
PHYSICAL REVIEW B VOLUME 49, NUMBER 9 1 MARCH 1994-I

Ground state of a model with competing interactions and spin anisotropy
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Recent experiments on rare-earth multilayers have led to its being important to understand in detail
the phase diagrams of models with competing interactions and spin anisotropy. Therefore we study the
ground state of the XY model with competing first- and second-neighbor interactions and sixfold anisot-

ropy, D. Infinite series of long-period phases are found to be stable. Particular attention is given to the
evolution between the continuous spin and the discrete spin limits as D is increased from zero to infinity.

Systems with spatially modulated magnetic phases are
surprisingly common in nature. The canonical examples
are the rare-earth elements and their compounds which
display a fascinating variety of periodic configurations,
many with long wavelengths which can be commensurate
or incommensurate with the underlying lattice. ' These
structures originate from the competition between ex-
change interactions which peak at a nonzero wave vector
and spin anisotropy terms in the energy.

Considerable insight into the physics underlying the
formation of modulated structures has been obtained by
studying models with short-range competing interactions
where tiny entropic differences between the different spin
states lead to infinite sequences of commensurate and in-
commensurate phases. ' Spin anisotropy and magnetic-
field terms have also been introduced into the Hamiltoni-
an but work has tended to be limited to values of the in-
teractions chosen with the purpose of modeling specific
rare-earth compounds. Because of the current experi-
mental interest in the fabrication of rare-earth multilayer
structures, ' it is now also important to understand the
models of the bulk rare-earth solids throughout the
ranges of their parameters.

Therefore in this paper we study in detail the ground
state of a model with competing interactions and spin an-
isotropy as the anisotropy is varied from zero to infinity.
The phase structure is determined by solving the equa-
tions which minimize the energy by iteration and then

comparing the energies of the resulting solutions. ' This
is a powerful way of investigating the details of the
ground-state phase diagram and is easily generalized to
give the mean-field approximation to the finite-
temperature behavior of the system.

The particular model we consider is the classical XY
model with competing first- and second-neighbor axial in-
teractions and sixfold anisotropy, D. For zero anisotropy
the ferromagnetic ground state is replaced by a helical
structure with continuously varying wave vector as the
ratio of the competing interactions increases. For infinite
D the model reduces to the six-state clock model with
competing interactions where a small number of short-
wavelength phases are stable. Our aim is to understand
the evolution between these structures as the anisotropy
is reduced.

The answer is surprisingly complex: an infinite number
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where i labels the planes of spins perpendicular to the z
direction and j and j are nearest-neighbor spins within
each plane. It will be useful to define 0; as the angle be-
tween the spin located at the site (i,j ) and, say, the x axis.
The in-plane coupling is chosen to be ferromagnetic
(Jo)0) and hence for zero temperature all the spins
within a given plane are parallel. Competition is intro-
duced along the z direction by taking the first- and
second-neighbor interactions to be ferromagnetic and an-
tiferromagnetic, respectively (J, )0, J~ (0). x =

~ J2 ~
/J,

will prove an important variable in the description of the

of long-period phases are stable in the ground state for
any noninfinite anisotropy. One set of these springs from
a multiphase point at D= 00 where the ground state is
infinitely degenerate. As D is decreased each phase be-
comes wider, then narrower (in the ratio of the compet-
ing interactions), until they hit the XY axis at a point
which corresponds to the expected value of the wave vec-
tor (see Fig. 1). Two further sequences of phases spring
from metastable multiphase points at infinite anisotropy
and only appear as stable phases for small values of D.
Hence the inverse anisotropy acts as a mechanism for
generating sequences of long-period phases in a way
analogous to the temperature in the ANNULI model.

Similar features are seen in the chiral XY model with
twofold anisotropy. ' This is however a special case be-
cause the model maps onto a system with convex interac-
tions and hence all phases are stable for all values of the
spin anisotropy. " Mailhot et al. ' studied the Heisen-
berg model with competing axial interactions and biqua-
dratic exchange. They suggested the existence of modu-
lated phases but were unable to resolve them. Sasaki'
considered the model studied here in a magnetic field in
the limit of large anisotropy.

We study an XY model with competing interactions
along the z axis in the presence of a sixfold spin anisotro-
py term. Each classical XY spin vector lies in a plane
perpendicular to z and has unit magnitude. The Hamil-
tonian is

1H= ——Jo+S;, S;i —J, gS; S;+, i
&JJ l7 J

—J2 g S; S;+2 +D +[1—cos(68, , )],
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phase diagram.
The parameter D & 0 models a sixfold anisotropy in the

(x,y} plane. The two limits D =0, D = ~ are well under-
stood. For D =0 the ground state is ferromagnetic for
x (—,'. For x & —,

' it exhibits helical order with a wave vec-
tor q=qz which is, in general, incommensurate with the
underlying lattice. The magnitude of the wave vector is
determined by the exchange energies through the relation
cosq =(4x)

For D=~, however, the spin angles 8;. are con-
strained to take one of the discrete set of values mk; J /3,
where k; =0, 1,2, 3,4, 5 will be used to label the different
spin states. The Hamiltonian (1) then reduces to the six-
state clock model with competing interactions. ' The
ground state now has a very different character: only a
few short-period commensurate phases are stable as x is
varied. For x (—,

' the ground state is ferromagnetic. For

3
(x ( 1 the order along the z axis is helical with a se-

quence k; =k; .=. . .01234501. . . , with spins in adjacent
planes differing by an angle (n/3). For x &1 there are
two degenerate states at zero tempera-
ture . . .01340134. . . and . . .00330033. . . . Following
Ref. 14 we use a notation, described more fully below,
which distinguishes the two ground states degenerate for
x & 1 as ( 2 ) and ( 2), respectively.

At x =1 itself there is a multiphase point where
infinitely many phases coexist. These are all states for
which lk;+& —k;l=1 or 2, with the proviso that two
neighboring jumps of 2

I k;+2 —k;+ ) I

= lk;+ )
—k; I

=»
are forbidden. If

l k;+, —k; l
=2 we shall say that there is

a wall between i and i+1. A band is defined as the
sequence of spins between two walls. A given state
can be labeled by (l, , l2, l~, . . . ) where the repeating
sequence comprises bands of length l, , l2, 1~, . . . . For
example, . . .Oll345l12l450. . . , where walls are denoted
by vertical lines, will be labeled ( 23 ) .

The aim is to elucidate the ground state of the Hamil-
tonian (1) as a function of x and D to understand the
crossover between the two very different types of order-
ing at D =0 and D =00. We use a method which is
analogous to the exact T=O limit of the mean-field
theory for discrete spin models with competing interac-
tions at finite temperatures. Our results are then checked
by high D expansions' and an effective potential ap-
proach. "

The ground-state energy E0 for the Hamiltonian (1) on
an N XN XN three-dimensional lattice can be written

Eo
2

= ——gF; M,. +D +[1—cos(6a;)],
E l

where F,. is a local field defined by

(2)

F, =J)(M; )
—M;+))+J2(M; 2+M;+2}+q,JpM, .

(3)

qj is the number of nearest neighbors in a plane and M;
is the average magnetization per spin in a plane, a vector
with unit magnitude which makes an angle a; with the x
axis.

For a given choice of x and D the stable phase corre-
sponds to a minimum of E0. Minimizing (2} with respect
to the a,. gives a set of N coupled nonlinear equations
which can be solved numerically by iteration. In general
there are many metastable states corresponding to phases
with spin configurations similar to that of the ground
state. Typically the solution found by iteration has the
same wave vector as the input configuration. In principle
the true ground state can be found by comparing the en-
ergies of all possible solutions. However, this is a tedious
procedure and the possibility always exists that the
ground state has not been included in the trial
configurations.

To avoid these problems we use a systematic approach
first proposed by Selke and Duxbury in their study of the
mean-field phase diagram of the ANNNI model. ' '
They built up the phase diagram step by step by assuming
that the first phase which may appear between two
phases (v, ) and (v2) is (v, vz); between (v, ) and
(v, v2) is (vfvz) and so on. This pattern has never been
violated in the phase diagram of models of this type, the
pattern held in several cases checked for this model and it
is confirmed by high D expansions. Once such ordering
of the phases is assumed, phase boundaries follow easily
from a comparison of the energies.

We now present our results. For a given phase, as D is
reduced from infinity, the orientation 8, of each spin may
deviate from the easy axes. This happens in such a way
as to close the gaps lk, +, k, l

=2.—As D~O the angles
between successive spins tend to the same value as ex-
pected for the XY model. The wavelength of the result-
ing helical phase is the same as that of the original
configuration at D = 00. We use the same notation as for
D = 00 bearing in mind that a sequence of clock variables
k; does not necessarily mean that the spins are parallel to
the easy axes.

The ground-state phase diagram is shown schematical-
ly in Fig. 1. Within the limits of the method all phases
which only contain bands of length &3 and which obey
the branching rules, spring from the multiphase point at
x =1 as D is decreased. All phases containing 2 and 3
bands then appear between (2) and (3) as D is de-
creased. It was possible to check for the existence of
phases with periods of up to 100 lattice spacings.
Higher-order phases occupy extremely narrow regions of
the phase diagram.

The solid phase boundaries shown in Fig. 1 follow the
numerical results. As D ~0 we also show by dotted lines
the expected behavior, that the phase widths decrease
and a given phase touches the XY axis at a single point
corresponding to the appropriate value of q. For exam-
ple, the (4) phase, which is dominant for large D, meets
the D =0 axis at the point x =[v 2(v 3 —1)] ' corre-
sponding to q=(5n/12). The (2) phase meets the axis
at x = 00. It is not possible to follow the low anisotropy
behavior numerically because an infinite number of
phases would have to be considered.

The phases generated from the (x =1, D = ~) multi-
phase point correspond to commensurate phases on the
D =0 axis which lie at x —,'. Therefore we still need to
understand how commensurate structures with q (~/6
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phases persist in the phase diagram for nonzero spin an-
isotropy. In the continuum limit the Hamiltonian (I) can
be mapped onto the Frenkel-Kontorova model. ' Thus it
is expected on the basis of previous work' that, for small
D, the devil s staircase is incomplete with incommensu-
rate phases appearing between the commensurate ones.

To conclude, we have fully elucidated the ground state
of a model with competing interactions and spin anisotro-

py as the anisotropy is varied from zero to infinity. The

method used provides a powerful means of understanding
the details of the phase diagram and is easily generalized
to give the mean-field approximation to the finite-
temperature behavior of the system.
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