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Ising spin glass in a transverse magnetic field
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We study the three-dimensional quantum Ising spin glass in a transverse magnetic field following
the evolution of the bond probability distribution under renormalization-group transformations.
The phase diagram (critical temperature T, vs transverse field I') we obtain shows a finite slope
near T = 0, in contrast with the infinite slope for the pure case. Our results compare very well

with the experimental data recently obtained for the dipolar Ising spin glass LiHop. ]67Y0.833F4, ln

a transverse field. This indicates that this system is more appropriately described by a model with
short-range interactions than by an equivalent Sherrington-Kirkpatrick model in a transverse field.

The role of quantum Quctuations in spin glasses
has been a long standing theoretical problem. The
so-called proton glasses —a random mixture of
ferro electric and antiferro electric materials such as
Rbq (NH4) H2PO4 —provide an experimental real-
ization for quantum spin glasses. %ithin a pseudospin
description of such hydrogen-bonded systems, the pro-
ton position in the two potential minima is represented
by Ising states, o' = +1, and the tunneling between the
minima by a transverse field term, I o*, where I' is the
tunneling &equency. 7 The theoretical study of Ising spin
glasses in a transverse field (TISG) has then attracted
renewed interest, especially in relation to the analog of
the Sherrington-Kirkpatrick models in a transverse field

(TSK); see, e.g. , Ref. 9 and references therein. More
recently, the magnetic susceptibility of the (long-ranged
dipolar) Ising spin glass LiHop ]srYp sssF4 has been mea-
sured in the presence of a transverse field Hq, &om which
a phase diagram T, (Ht) was determined. ~~ Therefore,
it is of interest to discuss the main differences between
the phase diagrams of the transverse Ising model in both
pure and spin-glass cases. In view of the long-range na-
ture of the interactions in the dipolar glass, we are also

particularly interested in establishing whether this sys-
tem can be suitably described by a short-range model or
one has to resort to the TSK model. Here we address
these questions using real-space scaling methods.

The TISG model is described by the Hamiltonian
N N

Px=) J,,~,'~-;+r) ~;, (1)
i(j

where the o,". , p = x, z are Pauli spin matrices, I' is
the transverse field, i and j are nearest-neighbor sites
on a simple cubic lattice, and the J;j are uncorrelated
exchange couplings chosen at random &om an even dis-
tribution. For zero transverse field the model reduces
to the classical Ising spin glass, and quantum eKects are
brought in by increasing the field. At finite tempera-
tures, the eGect of the transverse field is to depress the

spin-glass transition temperature, whereas at zero tem-
perature quantum Quctuations are the only mechanism
driving the system to a phase transition at a critical value
of the transverse field. It is interesting to note that the
lower critical dimension (dt) for zero-temperature transi-
tions in the transverse Ising spin-glass model is dg ( 1,
unlike the classical Ising case, dp ——2.

In the context of real-space renormalization group, the
simple cubic lattice may be approximated by hierarchi-
cal Migdal-KadanoÃ cells; see Fig. 1. The terminal
sites are connected by b" bonds "in parallel, " each of
which consists of 6 bonds "in series"; 6 is the scaling
factor (b = 2 in Fig. 1) and d is the space dimension-
ality of the lattice (d = 3 in this case). For the trans-
verse Ising model (TIM), the noncommutation aspects
are present at the cluster level, in the sense that indi-
vidual spins are not in a definite state. This can be
dealt with by referring the density matrix to the basis
~mqm2. mdiv), where '~om)= m;~m;), and defirung
the renormalization-group transformation (RGT) by the
mapping of diagonal elements only. This approach has
been successfully used in a detailed study of the pure and
bond-diluted TIM in two dimensions. In the present
work bond disorder is included within a statistical renor-

b=2

FIG. 1. Clusters used in the RG transformation in three
dimensions. The terminal sites are labeled 1 and 6.
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malization group (SRG) treatment: one follows the effect
of a RGT on the probability distributions of the rele-
vant parameters, instead of forcing them into a particu-
lar form. Several aspects of the Ising spin glass and
of the random Geld Ising model have been elucidated
by treating disorder this way.

Thus, for a given bond configuration ((J;~ H, an RGT
I

for the d = 3 system (Fig. 1) is defined by

(mimsl p'(K') lmims) = (mime l p(K) Imims), (2)

where K' = (J', I", t ') are the renormalized quantities
in the two-site cell, K = ((J;~), I') refers to the original
cluster, and

(mimslp(K)lmims) = ) (mimzmsm4msmslp(K) lmim2msm4msms)
mQ flag fA417LS

is obtained by performing the partial trace on the internal
spins, keeping those on the terminal sites fixed (see Fig.
1). The third matching condition required to solve the
problem for the three unknowns (J', I",|') is obtained by
preserving the thermodynamical average of the rotation
operator

probability distribution remains symmetric around J = 0
at each iteration; that is, (J;~) = 0. The attractors of
the different phases are determined by fixed distributions
characterized by their width J and mean value (I'), as
follows:

J ~ oo, (I') ~ 0 spin glass,

(+1+6)&' (+1+2+3+4+5+6)+'' (4) J ~ 0, (I') ~ 0 paramagnetic,
For the renormalized cell, Eqs. (3) and (4) provide

analytical expressions for the three primed unknown
variables. Since disorder destroys the point group sym-
metry of the original cluster, the Hamiltonian matrix is
written in a 64 x 64 representation and Eqs. (3) and

(4) are calculated numerically. At this point we should
comment that a single renormalized field appears in the
recursion relations as a result of the approximation em-
ployed here: the fields are assumed to be uniform in both
renormalized and original cells. This assumption can be
justified, to some extent, by recalling that the transverse
magnetic field behaves as an irrelevant variable in the
pure TIM. Since the transverse field is not a symmetry
breaking operator, this should hold in the spin-glass case
as well. On the other hand, we could have allowed the
field at each site to follow an RG trajectory. The irrel-
evance of the field would manifest itself through a dis-
tribution evolving froin an initial b function centered at
I = I 0 into one centered at I' = 0.

The initial probability distribution for the exchange
couplings is

so that the critical curve is determined as the boundary
between these two different behaviors. Note that in every
case the average value of the transverse field distribution
iterates to zero.

In Fig. 2 we present our results for the phase diagram,
T, vs I', for both pure and spin-glass cases. For compar-
ison we also display the spin-glass data for the replica-
symmetry-breaking (RSB) solution of the TSK model,
and for LiHoo y67Yp 833F4. ' In analyzing the experi-
mental data one should have in mind ' that the applied
transverse field Hi gives rise to a level splitting Hi2 (at
low fields) which, in the context of Eq. (1), is propor-
tional to I'; thus, I' H~ . For the pure TIM, the critical
line both for small fields and near T = 0 has a square
fit: T,(0) —T,(I') I'z and I', (T) —I', (0) Tz, re-
spectively. Still for the pure case, the critical field for
zero-temperature transitions obtained with the present
RG is (I'/J), = 3.40, which should be compared with
the series result, is (I'/J), = 5.14; similarly, our result

P(J;) =
2KJ-2

exp
J2
2J2 0.8

where we have assigned an index i to each bond in the
original cell and taken (J;J~) = J b;i and (J;) = 0. We
start the iteration by choosing eight bonds distributed
according to Eq. (5) and one value of the transverse field
[P(I') = b(I'; —I')], to feed the recursion relations and
generate a new value of the Geld and of the exchange
coupling. This procedure is repeated about 10000 times
and we obtain two renormalized distributions, P'(J!)and
P'(I"). We make use of these distributions to feed the
recursion relations in the next step of the renormalization
process: eight bonds and one Geld are chosen according
to the new distributions, and this is done again 10000
times. The evolution of the distributions is then followed
along the renormalization process. %'e Gnd that the bond
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FIG. 2. Critical temperature vs transverse Seld for the
Ising model. ( ) and (i) denote our renormalization group

(RG) results in the pure and spin-glass cases, respectively.
The replica-symmetry-breaking (RSB, Ref. 9) results (———)
and the experimental data (~) for LiHoo. i67Y0,8g3F4 (Refs. 10
and 11) are also shown.
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T, (0) = 3.83J should be compared with T, = 1.13J, ob-
tained from series expansions for the three-dimensional
Ising model. As usual, the critical parameters obtained
within a simple Migdal-Kadanoff approximation are quite
inaccurate, but one is generally able to describe the qual-
itative aspects of phase diagrams.

For the transverse Ising spin glass, we obtain a curve
T (I') with a finite slope near T = 0, unlike both the
pure case and the replica-symmetry-breaking solution to
the TSK model; see Fig. 2. Overall, the experimental
data are better represented by the present approach than
by the infinite-range mean-field model. This can be ex-
plained by the fact that in the actual crystal, the dipolar
interactions fall off with the distance, being effectively
reduced to zero for distances greater than a few lattice
spacings. In contrast, the interactions between any pair
of spins in the mean-field model have the same intensity,
irrespective of the distance between them. The calcu-
lated critical parameters in this case are: I' = 1.58J
at T = 0 and T, = 0.884J at zero transverse field. In
agreement with the experimental results ' we find that
temperature is more effective in destroying the spin-glass
order than quantum fluctuations.

We point out that the renormalization-group trajec-
tory along the critical line flows away &om the zero-
temperature fixed point, towards the one controlling the
classical finite-temperature spin-glass transition. This
has two main implications:

(1) The shape of the critical line close to I' = 0 is
analytic. In the present case our results are consistent
With T, (0) —T, (I') I'2.

(2) The exponents controlling the transition for finite
I' are the same as those of the classical spin-glass transi-
tion, except at zero temperature where quantum effects
become dominant.

We can develop a scaling theory for the spin-glass tran-
sition close to the unstable zero-temperature fixed point
at (I'/J) (I'/J), . Introducing an exponent z through
the scaling relation2

where g =
~
(F/ J) —(F/ J),~, v and z are the correlation

length and the dynamic exponents, respectively, and o. is
a critical exponent which describes the singularity of the
ground-state energy; all these exponents are associated
with the zero-temperature fixed point and are related
through the modified hyperscaling relation 2 —n = v(d+
z). Close to (F/J) (I'/J), the critical temperature
vanishes as

T. cx [g/
', (8)

which allows us to obtain the product vz. Our RG results
for the behavior of the phase boundary near T = 0 yield
vz 1.23. An independent calculation of the exponent
z through a finite size scaling analysis for the gap at
the critical point yields z = 1.40. Using these results
we obtain v = 0.87 consistent with the exact constraint
v & 2/d for disordered systems. 2 The finite slope of the
phase boundary close to T = 0 is a consequence of the
fact that vz & 1 for the disordered case differently &om
the pure three-dimensional case where vz = 1/2 ( 1.

In conclusion, we have examined the phase diagram of
the transverse Ising spin glass model. We have compared
our data with those obtained experimentally for the dipo-
lar Ising spin glass LiHop y67Yp 833F4 with an applied
field in the transverse direction. In spite of the long-range
character of the interactions between spins, this system
is more appropriately described by a model with short-
range interactions than by the equivalent Sherrington-
Kirkpatrick model in a transverse Geld. However, the
small value of the exponent p associated with the nonlin-
ear susceptibility was found experimentally to be quite
different Rom that of the classical spin-glass transition.
This remains a puzzle &om the point of view of our re-
sults. Further theoretical and experimental studies are
required to clear this point. Work is in progress to in-
vestigate the possibility of the transition at T = 0 being
first order, and to obtain a more detailed scaling analysis
of this transition.

i

VS (7)

we obtain the scaling form for the &ee energy density
close to (I'/J), as2'
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