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Phase efFect in the energy loss of hydrogen projectiles in zinc targets
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We present an experimental and theoretical study of the phase effect in the energy loss of fast hydro-
gen beams colliding with gas and solid zinc targets. The experiments show a maximum phase effect of
50% around 50 keV/u, the energy loss per atom in the solid target being smaller than in the gas target.
An extensive theoretical study of all the processes contributing to the energy loss in the two phases
shows that the experimental findings can be explained primarily by the screening of the projectile field by
the valence electrons in the solid.

I. INTRODUCTION

The energy loss (stopping) of atomic particles travers-
ing matter is a phenomenon relevant to many fields of
pure and applied physics. Advances in the comprehen-
sion of this subject have been tied to a successful descrip-
tion of the response of atomic' and solid-state systems to
external perturbations. On the experimental side, the
numerous studies on a large number of projectile, target,
and energy combinations can, nevertheless, only cover a
small fraction of the systems and energies of relevance for
areas as varied as nuclear, solid state, plasma, and medi-
cal physics. Understanding the dependence of energy
loss on the nature of the target acquires, then, a practical
importance: to predict the stopping of many targets from
formalisms tested with measurements on a small number
of them.

Let us assume that we can describe, and have checked
with measurements, the stopping of targets made of pure
elements in the gas phase. To predict the stopping pro-
duced by any compound target for the same kind of pro-
jectile, it would be necessary to know the effect on stop-
ping of chemical binding and of the state of aggregation
(phase) of the target. These so-called "chemical" and
"phase" effects can be described more easily in the high
velocity limit of stopping. By high velocities we mean
those for which the projectile has no bound electrons on
the average, so that the inelastic processes that produce
the stopping are of the simplest type: target excitations
(including ionization) by a bare charge. Summation over
final states produces the Bethe formula for stopping,

where the dependence on the projectile charge Z& ap-
pears as a factor Z

&
and on the target through Z2, target

atomic number, and a logarithmic term thus producing a
weak dependence on the target parameters. At high ve-
locities excitation of the target inner shells contributes to
the energy loss, so that, for target atomic numbers
Z2 & 10, the contribution of valence electrons to stopping
is a small fraction of the total. Since only the valence
electron state is changed when going from isolated atoms
to molecular or solid complexes, we may assert that the
stopping in a compound system is the average of the stop-
ping for the pure elements weighted by the relative num-
ber of atoms of each element entering the compound.
This is Bragg's rule, frequently used in the estimation of
stopping. ' As we have indicated, it is valid at high ve-
locities and for heavy target atoms.

We now analyze the ways in which Bragg's rule ceases
to be valid at medium energies, i.e., those where the max-
imum in the stopping is attained. Since in this range
valence electrons are responsible for the main part of the
stopping, this is an obvious reason for the breakdown of
the rule. But, if this were the only reason, then the
remedy would be at hand: The stopping by valence elec-
trons should be calculated by accounting for the changes
they undergo to produce the chemical bonds of the mole-
cule or the solid. This correction has already been at-
tempted, taking semiphenomenological parameters to
quantify the valence electron states in the compound, and
using them in a generalized form of Bethe's formula. Un-
fortunately, measurements show agreement with calcula-
tions in some cases and none in others. ' The main
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reason is that Bethe s formula is out of its range of validi-

ty at medium energies. The assumption of the projectile
acting exclusively as a bare charge is no longer valid:
When the projectile velocity is close to the typical one for
the target valence electrons, the electron capture and pro-
jectile ionization cross sections have the same order of
magnitude and there will be a statistical distribution of
projectile charge states. Furthermore, for a given charge
state there will be a distribution in the population of
bound states of the ion. At asymptotically high velocities
the projectile charge-state fractions are zero except for
the bare nucleus. At velocities where other charge frac-
tions become appreciable, the description of bound states
on the projectile is far from trivial when dealing with a
solid target: Screening by target electrons will reduce the
binding and a finite energy width will represent the col-
lisional destruction of the state.

The statistical distribution over projectile charge states
destroys the Zf dependence of Bethe's formula. Each
charge state, and even each possible projectile state, will
contribute to stopping with its statistical weight. To re-
cover the simplicity of a structureless projectile, effective
charge models consider the projectile as a bare ion with
charge equal to the average of the projectile charge. Due
to the strong dependence of transition amplitudes on the
internal degrees of freedom of the projectile ion (it is not
at all the same to excite a target or capture an electron by
a bare charge of value 0.5 than with 50% of protons and
50% of neutral hydrogen atoms), this model cannot de-
scribe chemical or phase effects on stopping. Further-
more, the presence of bound projectile states opens up
new mechanisms for energy-loss like projectile excitation
and simultaneous target and projectile excitation. Final-
ly, the very existence of a charge distribution proves the
importance of electron capture and projectile ionization,
since it is their combined action which determines the
projectile charge-state fractions.

In this work we study the difference in electronic stop-
ping cross section between a metallic element in the gase-
ous and solid forms. The motivation of this paper is to
present a systematic study of all the factors that deter-
mine the phase effect in stopping. To our knowledge, the
only previous experimental study of the phase effect in a
metallic element is the work of Meckbach and Allison, '

where the relative stopping between He+ and H+ ions in

vapor and metal Cd target was measured. It is therefore
of fundamental importance to perform absolute measure-
ments in a well controlled target system, over a range of
energies that covers the stopping power maximum. We
have chosen Zn as the target element due to the highly
controlled conditions in which vapor and solid films can
be prepared. Measurements of stopping have been per-
formed for H projectiles in the energy range 15-720
keV/u. These are presented in Sec. II and show a re-
markable phase effect. In Secs. III and IV we analyze the
mechanisms that produce the phase efFect, using approxi-
mations for valence electrons that are appropriate for the
pure atomic transition processes in the gas phase or the
collective response of the metal. In the gas phase we use
first-order approximations to transitions where the target
and projectile are excited. We consider a distorted-wave
approximation for projectile capture. For the solid we
use a free-electron gas description of the 4s electrons, and
atomic orbitals for the 3d subshell. The electron bound
state around the proton is described through the self-
consistent linear response model, and the capture and
loss transitions are described as three-body
recombinations-type processes with simultaneous single
particle or collective excitation in the electron gas. " The
description of the solid stopping along these premises is
also justified at low velocities, and gives, in principle, a
correct description of the stopping on both sides of the
stopping maximum. A brief account of this work has al-
ready been presented. '

II. EXPERIMENT

The experiment was performed at the University of
Linz using the 700-keV Van de Graaff accelerator.

A. Experimental setup

A schematic drawing of the experimental setup is
shown in Fig. l. It consists of the vapor chamber contain-
ing the vapor cell that includes provisions for heating and
for temperature measurement, the deftection chamber
containing the de6ection unit and the condensation
ba8ies, and the scattering chamber with additional shield-
ing baNes, the target manipulator, and the detector sys-
tem. For energy-loss measurements, a vapor cell is supe-

DETECTOR SCATTERING TARGET
j

APERTURE $$$$$
I

$$$$$
VAPOR-CELL CERAMIC BALLS

MAGNETIC DEFLECTION

LN COOLED BAFFLE

FIG. 1. Schematic representation of the experimental setup.
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rior to an atomic beam because rather high atomic densi-
ties are needed. In our experiment, the range of areal
densities is 3X 10' /cm to 2X 10' /cm .

Because of the high temperatures in the vapor cell the
vapor chamber is metal sealed. Under measuring condi-
tions, the whole vacuum system is operated in the 10
mbar range. The layout of the individual chambers is
such that, despite of the high vapor densities in the vapor
cell, no zinc is deposited on sensitive parts of the ap-
paratus.

The vapor cell has a length of 30 cm and is made of
stainless steel. Thus, despite of the reactivity of zinc at
temperatures of 500'C, chemical reactions with the vapor
cell are minimized. Because of the rather low thermal
conductivity of steel, special care was taken to achieve a
homogeneous temperature distribution along the vapor
cell. Nevertheless, a temperature difference of several
Kelvin between the center and the ends of the cell
remained. The temperature measurements were per-
formed by means of Fe-Constantan thermocouples posi-
tioned at different points of the vapor cell. Thermal
shielding was applied around the vapor cell in order to
minimize the heating power and to obtain time constants
as large as possible. Thus, it was easy to keep the temper-
ature during a measurement constant within +0.3'C,
which corresponds to a stability of &1% for the vapor
pressure. In the cell, the zinc vapor was in thermal equi-
librium with the condensed phase (usually the liquid).
Because of the low dissociation energy of Znz, the dimer
content is negligible. '

The apertures of the vapor cell have a diameter of 1.5
mm and are not covered by sealing foils. Thus, the mea-
surement of the energy loss is more precise, as only metal
vapor contributes, and the intensity of the transmitted
ions is higher, as it is not decreased by multiple scattering
in the foils. ' On the other hand, effusion of the vapor
causes an increase in the effective length of the vapor cell
which must be taken into account in a precise absolute
measurement and it may cause problems because of the
condensates deposited in the cooler parts of the setup.
The temperature of the apertures could be varied by heat-
ing them separately from the vapor cell itself. Therefore,
it was possible to avoid condensation of zinc in the region
of the apertures. By mounting the vapor cell on one
conus and on two perpendicular groves via ceramic
spheres it was possible to allow for thermal expansion (up
to 3 mm) without losing the mechanical adjustment rela-
tive to the ion beam up to temperatures of 600'C.

The deflection chamber is situated downstream of the
vapor chamber. In this region, a homogeneous magnetic
field may be applied perpendicularly to the ion beam.
With the magnetic field applied, the ions are separated
according to their charge states after having left the va-

por cell. Thus, the charge state of the ions impinging on
the scattering target can be chosen.

In the scattering chamber, there are shielding baRes
which are cooled by a liquid-nitrogen trap. These shield-
ing baRes act as predominant places of vapor condensa-
tion due to the temperature dependence of the sticking
probability. The target manipulator holds up to six tar-
gets and permits a linear motion to select the target, and

one rotation to select the angle of incidence of the ions.
As targets, thin layers of Pt evaporated onto carbon were
used. The targets were kept at room temperature. On
the targets no zinc condensation was detectable even
after hours of measurement, within the detection limits of
Rutherford backscattering (RBS), i.e., well below a
monolayer. As RBS detector, a particle implanted silicon
detector was used, mounted at an angle of 90 with
respect to the incoming beam. Detector, preamplifier,
and amplifier were operated at a constant temperature of
0+0.1'C, thus keeping thermal drifts sufticiently low so
that the corresponding systematic error in the experiment
was negligible.

B. Gas phase stopping cross sections

Protons and deuterons in the energy range E;„=15
keV/u to E,„=720keV/u were used as projectiles. The
energy loss in the vapor cell was determined from the
shift of the mean position of the peaks of the projectiles
scattered in the platinum layer. At a fixed ion energy, the
energy loss of the ions was measured for a number of va-

por pressures determined via thermocouple readings.
Care was taken to allow the system to reach thermal
equilibrium. Thus, a typical measuring time for one ener-

gy is 2-3 h. Due to the high stability of the switching
magnet, which defines the energy of the ion beam, this
method is superior to the alternative keeping of the vapor
pressure constant and varying the ion energy.

For a number of reasons, it seems impossible to obtain
absolute numbers for the vapor density with an accuracy
of 5%: Even if one eliminated (or took into account
properly) the temperature gradient along the vapor cell,
calibrated the thermocouples and corrected for the finite
vapor pressure outside of the apertures, one would still be
left with vapor pressure data which cannot be converted
to pressure at the desired level of accuracy. ' Further-
more, the charge equilibration at the entrance of the va-

por cell would cause systematic errors if the energy-loss
data hE were evaluated versus the areal vapor densities
n: To achieve charge-state equilibrium requires a charac-
teristic length xo (see Sec. III A). Depending on the ion

velocity, xo can amount up to 10% of the length of the

gas cell. Therefore we decided to perform the energy-loss
measurements as a relative measurement: We used ther-
mocouples only to set certain temperatures T—and cor-
responding areal densities n —reproducibly to the same
value for every ion energy E. Then, the slope of the
linear regression of energy losses b,E (E,n ) versus
b,E(E,„,n) at constant energy E yields the ratio of the
stopping cross sections S„p(E)/S p(E,„).The refer-

ence value, S„,(E,„),has to be determined indepen-
dently: We equate S„,(E,„)to the theoretically calcu-
lated value at E,„(seebelow). Thus, we obtain the stop-

ping cross section in the gas phase at all energies. We
stress that systematic errors in the conversion of the mea-
sured thermovoltages to vapor densities, due to tempera-
ture gradients along the vapor cell due to the effusion of
zinc vapor or due to charge equilibration of the beam do
not afFect at all the slope of b,E (E, n ) versus hE (E,„,n ),
they just would affect the intercept. We find —0.3+0.2
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keV/u as a mean value of the intercepts. This is compa-
rable to the statistical uncertainty of the data evaluation
(0.2 keV), indicating that the influence of systematic er-
rors on the slope is negligible. What remains is the sta-
tistical uncertainty of about 8% (standard deviation) of
the measured data. The results obtained are shown in
Fig. 2.

C. Gas phase charge states
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In order to measure the charge-state fractions (()+ and
of protons and neutral hydrogen atoms, a magnetic

deflection field was applied to the ion beam after exiting
the vapor cell preventing the charged projectiles from
hitting the scattering target. This measurement reflects
the charge state of the projectiles inside the vapor cell;
since no material different from the zinc vapor is exposed
to the ion beam and, since there are no metastable states
for hydrogen projectiles. The scattered intensities Io and

It f with and without applied magnetic field, respectively,
were measured during equal times (100s) under stable
current conditions. This yielded P =Ic/I„,. At E;„,
the charged beam intensities, I+ and I, were deter-
mined by displacing the scattering target while the mag-
netic field was applied. This resulted in P //+=0. 15.
Together with P (E;„)=0.79, this yields (()+ =0.18 and

=0.03, in agreement with similar measurements's at
15 keV/u. Due to the rapid decrease of P with increas-
ing energy, P is less than 1% for all the higher energies
E and is therefore negligible. Hence we assume
iI)+ = 1 —

iI) . We find satisfactory agreement with Ref. 16
for E) 15 keV/u. The data of Ref. 16 should be taken as
lower bound values. ' The statistical uncertainties of our
data is at most 2%. In Fig. 3 we plot the measured
charge-state distribution as a function of projectile ener-

0.2

0.0
10 E(ke V/u)

FIG. 3. Measured values for the equilibrium charge-state
fractions P; for protons (+) and hydrogen atoms (o ) in the gas
phase of Zn as a function of projectile energy (keV/u). Curves

(a), (b), and (c) correspond to the calculated values for iI)+, $0,
and P, respectively in solid Zn, as obtained in our model.

D. Solid phase

The stopping cross section for the solid phase was
detertnined by the well-established Rutherford back-
scattering (RBS) technique Zinc was evaporated onto a
carbon backing following Ref. 19; purity, stability under
ion bombardment, and thickness homogeneity were
checked by RBS. The stopping cross section was ob-
tained' from the RBS spectra measured using protons
and deuterons in the energy range 20—720 keV/u. The
areal mass density of the zinc layer was measured relative
to that of a copper target by applying charge collection
and making use of the precisely known stopping cross
section of copper for 500 keV/u hydrogen ions. The
uncertainty of the thickness determination amounts to
+5%, while the statistical uncertainty of the stopping
cross section measurements is at most +2%. These data
are shown in Fig. 2 together with the theoretically calcu-
lated values for the two phases obtained using the model
described in the following section.

20

d

III. THEORY

A. The charge-state approach

10

10

I I I I I I I

E (keV/u)

The energy loss of hydrogen projectiles in the solid and
gas phase of zinc targets is obtained from a sum of partial
stopping cross sections (S; ) weighted with the corre-
sponding charge-state fractions (((i,. ). ' For a charge
equilibrated beam, the total stopping cross section is
given by

FIG. 2. Stopping cross section (10 ' eVcm ) for a H beam
in Zn as a function of energy (keV/u). The dashed lines are the
best fit to the measured data [curve (b) corresponds to the gas
phase and (d) to the solid], and the solid curves are the calculat-
ed ones [curve (a) corresponds to the gas phase and (c) to the
solid]. The dots are measured data for the gas, including an 8%
error barr. The error barr in the solid data is only 2% and it is
also indicated for some points in the figure.

(gel +g in
)

where S is the contribution to the stopping cross section
of charge-state fraction ((); due to target excitations asso-
ciated with no change in the projectile state, while S,.'" is
the one associated with changes in the projectile state.
S " includes, in principle, target excitation and ionization
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associated with electron capture or projectile excitation
and ionization. It is given by

defined previously. The condition ~z &&'Tc L ensures that
capture and loss are independent events.

S,'"= g W,, (a,I3)o,, (a,P), with j Wi
j,a,P

(2) B. Excitation spectra

where cr,~(a,P) is the cross section for the excitation pro-
cess in which the projectile state changes from i to j while
the target state goes from a to P. W,. (a,P) is the corre-
sponding transition energy.

For a two-component system the characteristic length
xo to achieve charge-state equilibrium is given (from the
solution of the rate equations) by

1Xp=
n(o, +oL )

(3)

1

na (4)

the condition to be satisfied is d & A, , where d is the lattice
constant. Furthermore, the characteristic time scale r
for the capture and loss processes is of the order of 10
sec (the inverse plasma frequency co for valence electrons
or typical time scale for inner shell capture), while the
mean time between capture and loss events v.c L is given
by

+C L
PlUO'C L

where U is the ion speed and the other symbols have been

where n is the target atomic density and ac(aL ) are the
capture (loss) cross section. The condition to be satisfied
is that the target thickness L should be much larger than
x p ~ In the solid phase, n is so high that x p is of the order
of a few A. In the gas phase, even though the density is
about eight orders of magnitude lower, the actual length
of the vapor cell (L=30 cm) satisfies the required cri-
terion [xo/L (0.1].

The use of this capture and loss picture requires some
justification in the case of the solid target because of its
large density. If we define an inelastic mean free path A,

from each of the total cross sections o for the various
channels by the relation

The excitation spectrum of the zinc atom includes exci-
tation and ionization of its thirty electrons in a
[Ar]3d' 4s electronic structure. The 4s~4p excitation
is the dominant one at low energies.

In the condensed phase the outer shell electrons (3d
and 4s) are those that change significantly their state as
compared to the gas phase, giving rise to the band struc-
ture of Zn with all its interband and intraband transi-
tions. However, solid-state electronic calculations show
that in the particular case of Zn the ten 3d electrons are
well below the Fermi level (around 10 eV) and retain a
rather highly localized character, while the two 4s elec-
trons build up a free-electron band. For this reason we
have approximated the 4s excitation of solid Zn by that
of a free-electron gas with r, =2.3 (electron-hole pairs
and plasmons), while ionization of the localized 3d orbit-
als should end above the Fermi level. The lowest excita-
tion for this system is the electron-hole pair creation. In
Fig. 4 the energy levels of the two phases are depicted
schematically.

C. Methods

1. Target excitation

a. Gas phase. For the description of the Zn atomic
state we have used a model potential approach based on
the Hartree-Fock-Slater (HFS) potential VHFs of the zinc
ground state. This approach has been used by many au-
thors in connection with energy-loss calculations and/or
ionization processes. The potential VHFs can be ex-
tracted from the tables of Hermann and Skillmann or
from the program of Desclaux. In this frame, the excit-
ed and continuum states of Zn are eigenstates of the
Hamiltonian HHFs for one electron moving in the poten-
tial VH„s. We can check the accuracy of this approach
by comparing the binding energy of the Rydberg states
with the experimental value as given in the tables of
Moore. As we neglect spin-orbit forces, we compare

SOLID GAS

Er
coiutgction bond

//////////////////

3d
3d FIG. 4. Schematic representation of the

zinc energy levels for the gas and solid.

3p

3$
3p
3»
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the theoretical values with the weighted sum

3Ez /4+Es/4 of the triplet Ez and singlet Es energies.
The energy E„Iof the states in a Rydberg series with a
given angular momentum I can be represented by the ex-
pression

1

2(n —p„I)
(6)

where the quantum defect p„& goes to the limit p& as n

goes to infinity. The theoretical values of pi are 2.641 for
l=0, 2.083 for I= 1, 0.996 for l=2, and 2.9 (

—4) for
l=3. From Moore's table, we can extract p,„Ifor the
largest available value of n. We get p9, =2.7, p9p 2 17,
p7&

= 1.12, and psf =0.03. The accuracy is therefore of
the order of a few percent.

The bound and continuum eigenstates of Hzzs are
determined numerically with the Numerov algorithm,
and the target excitation and ionization cross section are
determined with the first Born approximation (FBA).
In order to calculate the stopping cross section for a
given initial state, one must sum over all final excited and
continuum states. For excitation we have included in our
evaluation s, p, d, and f excited states, the contribution
from larger values of I being negligible. The Born excita-
tion cross section was calculated for n up to 10 and then
extrapolated using the expression

(10—
pI }

o ( nl }= cr ( 101 )
(n -p, }' (7)

We have checked that our results converge to the above
expression with good precision.

For ionization, the partial wave expansion for a given
electron energy has been truncated when the accuracy
was better than 10 . The stopping cross section was
then determined by integration over electron energies.
The theoretical value for 700 keV/u proton impact has
been used for the normalization of the experiments and it
has been determined with an accuracy of 1% (see Table
I). The main source of error in this calculation comes
from the evaluation of the energy loss connected with the
neutral fraction of the beam (see the discussion below}.
In spite of the small neutral fraction, capture and projec-
tile excitation contribute to 5% of the total energy loss at
700 keV/u.

For the case of H impact on zinc, we have calculated
the target excitation assuming that the H atom is frozen
in its ground state. In other terms, the interaction poten-
tial is the static potential of the H atom. This means that
we have discarded all processes associated with a simul-
taneous projectile and target excitation. We discuss this
problem in connection with projectile (H} excitation
below.

b. Solid phase. The energy loss to target excitations
for each of the projectile charge states has been calculat-
ed in a way similar to the gas phase calculations except
for the 4s electron excitations. The 3s and 3p contribu-
tion to the energy loss is taken as that due to ionization in
the gas phase. For the contribution of 3d ionization to
the energy loss, we modify the energy levels according to

TABLE I. Energy loss for 700 keV/u protons (10
eVcm ). Contributions to the total stopping cross section of
zinc in the gas phase for 700 keV/u protons. The calculated
value is 16.7X10 ' eVcm with 1% numerical accuracy.

Channel

Ionization 4$
3d
3p
3$

2p
2$

Loss

2.054
8.313
2.536
0.6651
0.1708
0.0531

Error

0.01
0.01
0.005
0.0001
0.0001
0.0003

Total 13.79 0.025

Excitation 2.10

Capture and loss 0.785 0.15

Total 16.7 0.18

where E(k) is the electron energy from the bottom of the
band. Alternatively we have done a calculation using the
HF relation for E(k) and found no significant difference.
The projectile screening has been accounted for through
an exponentially screened Coulomb potential with a
screening parameter (A, ) that interpolates between the
static (Ao=kr„)and high velocity limits (A, „=co/U) ac-
cording to

1 1 1

kT& is the Thomas-Fermi wave vector.
The 4s electron contribution in our model is due to

both electron-hole pairs and plasmons. As the latter are
only excited at relatively high velocities we calculate its
contribution to the proton energy loss using linear
response theory for a unit charge. However, the
electron-hole pair excitation contribution to the energy
loss is relevant at very low velocities where nonlinear
effects are important. " So we evaluate the energy loss to
electron-hole pair excitations from a full phase shift cal-
culation of the transport cross section and integrating
over relative velocities of the electron using different
scattering potentials depending on the proton charge
state according to

band-structure calculations and introduce a threshold for
ionization at the Fermi level. We have used atomic wave
functions for the 3d electrons identical to those used for
the gas phase. The continuum wave functions have also
been described by eigenstates of V~zs. This can be
justified by the fact that our calculations depend on the
part of the continuum functions which overlaps strongly
with the 3d orbital, i.e., the part close to the ion core.
The relation between the electron energies E(k} and
wave vector k has been taken as

k2
E(k)=

2
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dE 1 1 F U+u(u)=
z I u du J du„u„'o"(v„)

d& 4 vz o Jv —ui

2 2

X 1+
2
r

(10)

where o." is the transport cross section. For the H+
charge state we use a linearly screened potential for a
point charge (H+ ) and for H we take into account the
electron charge density in the is state (H } with a simple
Thomas-Fermi dielectric function [the screening parame-
ter A, varying according to the above mentioned law, i.e.,
Eq. (9)]. For the H charge state we use the density
functional result for the self-consistent screened potential
to calculate the low velocity stopping from the transport
cross section at the Fermi level.

2. Electron capture

P, = gnp;, P= P(1—p;) ',
' '(1—p;)'

where n, is the number of electrons in each shell. When-
ever one of the p; becomes larger than one we take either

P, =0 or P, =1. As this takes place only at small impact
parameters, the difference between the two calculations is
not large, amounting to 25%%uo at 50 keV/u and 15%%uo at
100 keV/u. Equation (11) is exact when p; « 1. In sum,
our conclusion is that, though the CDW method is not
fully reliable between 50 and 100 keV/u, it can be used
safely to gauge the energy loss associated with capture as
well as its role in the phase effect.

b. Solid phase. The cross section for 3d electron cap-
ture is calculated in the CDW approximation as if it were
an atomic-type process. The only solid-state effects taken
into account are the shift in the energy levels both for
target and projectile electrons and the modification in the
electron wave function due to screening for the bound

a. Gas phase. Energy loss in capture processes by pro-
ton is calculated from the continuum distorted-wave
(CDW) capture cross sections with a proper treatment of
the statistics. The CDW method can be derived as the
first order of a perturbative treatment which accounts
correctly for Coulomb asymptotic conditions. ' The per-
turbative nature of the approximation limits its applica-
bility to low energies. In practice, it has been found to be
valid for energies larger than 80 keV/u times the initial
or final binding energy expressed in atomic units. In the
present case, capture by protons takes place mainly from
the 3d shell of Zn and therefore the CDW approximation
should be valid according to this criterion, above 50
keV/u. This criterion elaborated from studies on light
targets, is too optimistic. In the present instance where
the 3d shell contains ten electrons, we have checked that
the CDW calculations give capture probabilities much
larger than one for small impact parameters. We have
therefore corrected the CDW calculations in the follow-
ing way. Let p; (i =1, . . . , 4) be the probability of
capturing one electron from the subshells 4s, 3d, 3d',
and 3d, respectively for a given impact parameter. We
define the capture probability as

state around the proton according to the model of
Guinea, Flores, and Echenique. '

An electron from the conduction band (4s) may be cap-
tured by the moving proton due to the screened electron-
electron interaction in a three-body recombination pro-
cess (TBRP)." At zero velocity these processes corre-
spond to the well-known Auger capture processes. We
calculate the corresponding cross section in first-order
time dependent perturbation theory.

SC=~CEC and SL =crLEL, (12)

where o c and 0 L are the total capture and loss cross sec-
tions, while Sc and SL are the stopping cross sections in

capture and loss, respectively. Neglecting projectile exci-
tation the total energy loss in capture and loss processes
by the projectile is

Oc O'L

SCIL + +L L + + +CEC
+C ~L +C +L

=0'&c«c+EL } (13)

where P+ is the fraction of protons. So, if the fraction of
protons and the capture cross sections are known, we

only need EL to calculate the contribution of electron
loss by the projectile to the total energy loss. The latter
quantity is more sensitive to the range of the potential
than to its absolute magnitude. By doing various calcula-
tions in which we cut down arbitrarily the short-range
part of the static potential of Zn, we find that EL does
not vary by more than 50%, whereas, under the same
condition the cross section varies by orders of magnitude.
We have therefore used for EL the value given by the
Born approximation for the ionization of H by the static
potential of Zn. This problem is still relevant at 700
keV/u, where we normalize the experiment to theory.
For this high-energy P+ is close to unity and

ScaL =oc(Ec+EI )—. We get 380 eV for Ec and 230 eV
for EL. As Sc is equal to 4.9 X 10 ' eV cm, we estimate
the error in the total energy loss to be of the order of 1%
(corresponding to a 50%%uo error in EL which is overes-
timated}.

b. Solid phase. At typical metallic densities (2 & r, & 5)
the screening by the conduction-band electrons is not
strong enough to avoid the appearance of bound states
around the proton. Effects due to the interaction with

3. Projectile excitation

a. Gas phase. It is a difFicult problem per se. As the H
atom experiences a strong potential close to the target Zn
cores, perturbation theory is not valid. On the other
hand the neutral fraction is known for the gas phase from
the measurements. We have therefore evaluated the en-

ergy loss in the following way. From the total capture
cross section and the measured charge-state fractions we
obtain the total projectile electron loss cross section. The
energy lost in this process is then approximated by this
loss cross section times the FBA mean transition ener-
gies. The latter is calculated for H interaction with the
frozen Zn atom. Let us define the mean excitation energy
by projectile electron capture (Ec ) and loss (EL ) as
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the lattice ion cores would reduce the lifetime of this
bound states as the ion velocity increases but at the same
time screening is less and less effective. One could think
of these bound states around the proton as resonances
with a finite lifetime (given by the loss cross section). We
use the model of Guinea, Flores, and Echenique ' to de-
scribe the charge states of protons in an electron gas.
The wave function and binding energy are calculated by
minimizing the total energy of the system using a varia-
tional procedure. Account is also taken of the dynamic
screening of the interaction by the conduction-band (4s}
electrons.

Due to screening, only one bound state around the pro-
ton exists. Electron loss by the projectile is taken into ac-
count by two different mechanisms: the interaction with
the lattice ion cores and the interaction with the electron
gas. Both cross sections are calculated in first-order time
dependent perturbation theory using different interaction
potentials (both of them are supposed to be weak). For
the interaction with the lattice ion cores we use a
screened Ashcroft pseudopotential to describe the in-
teraction between the bound electron and the lattice ions.
This is a reasonable approximation for low-energy elec-
trons. For the interaction with the electron gas we use
the dynamically screened interaction according to the
model of Guinea, Flores, and Echenique. This is the in-
verse of the TRBP mentioned above Sec. II C 2.

IV. RESULTS

A. 4s excitation

In Fig. 5 we plot the partial stopping cross section
from 4s excitation by H+ and H projectiles as a function
of projectile energy for the two phases. By comparing
curves (a) and (b) one can see that below 100 keV/u the 4s
electron excitation by H+ impact is much larger in the
gas phase and it is more than two times that of the solid

phase below 20 keV/u. This difFerence does not come out
of nonlinear effects, included in the calculations for the
solid case. A first Born calculation for proton stopping in
the solid phase (linear screening in the dielectric formal-
ism) given as curve (e) shows essentially the same
difference with respect to the gas phase.

The main reason that explains the difference is the
long-range Coulomb interaction between the proton and
the 4s electrons in the Zn atom as compared to the
short-range interaction due to screening in the solid
phase. This means that even though mean transition en-

ergies (defined as the ratio of the stopping cross section to
the cross section} are about the same or a little bit larger
for the solid (of the order of 10 eV for the two phases for
20 keV/u protons) the transition probabilities are much
larger in the gas phase, where the dipole transition
4s~4p has the largest weight in the low-energy excita-
tion spectrum. The relative contribution of the 4s-4p
transition to the energy loss by excitation of the 4s orbital
is 50% at 10 keV/u and 40% at 700 keV/u in spite of the
small value of the transition energy (4.6 eV). This transi-
tion corresponds to a long-range dipolar interaction
which decreases slowly with impact parameter Lsee Fig.
6]. Incidentally, it is the long-range behavior which
justifies the use of a Born approximation even for the low
impact energies of interest in this work.

The property that introduces the most remarkable
phase effect is the strong polarizability of the 4s valence
band: It shields the projectile potential and reduces the
range of the projectile interactions. The screening is
strongest in the static limit and becomes small and amen-
able to a perturbation treatment at high velocities
v ))vF'

The three curves [(a), (b}, and (e)] merge at high ener-
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FIG. 5. Stopping cross section from 4s excitation. Curve (a)

and (b) correspond to H+ projectiles in the gas and solid phase,
respectively, and curve (e) is the result of a first Born calculation
(linear screening in the dielectric formalism) for the solid.
Curves (c) and (d) are the corresponding ones for H projectiles
in the gas and solid phase, and curve (f) is the first Born result
for H in the solid (see the text).
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FIG. 6. Excitation probability as a function of impact param-
eter (in atomic units) for the 4s ~4p transition in the gas phase.
The figure shows the strong reduction of the interaction due to
screening by the bound electron in the case of H impact. The
projectile energy is E=50 keV/u.
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gies, as they should, though coming from completely
different calculations. This shows that binding and
solid-state effects are not so crucial for high-energy col-
lisions as compared to the low-energy case.

On the other hand the H stopping in the two phases is
not that different [curves (c) and (d)] due to the eScient
screening by the projectile bound electron that strongly
supresses the 4s~4p excitation in the gas phase. Curve
(0 corresponds to a first Born calculation (linear screen-
ing in the dielectric formalism} for H stopping in the
solid phase and shows a remarkable difference (around a
factor of 2 smaller) with the nonlinear screening calcula-
tion shown as curve (d}. Curve (f) is the equivalent to
curve (e} for the bare proton case; the difference is that
for the H atom account is taken for the electron cloud
around the nucleus.

Furthermore, the difference between H and H+ stop-
ping due to 4s electron excitation is very large in the gas
phase. Comparing curves (a) and (c) one sees that this
difference may be up to a factor of 10 at low energies cor-
responding to a decrease of the excitation loss by a factor
of at least 30. This difference is due to the 4s-4p transi-
tion: The long-range dipolar interaction is quenched in
the case of H projectiles. However, in the solid phase
[curves (b) and (d)], the difference is much smaller, espe-
cially at low energies ( —=50 keV/u). As a consequence an
accurate determination of the charge-state distribution in
the gas phase is required but not in the solid phase to ex-
plain the part of the phase effect due to 4s electron excita-
tions.

B. 3d excitations

In Fig. 7 we plot the partial stopping cross sections
from 3d electron excitations by H+ and H impact for
the two phases. Comparison between the curves (a) and

(b), that correspond to an H+ projectile in the gas and

solid, respectively, shows that 3d excitations give only a

slight difFerence between the phases, and so a small con-
tribution to the phase effect, which is more noticeable at
higher energies where its relative contribution to the total

21

10

L2

10 E (keV/u)

FIG. 7. Stopping cross section from 3d excitation. Curve (a)
and (b) correspond to H+ projectiles in the gas and solid phase,
respectively. Curves (c) and (d) are the corresponding ones for
H projectiles in the gas and solid phases.

stopping cross section is larger [see Fig. 10]. Similar con-
clusions can be drawn analyzing curves (c) and (d) that
correspond to an H projectile.

C. Electron capture

The contribution to the stopping cross section of the
H+ charge state from electron capture processes is shown
in Fig. 8. At high energies (E)200 keV/u) it is about
the same for the two phases, but at low energies (E& 100
keV/u) capture processes in the gas phase contribute up
to twice the solid phase. This is mainly due to the fact
that, even though capture cross section are very similar
(except at very low energies where 4s electron capture
dominates}, the transition energies are much larger in the
gas phase. The difFerent relative positions of the target
and projectile electron energy levels is an important efFect
at low energies. The 3d electron binding energy in the Zn
atom is about 20 eV and the hydrogen level lies 13.6 eV
below vacuum giving a transition energy in the capture
process for a collision at relative velocity U which is
b,ss„=6.4 eV+u /2. On the other hand, the 3d elec-
trons in the solid are at the bottom of the conduction
band and the hydrogen level too, so in the solid
b, e»&;d—= v /2. At low velocities the difference is impor-
tant but at high energies (E)200 keV/u) there is essen-
tially no difference: At high energies, binding effects are
not important and only the high momentum components
of the target and projectile wave functions are relevant
and so one would not expect any difference between the
gas and solid phases.

D. Projectile excitation

The contribution to the stopping cross section of H
due to projectile ionization (electron loss) is shown in Fig.
9. It is obviously another source for the phase effect in
the energy range 50&E&700 keV/u. As we discussed
before, in Sec. IIIC3, the loss cross section in the gas
phase has been probably overestimated, while the oppo-
site is true for the solid, at high energies. This is the
reason why the contribution to the stopping cross section

T ~ T7

4

3

2

p L L .i

E (keV/u)

FIG. 8. Stopping cross section from capture processes. The
solid line is the gas phase result and the dashed line corresponds
to the solid.
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FIG. 9. Stopping cross section from loss processes (projectile
ionization). The solid line is the gas phase result and the dashed
line corresponds to the solid.

of the H charge state from projectile excitation is so
different at high energies. More precisely, in the solid
phase the use of an Ashcroft pseudopotential may be ade-
quate up to 100 keV/u energies (v =2vo, where vv is the
Bohr velocity) but it is probably not so adequate at high
energies where the projectile electron sees the core of the
atoms. In the gas phase the loss cross section is obtained
from the measured charge-state fractions and the calcu-
lated capture cross section. But the mean transition ener-
gies are obtained from a first Born calculation that may
be ofF by as much as a factor of 2. Altogether these
effects may explain the discrepancy between the two
curves in the high-energy side. Anyhow, one has to
remember that this charge-state fraction is minoritary at
energies E)200 keV/u in both phases [see Fig. 3].

FIG. 10. Phase effect as a function of projectile energy (see
the text for the definition of h,S). The thick solid line corre-
sponds to the calculated value and the thick dashed line to the
measured one. The thin solid line gives the contribution to h,S
from H+ excitation of the 4s shell. The latter contribution plus
that of H ionization is given as the thin dashed line.

[hS =S„—S~&], as a function of projectile energy. The
agreement between theory and experiment is quite good
even though theoretical values always overestimate the
measured ones (see Fig. 2).

Our model explains this difference as coming mainly
from the difFerent 4s excitation by protons in the two
phases and by projectile ionization up to energies of the
order of 100 keV/u. At higher energies projectile ioniza-
tion is not so important and both 4s and 3d excitation by
protons give an appreciable contribution to the phase
effect (see Figs. 5 and 7), being about 1.5X10 ' eVcm
for 700 keV/u protons.

E. Charge-state distributions

The equilibrium charge-state distributions, shown in
Fig. 3, which we calculate for the solid phase are quite
different from the measured ones for the gas phase, show-
ing on average a lower charge state. This reflects the fact
that, even though capture cross sections are not too
different, loss cross sections are strongly reduced in the
solid phase as compared to the gas phase, mainly at low
energies. This is partially due to the Pauli exclusion prin-
ciple that prevents projectile ionization to continuum
states below the Fermi level giving rise to an efFective
threshold (the bandwidth plus the binding energy) at low
energies for this process.

Since the H+ fraction has a steep growth at E=-50
keV/u, we may expect the existence of a maximum in the
phase effect in the energy range 50&E& 100 keV/u; the
large difference in stopping between gas and solid at low
energies will be strongly reduced by the low fraction of
H+ projectiles in both phases at those energies.

V. CONCLUSION

We have found that the stopping cross section of atom-
ic Zn for 50 keV/u H projectiles is about 1.5 times larger
than that of solid Zn. The difference decreases for in-
creasing energies and amounts to 14% at 700 keV/u.

We conclude that the explanation of the phase effect in
H-Zn collisions is simple: The most important mecha-
nism is the dynamic screening of the proton in the solid
phase. As a consequence the projectile-target interaction
is of shorter range for the solid as compared to the gas
target. This efFect is more noticeable for the outer shell
electron excitation (valence electrons in the solid and 4s
electrons in the gas). A byproduct of the screening effect
is that excitation by H+ and H are very similar, even for
the valence electrons, in the solid but not at all in the gas.

We then expect a large phase effect for those elements
in which the outer shell electrons are weakly bound in the
atom and present delocalized valence electrons in the
solid phase participating in the screening.
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