-
served in a similar system, TbD2+„. Our calculation for
YHz+„shows that the order-disorder transition tempera-
ture of the D022 structure at x =0. 1 is around 280 K.
This is in agreement with the recently observed MS tran-
sition near 230—280 K and resistivity anomalies near
200-250 K for the system with x near 0. 1. ' Our study
not only supports the existence of octahedral H ordering,
but also identifies the structure of the ordering and pro-
vides an absolute phase diagram for the system.

It is known that as x is increased to beyond 0.1,
YH2+„will go through a structural change from the pure
P phase with metal atoms in the fcc structure to a nux-
ture of the fcc and the hexagonal close-packed (the y-
phase) structures. " In this paper, we focus on identify-
ing the possible ordered structures in the P phase and
consider only the fcc-based superlattice structures. A
comprehensive study of the system should take into ac-

count the contribution from both the fcc and hcp phases
to the free energy of the system. At present, our study ig-
nores the presence of the y phase and hence the structur-
al change of metal atoms.

II. FORMATION ENERGY AND STABLE PHASES

The self-consistent total-energy calculations are per-
formed using ab initio pseudo potentials within the local-
density-functional formalism' with Wigner correlation. '

To represent the (pseudo) wave functions of any shape,
we choose to use the plane-wave basis which is complete,
orthogonal, and has the advantages of simplifying the
calculation considerably. Soft pseudopotentials are gen-
erated for both yttrium and hydrogen atoms following
the work by Troullier and Martins. ' The true 1/r ionic
hydrogen potential, which has poor convergence
behavior is replaced by a pseudopotential in our calcula-
tion. The computational methods were tested by study-
ing the structural properties of elemental yttrium and the
results are in very good agreement with experiments. A
small energy cutofF' of 36 Ry was found to achieve good
convergence, which has made it feasible to carry out a
number of supercell calculations for YH2+„. It was also
found that a correction in the exchange-correlation func-
tional is needed to treat the outer core contribution in
this early transition metal and the details of this has been
presented elsewhere. In our calculation, the Gaussian
smearing method ' was employed to accelerate the con-
vergence of the total energy with respect to the number
of k points. The number of plane waves included ranged
from 900 to 7000 depending on the hydrogen concentra-
tion as well as the specific ordered structure involved.
An iterative approach was used to solve the eigenvalue
problem. %hen self-consistency is achieved, which usu-
ally takes 4-6 iterations, the total energy is stable within
at least 10 Ry per cell.
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FIG. 1. The (100) plane projection of the seven superlattice structures of the octahedral hydrogen. The large circles represent the

top (100) plane sites and the small circles represent the sites of the adjacent plane, which is shifted by a/2 relative to the top plane.

Solid and hollow circles are the occupied and empty sites, respectively. All structures, except D1, are invariant under the translation

of a in the (100) direction. The D1 structure, represented by the hatched circles, has a translational periodicity of 2a in the (100)

direction. The complete hatched circles represent that the occupation by H is on the top (100) planes and the center hatched circles

represent the occupation by H is on the plane shifted away from the top plane in the (100) direction by a. Some structures are associ-

ated with dual superlattices of both YH2+„and YH2+&,
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Octahedral sites in the YH2+„system also constitute a
fcc lattice, which will be referred as the 0-fcc lattice.
The 0-fcc lattice is shifted in space relative to the yttrium
fcc lattice by a/2 in the (100) direction, where a is the
lattice constant. Total energies, E„,( V, cr ), are calculated
ab initio for eleven ordered structures in the 0-fcc lattice
as functions of volume V, where cr represents an ordered
structure. The eleven structures include the fcc structure
at x =0 and 1, the super fcc structure (or Dl in Ref. 7) at
x =0.125, both the L12 and D022 structure at x =0.25
and 0.75, the D1, structures at x =0.2 and 0.8, and the
Llp and the "40" structures at x=0.5. The seven
different structures are shown in Fig. 1 together with
their group symmetries. The total-energy data for each
ordered structure are fitted to Murnaghan's equation of
state,

BVo ( V/Vo)' —1 V

p

to extract equilibrium state properties and where Vp is
the equilibrium atomic volume, B is the bulk modulus, B'
is the pressure derivative of the bulk modulus, and Ep is
the equilibrium total energy. In principle, one can search
for the equilibrium volume numerically with numerous
local-density-approximation (LDA) calculations and then
calculate the total energy at that volume, but in practice
this is computationally too expensive. Murnaghan's
equation of state is very insensitive to B', therefore we
kept it fixed at 5.5 in our fitting. The calculated structur-
al properties for the 11 ordered structures are summa-
rized in Table I. Lattice contraction upon increasing oc-
tahedral hydrogen concentration was measured by x-ray
diffraction and the contraction exists in a wide tempera-
ture range. ' The calculated lattice constant (0 K) for YHz
agrees with the experimental measurement (90 K) to
within 0.2' and a clear lattice contraction upon increas-
ing the octahedral hydrogen concentration is seen from
the calculation. The electronic structure of the system
shows that such a contraction is due to the maximization
of the interactions of the hydrogen s and yttrium d orbit-

TABLE I. Structural and elastic properties of YH2+„ for the
11 ordered compounds. The equilibrium total energies, lattice
constants and the bulk moduli are obtained from the
Murnaghan's fitting.

—(1—x)E„,(o-fcc, V), (2)

where E„,(o-fcc, V}and E„,(o-fcc, V}are the total ener-

gy of fcc structures with fully occupied and fully empty
octahedral sites, respectively. The formation energy
defined above is volume dependent. There exist different
methods to use such information to treat lattice relaxa-
tion approximately. ' ' ' In this paper, we adopt the
approach that allows complete relaxation of individual
ordered structures so that the absolute minimum forma-
tion energies of all the ordered structures are used to
determine the effective interactions of the system. The
effect of lattice relaxation will also be discussed in the
next section.

The formation energy of a structure differs from the to-
tal energy by a shift in reference energy, which is the to-
tal energy of the constituents of the structure. As a result
of this, a large constant contribution to the total energies
is subtracted out in calculating the formation energies.
This becomes obvious when one realizes that the total en-
ergies are in the order of 10 eV, whereas the formation
energies are in the order of 10 eV for our system. To
ensure that the systematic error is properly canceled in
the formation energy calculation, it is very important
that the same convergence criteria and k-space sampling
are used in all the total energy calculations. We main-
tained the same energy cutoff and approximately the
same k-space sampling in all the total-energy calcula-
tions.

The formation energies for the eleven structures are
listed in Table II and shown in Fig. 2 by circles. We will
compare these formation energies with the formation en-
ergies predicted by the cluster expansion formula in Sec.

TABLE II. The formation energies based on the LDA calcu-
lations according to Eq. (2) and predicted by the cluster expan-
sion, Eq. (4). Cluster sets a, b, and c, include clusters of
j1,2, 3,5,7,9, 121, I1,2, 3, 5, 6,7,9, 12I, and [1,2, 3,4, 5, 6,7,9, 12),
respectively (refer to Table III for cluster number assignments).
The formation energies are given in meV.

als at the octahedral sites. The detailed discussion on this
will be presented elsewhere.

To compare the relative stability of various ordered
phases, we define the formation energy EE(o ) (following
the work of Lu et al. and Asta et al. on metal alloys)
as

AE(o, V) =E, ,(cr, V) xE—, , (~ fcc-, V)

Structure Ep (Ry) p (A) 8 (10'&dyn/cm ) Structures LDA

fcc
Dl
Dl,
D022
L12
Llp
cc40%s

L12
D022
Dl,
fcc

0
0.125
0.2
0.25
0.25
0.5
0.5
0.75
0.75
0.8
1.0

—7.0128
—7.1572
—7.2441
—7.3024
—7.3009
—7.5899
—7.5903
—7.8735
—7.8740
—7.9310
—8.1547

5.195
5.188
5.184
5.184
5.185
5.174
5.172
5.168
5.168
5.165
5.167

8.4
9.3
8.7
8.7
8.6
9.1
9.4
9.5
9.0
9.8
9.9

fcc (x =0)
Dl (x =0.125)
Dl, (x =0.2)
D022 (x =0.25)
Llq (x =0.25)
Llp (x =0.5)
"40" (x =0.5)
L12 (x =0.75)
D022 (x =0.75)
Dl, (x =0.8)
fcc (x =1)

0.0
—23.5
—40.4
—56.9
—35.9
—83.5
—89.4
—58.1
—65.2
—63.5

0.0

0.0
—25.7
—40.6
—53.7
—48.5
—81.8
—90.3
—48.5
—67.6
—62.8

0.0

0.0
—25.4
—40.4
—54.6
—47.5
—82.6
—89.9
—47.5
—68.5
—62.6

0.0

0.0
—26.0
—40.6
—53.1
—43.8
—82.3
—90.1
—51.4
—70.3
—62.1

0.0
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20

—20

around 280 K, which is very close to the temperature at
which the MS transition and resistivity anomalies are ob-
served for the system. A direct experimental observation
of the ordering will be interesting and will also help es-
tablish the connection between the ordering and the MS
transition.

III. CLUSTER EXPANSION
AND FREE-ENERGY CONSTRUCTION

-60

—100
0.0 0.2 0.4 0.6r 0.8 1.0

FIG. 2. The formation energies per YH2+„calculated ac-
cording to Eq. (2) for the 11 superlattice structures listed in
Table I are shown in the figure by circles. The formation ener-
gies predicted by the cluster expansion using the ECI's of the set
c in Table IV are shown by hollow squares. The three stable or-
dered structures according to the LDA calculations and the two
fcc structures are connected with solid lines, which represent
the lowest-energy states of the system, while the predicted for-
mation energies for the same ground-state structures are con-
nected by dashed lines. The predicted formation energy for the
disordered phase is shown in a dot-dashed line.

IV. From this calculation, we can identify three struc-
tures, which have lower formation energies than that of
the mixture of the neighboring structures. The three
ground-state structures are the DOz2 (x =0.25}, the "40"
(x =0.5), and Dl, (x =0.8}. A ground-state curve con-
necting the fcc (x =0 and 1) and the three stable ordered
phases is shown in Fig. 2 (solid lines). Notice that the
stable superstoichiometric structure with x closest to 0.1

when the MS transition is observed is the mixture of YH2
and D02z ordered YH2 25, the latter is energetically much
more favorable than the L12 structure. The formation
energy difference between the D022 and L12 structures is
about 20 meV per YH2+„. Both the super fcc structure
at x=0.125 (Dl structure) and the Dl, structure at
x =0.2 are, however, unstable with respect to the hetero-
geneous mixture of the pure dihydride YH2 and the D022
ordered YH2 25 by approximately 5 meV and 5.5 meV per
YH2+, respectively. At higher concentrations, the
LDA calculation shows that DOz2 (x =0.75) is unstable
with respect to the mixture of the "40" (x =0.5) and
Dl, (x=0.8} structures by only 2 meV. Since this is
within the LDA uncertainty, the ground-state assign-
ments at higher concentrations based on this study are
not conclusive yet. Nevertheless, the study shows that
the D022 ordering at x =0.25 and possibly at x =0.75,
the "40" ordering at x=0.5, and the D1, ordering at
x =0.8 are possible for the fcc-based system. As will be
shown later, our calculation gives the order-disorder
transition temperature for the D022 structure at x =0. 1

To study the finite-temperature properties of a system,
the knowledge of the free energy for the system is re-
quired. A rigorous way to construct such a free-energy
functional for an Ising system has been developed using
the idea of cluster expansion ' ' and been applied to
several systems. ' ' In the following, we will only out-
line the idea of the cluster expansion approach for clarity
and to specify our notation. For details, the readers are
directed to the references indicated above.

As a first-order approximation, the excess hydrogen
can be thought as fixed at the octahedral sites which form
the 0-fcc lattice. The uncorrelated vibration of hydrogen
around the equilibrium positions contributes equally to
both the ordered and disordered phases at a given con-
centration and temperature and hence has no effect on
the order-disorder phase transition. We ignore the con-
tribution of the collective vibrational modes, which is not
expected to be significant for low x. Therefore, only the
configurational entropy is considered in this study.

The occupation of lattice sites by hydrogen can be de-
scribed by an Ising model, which assigns a spin variable
o.; to each lattice site i. For this system, 0.; takes +1 de-
pending upon whether the site is occupied or empty (or
by the A or 8 species). Though the mapping of the mi-
croscopic configuration of hydrogen in a real host metal
to the spin configuration of an Ising system is only an ap-
proximation because it ignores the relaxation of atoms
completely, the Ising representation of the configuration
is expected to work well for systems showing little lattice
relaxation. The relaxation effect is important for systems
where the atomic volume deference for two species is
large. ' However, the volume difference is not expected
to be significant for our system due to the small size of
hydrogen atoms. This is also supported by the fact that
the equilibrium lattice constant changes less than 1% in
the whole range of 0 x ~ 1. We use the fuily relaxed to-
tal energy of each ordered compound in the formation
energy calculation. This corresponds to the local relaxa-
tion scheme used by Wei et al. ' and Sanchez and co-
workers.

In cluster expansion formalism, an arbitrary function
of microscopic configuration, o., can be expanded in
terms of a complete set of orthogonal basis functions ex-
actly. The basis function, defined as the products of spin
variables, is also called the cluster function. Expanding
the total energy per site (this also equals to the total ener-

gy per YHz+„ in our calculation), which is a function of
microscopic spin configuration and of volume, we have

e„,(o, V)=—E„,(o., V)=gz F. (V)P (o ),1

a
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where E (u) is the effective cluster interaction (ECI), P
is the average of all the cluster functions related by group
symmetries, and z =N /N is the number of the a-type
clusters per site. Using the definition of Eq. (2}, the for-
mation energy per site is given by

be(o, V)=gz E (V)[P (o)—ri~(x)], (4)

where g (x)=xp (0-fcc)+(1—x}p~(O-fcc). It is easy
to verify that rl (x)=1 for clusters of even sites and

g (x}=2x—1 for clusters of odd sites. In particular, Eq.
(4) guarantees that the formation energies for the fcc
structures are identically zero. It is also interesting to
notice that the empty and single site clusters do not con-
tribute to the formation energy according to Eq. (4).
Therefore, the leading term in the expansion for the for-
mation energy is the nearest-neighbor pair cluster.

Despite of the simplification due to group symmetry, in

practice, one still has to assume that the ECI's concerge
rapidly with respect to the size of the clusters so that only
a small number of terms need to be retained in Eq. (3). In
fact, this is assumed in all relevant work to date. The
truncated expansion of Eq. (3),

basis vectors, P (tr) for a=1,2, ...,n, are linearly in-

dependent. In general, the linear independence of
P (cr ) in a subspace due to truncation is not guaranteed

by the orthogonality property of P (o) in the whole

space, therefore one must choose appropriate
configurations to ensure that the inversion of Eq. (5) ex-
ists. This approach introduces a stronger dependence of
the ECI's on the ordered structures chosen for the calcu-
lation and, hence, the nonuniqueness of the ECI's. In
fact, sometimes the nonuniqueness of the ECI's still
represents a problem that has not been solved satisfacto-
rily to date. An alternative approach was suggested by
Lu et al. to reduce the dependence of the ECI's on the
choice of ordered structures. The idea is to first calculate
a larger pool of bE(o ) so that the ECI's can be deter-
mined by a least-squares minimization of the y function,
which is defined as

g a) be(0, V}
1

n—gz E (V)[$~(a)—g (x)]
a

e„,(o, V)= gz E (V)tt} (o), (5)

gives an approximate representation for the energetics of
the system, where n is the number of reduced clusters re-
tained in the expansion. To the extent that Eq. (5) is con-
verged, it can be used to calculate the total energies of
any phases, including the completely disordered phase.
The reduced cluster function, P (o ), for the 11 ordered
structures and all the clusters considered in this study,
the degenerate factor z, and the structural weight factor
c0 (defined shortly) are summarized in Table III.

The ECI's can be calculated by directly inverting the
expansion of Eq. (5) and this requires that the truncated

where the structural weight co is determined by

co =48N, (o')/NG(o)' (7)

for the fcc lattice. Here, N, (cr) and NG(o } are the num-

ber of atoms per unit cell and the number of point-group
operations for the ordered structure o, respectively. The
least-squares minimization method may reduce the
dependence of the ECI's on the choice of ordered struc-
tures. For the CVM calculation a set of ECI's that is
convergent and minimizes the y function should be
searched.

TABLE III. The reduced cluster function, P,(o }, for all the subclusters of the tetrahedron-octahedron approximation and the
third-neighbor pair cluster. The octahedral hydrogen concentration x is also used to distinguish the dual superlattice structures of
the same symmetry, such as the D022 structure at x =0.25 and 0.75. Clusters of number 1—12 are the empty, the point, the nearest-
neighbor (NN) pair, the equilateral NN triangle, the equilateral NN tetrahedron, the second-nearest-neighbor (SNN) pair, the isos-
celes triangle of one SNN and two NN bonds, the square of four NN bonds, the nonequilateral tetrahedron of five NN and one SNN
bonds, the pyramid of eight NN bonds, the octahedron, and the third-nearest-neighbor (TNN) pair cluster, respectively.

Structure

Z+

fcc
fcc
Dl
Dl,
Dl,
D022

D022

L12

L12

Llo
cc40%s

1

8
1

5
4
5
1

4
3
4
1
4
3
4
1

2
1

2

1

1

8

30
30
12

12

4
6
12

—3
4—3
5
3
5
1

2
1
2
1
2
1

2

6
1

1
1

2
1

5
1
5

0

1

3
1

3

1

4
1

5
1

5
1

2
1

2
1

2
1

2

2
1

1

0
—3

5—3
5—1

—1

1

1

3
1

1
1

2
7
15
7
15
2
3
2
3

1

P,(o'}
7

12

1

4
1

15
1

15
1
6
1

6
1

2
1

2

1

15
1
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1

3
1

3

1

3

12

1

2
1

3
1

3
1

3
1
3

1

3
1

3

10

1

4
7
15—7
15

1

6
1

6
1

2
1

2

1

2—3
5—3
5

0
1

1

1

-1

12

12
1

1
1

2
7
15
7
15

1

3
1
3

0

1

3
1

3
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Once a set of ECI's is obtained, one has an approxi-
mate expression for the energy of the system and it de-
pends on the microscopic state of the system. The mac-
roscopic quantity can be obtained as the ensemble aver-
age of the corresponding microscopic quantity and the
ensemble average of the reduced cluster functions are
defined as the correlation functions for the clusters. We
denote the correlation functions as g . The free-energy
per lattice site in the CVM can be written as

f(V, T,( )= gz E (V)g

—k~ T g y gy (J)lny (J),
a J

where the first term is the parameterized total energy and
the second term is the entropy expression from the CVM.
Here k~ is the Boltzmann constant and T is the absolute
temperature. In Eq. (8) y is the Kikuchi-Baker
coefficients, which is related to the symmetry of the lat-
tice and can be calculated recursively. ' ' The cluster
probability y (J), where J represents a microscopic
configuration of the cluster, can be expressed in terms of
the correlation function g linearly as is shown by San-
chez and de Fontaine. ' The phase diagram can be calcu-
lated by either the common tangent construction from
free energies or by searching for the intersection of the
grand potentials for the ordered and disordered states
directly at a given temperature. The grand potential
per site is defined as

where p is the chemical potential and x is the octahedral
hydrogen concentration. We used the grand potential
method in our phase diagram calculation and treated the
entropy term in Eq. (8) by the tetrahedron-octahedron
(TO} truncation scheme. ' The number of independent
correlation functions in the TO approximation is 45 for
the D022 structure and 53 for the "40" structure when
the point-group symmetries are taken into account. In
solving for the equilibrium state, one has to minimize a
thermodynamic function with respect to all the correla-
tion functions g .

In our study, we found that considering only clusters
within the TO approximation is not enough to ensure a
converged energy expansion. It is very important to in-
clude the third-nearest-neighbor interaction in the energy
expansion and the fitting shows that the third-nearest-
neighbor interaction is much stronger than the multisite
interactions. This will be discussed in more detail in the
next section. To treat the cluster beyond the TO approxi-
rnation in the energy term, we use the approach suggest-
ed by Carlsson ' and Ferreira, Wei, and Zunger. For a
pair cluster, the approximation allows of a representation
of the pair-correlation function by the product of two
single-site correlation functions. Such an approximation
scheme has also been used in a previous metal-alloy
study.

IV. CALCULATION OF THE Ei FKCTIVE
CLUSTER INTERACTIONS

Apart from the truncation of the cluster expansion of
entropy, there are two other sources of errors in the
phase diagram calculation by the approach discussed in
this paper. It is obvious that the relative uncertainties in
the LDA energies (resulting from the pseudopotential ap-
proximation, plane-wave and k-point convergence, etc. )

set a limit to the accuracy of the phase diagram. It is es-
timated to be about 2-3 meV, which corresponds to
20—30 K. The second source of error is due to the ECI
parameterization of the energy, which can introduce a
larger error than the LDA calculation. Therefore, it is
ideal to improve the parameterization systematically to
make these two errors comparable.

As discussed earlier in the paper, the (420)-plane order-
ings are important in the metal hydride systems and
several of them have indeed been observed experimental-
ly. Our first-principles calculation shows that the DO22
structure, a (420}-plane ordering, is much more stable
than the L12 structure for YH225. An interesting ques-
tion to ask is then what kinds of interaction are likely to
be important for these orderings? By examining the D022
(x =0.25) and the Dl, (x=0.2) structures, it can be
seen that many octahedral hydrogen are connected by
third-nearest-neighbor pair clusters. In fact, this is a cru-
cial observation and the third-nearest-neighbor pair in-
teraction indeed plays a very important role in the pa-
rameterization of the formation energies.

The temperature scale of the order-disorder transition,
and, hence, the phase diagram is determined by the or-
dering energies (defined as the difference in the formation
energies of the disordered and ordered states at zero K)
of various structures. To obtain a phase diagram as accu-
rately as possible, it is extremely important that a set of
ECI's that is well converged and represents correctly the
energetics of the system be used. We show how this is
achieved in detail in this section. The absolute conver-
gence of the ECI's with the increase of cluster sizes is, in
general, hard to quantify because the "size" of a cluster is
not well defined. For example, it is hard to argue that the
forth-nearest-neighbor cluster is larger or smaller than
the octahedron cluster. In practice, one can test the con-
vergence of the ECI's by increasing the basis of the clus-
ter expansion. For example, we can consider the expan-
sion of the formation energy in terms of seven to nine
clusters and examine the stability of some relevant physi-
cal quantities. A well-converged expansion should pro-
duce a minimal variation of relevant quantities.

In the cluster expansion of the formation energy, we
consider all the clusters within the TO approximation
and the third-nearest-neighbor (TNN) interaction. We
use the least-squares fitting approach to determine a set
of best ECI's from the 11 calculated formation energies.
In these fittings, we require -the participation of the
nearest neighbor and the third-nearest-neighbor pair
clusters and consider all the possible choices for the
remaining cluster within the TO approximation. The
best sets and the fitting errors, y function, for the basis
sets containing seven to nine clusters are listed in Table
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TABLE IV. Convergence of the cluster expansion upon increasing the expansion basis is shown. Basis sets a, b, and c, include

clusters of (1,2, 3,5,7,9, 12), [1,2,3,5,6,7,9, 12), and [1,2, 3,4, 5,6,7, 9, 12j, respectively. The ECI's and the formation energies of the

disordered state are given in meV.

Sets

3.3
3.3
3.0

Ei Ez E3

12.3
13.3
13.5

E4

0.5

E5

—3.2
—3.6
—3.5

E6

—2.4
—2.6

E7

1.7
1.7
1.2

1.0
1.3
1.3

Eiz

—2.1
—2.8
—2.9

h, eg;,

(x =0.25)
—34.4
—29.4
—29.8

keg.

(x =0.50)
—54.9
—47.6
—46.8

bed;,

(x =0.75)
—50.0
—45.0
—43.5

IV. The purpose is to show the convergence upon in-
creasing the basis of expansion. Since the phase diagram
depends strongly on the ordering energies of different
structures, a good test of convergence is to see how stable
the energy of the disordered phase is as we increase the
basis of expansion. The formation energies for the disor-
dered phase at several concentrations are also shown in
Table IV. It is clear that the cluster expansion is con-
verging. The best fitting of nine clusters include the can-
stant, the point, the nearest-neighbor (NN) pair, the equi-
lateral NN triangle, the equilateral NN tetrahedron, the
second-nearest-neighbor (SNN) pair, the isosceles trian-
gle, the nonequilateral tetrahedron, and the TNN clus-
ters. This particular fitting only introduces a y function
of 3 meV.

The predicted formation energies from the seven to
nine cluster sets are listed in Table II for comparison
with the values from the LDA calculations. The best
predictions of the formation energies from the set c are
also plotted in Fig. 2 (hollow squares). The predicted for-
mation energies of the five ground-state ordered struc-
tures are connected by dashed lines. For a completely
disordered state, the correlation functions for multisite
clusters can be given by the product of the point-cluster
correlations due to the statistical independence of each
lattice site. The single-site correlation function, gz, is re-
lated to the octahedral hydrogen concentration x by

Llz and the DOE& structures at the same concentration
within the TO approximation and a third-neighbor clus-
ter. It is known that the Llz and the DOzz structures are
degenerate within the tetrahedron approximation; the
only clusters that are responsible for the formation ener-

gy difference are those beyond the tetrahedron approxi-
mation. In principle, the fitting can be improved by using
a larger basis for the cluster expansion and performing
more LDA calculations. For our limited LDA data base
of 11 structures, the largest prediction error is about 8
meV for the Llz structure at x =0.25. For ground-state
ordered structures, the largest prediction error is about 4
meV for the DOE& structure at x =0.25. These errors are
about two to three times the LDA error, but it represents
the best can be achieved within this limited calculation.

The x-T phase diagram for the DOzz (x =0.25) and the
"40" (x=0.5) structures is calculated using the ECI's
shown in Table IV (set c) and the phase diagram is shown
in Fig. 3. The prediction of the transition temperature
near x =0.1 is around 280 K. The experimentally ob-
served MS transition temperature is between 230-280 K
and resistivity anomalies between 200 and 250 K for the
same system. Given the fact that the CVM calculation
usually overestimates the transition temperature slightly,

800
x =

—,'(I+('z) . (10)

Therefore, for a given set of ECI's, the formation energy
of the disordered state as a function of x can be calculat-
ed according to 600

hed;, (x)=gz E [(2x —1) —r) (x)], 500

where t is the number of lattice sites associated with the
cluster a. The predicted formation energy for the disor-
dered state is also shown in Fig. 2 by the dot-dashed line.

~ 4oo

V. x-T PHASE DIAGRAM AND DISCUSSIONS

The ECI's from the nine cluster least-squares fitting
represents the best set of effective interaction parameters
achieved from our 11 LDA total-energy data base. The
prediction of the formation energies by the cluster expan-
sion formula with an error large than the LDA uncer-
tainty occurs for the two Llz structures and the two DOE&

structures. This is due to the difhculties associated with
fitting the large formation energy difference between the

200

100
0.0 0.1 0.2 0.3 0.4 0.5 0.6

x
FIG. 3. The temperature-concentration order-disorder phase

diagram is calculated for the DO&& (x=0.25) and the "40"
(x =0.5) structures using the ECI's of the set c in Table IV.
The transition temperature at x =0.1 is around 280 K.
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we thus conclude that the ordering of the octahedral hy-
drogen into a DO22 structure is likely to be responsible for
the resistivity transitions observed in these systems. A
direct difFraction experiment of the D022 ordering in the
system will be needed to confirm this.

There is a second MS transition observed in the
YH2+„system in the temperature region of 80 K.' This
transition is, however, not related to the breakdown of
any long-range order of hydrogen because of the reversal
of the metal and semiconductor phases as a function of
temperature. Daou and Vajda' have suggested that the
localization of electrons due to the presence of atomic
disorder at low temperatures is responsible for this transi-
tion, however, the true mechanism is still not fully under-
stood.

There are many possible superlattice structures that we
did not consider in this work and it is not clear if any of
these will order at low temperatures. One can consider,
for example, the (420)-plane orderings for x = —,', —,', or —,',
to name a few. In fact, the possibilities to construct or-
dered structures near a given concentration seem unlimit-
ed. Since a complete search through 2 configurations is
formidable, the experimental observations, when avail-
able, should be used as a guideline in selecting the search
set. Nevertheless, these lower x ordered structures would
represent greater computational challenges because rela-
tively large supercells with low symmetries are required
for the total-energy calculations. We are interested in in-
vestigating the phase stability of these low symmetry
structures in the future work.

VI. CONCLUSION

In conclusion, we studied the phase stability of the fcc
YH2+ system by combining ab initio total-energy calcu-
lations with the phase diagram calculations using the
cluster variational method. The approach represents a
parameter free treatment of the phase transition of an
ising-like system based upon quantum-mechanical total-
energy calculations. The theory predicts not only the ex-
istence of the D022, "40", and Dl, orderings near
x =0.25, 0.5, and 0.8, but also the absolute phase dia-
gram for the D022 and "40" structures. The calculation
of the phase diagram for the D1, structure near x =0.8 is
deferred because our LDA calculation cannot resolve if
the 0022 structure at x =0.75 is a ground state at the mo-
ment. The transition temperature of the D022 phase to
the disordered phase occurs at 280 K for x =0.1, suggest-
ing that the ordering may be responsible to the MS tran-
sition and resistivity anomalies observed in the same sys-
tern.
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