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Possibility of plastic deformation of an ionic crystal due
to the nonthermal influence of a high-frequency electric field
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The possibility of macroscopic mass transfer in an ionic crystal placed in a high-frequency electric
Geld has been studied theoretically. The plastic deformation of the crystal is shown to take place
due to the vacancy-drift perturbations caused by space-charge formation in the near-surface layer
and by surface permeability asymmetry with respect to the direction of the motion of atoms through
it. Estimates prove that the effects considered can be essential in technological processes, e.g. , in

microwave sintering of ceramics.

I. INTRODUCTION

V = —n (n. Js).
Here Js is the value of J on the solid body surface and
n is the outward unit normal to the surface.

In the absence of the electric field the macroscopic va-

cancy fIux is caused by the diffusion:

J = —DVX, (2)

where % is concentration, D is the diffusion coefIicient
of vacancies. In a crystal with no vacancy sources and
sinks in its volume the flux is completely defined by the

Considerable recent attention has been focused on the
development of technologies that use microwave radia-
tion, microwave sintering of ceramics being among them.
The analysis of the available data (e.g. , Ref. 1) permits
one to reveal certain specific features of microwave sin-

tering of powder materials. Many of the observed dis-
tinctions from traditional sintering processes cannot be
presented as simple consequences of the difference in the
temperature fields in the conditions of internal (volu-
metric) and external heating. In this connection possi-
ble mechanisms of the nonthermal influence of the high-
frequency (HF) electromagnetic field on the diffusion-
controlled viscous processes in crystalline bodies are dis-
cussed in the literature (e.g. , Refs. 2 and 3). In this
paper one of these "hypothetical" mechanisms is consid-
ered, dealing with the drift motion of vacancies in the
ionic crystal.

According to contemporary notions, plastic deforma-
tion caused by external forces (or the so-called creep flow)
of crystals is associated with diffusion transfer of atoms in
the crystal lattice. ' Assuming that vacancy mechanism
of diffusion predominates in crystals, we shall consider
further processes of vacancy transfer. This is more con-
venient because the ideal gas approach can be used for
the vacancies due to their small concentration in the lat-
tice. In this case the crystal surface shift velocity, V,
that we are finally interested in can be connected with
the vacancy flux density, J, on the surface:

stress distribution over the solid body surface, where the
following relation is valid:

P(Ns —Nps) = (n Js),

Nps = Np(T) exp(n &, nw/kT) (4)

Here P is kinetic coefficient that determines the surface
permeability for vacancies, Ns is vacancy concentration
on the surface, Nos is the equilibrium value of the con-
centration on the surface, Np(T) is the temperature-
dependent bulk equilibrium value of vacancy concentra-
tion, 0., is the stress tensor on the surface, and u is the
vacancy volume.

Specifically, the values of vacancy oversaturation,
SNs = Ns —Np, and fiux density, (n Js), at the surface of
a crystalline specimen with the characteristic size A, ex-
periencing relatively small shearing stress (o, —:n o, n

i

~o,
~

&& kT/w), can be estimated respectively as follows:

pA /cr

pD o., ~~"" ")~- p~+DN' k'T

(5)

The drift part of the vacancy flux exceeds the character-
istic diffusion value (5) essentially in comparatively weak
fields. For example, if A = 1 pm and 0 = 10 Pa, these
being typical sizes of grains used in ceramic composi-
tions and value of the capillary stresses existing therein,
the second term in (6) equals the first when the electric
field is only about 3 V/cm.

The vacancy drift in ionic crystal leads mainly to the
occurrence of electric current. But in certain cases the

The distinguishing feature of vacancies in the ionic
crystal is that they have effective electric charges, e.
Therefore vacancy drift in the electric field, E, makes
an additional contribution into the flux of vacancies of
each sort (here the Nernst-Einstein relation for mobility
is used):

eEJ = —DVN+ DN
kT
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mass transfer, i.e., the macroscopic motion of matter,
is also possible. In the static electric field such mass
transfer was observed experimentally. According to the
investigation undertaken in Ref. 7, this effect occurs when
diffusion coefficients of positive and negative vacancies
are different, and the so-called surface vacancy diffusion
in a thin near-surface amorphized layer is essential.

In the first approximation, the vacancy drift in the HF
electric Geld is oscillatory. Therefore a matter flux not
vanishing upon averaging can exist only due to various
nonlinear effects. Among them there are vacancy drift
perturbations caused by space-charge formation in the
near-surface layer of crystal and by the dependence of
the surface permeability coefficient, P, upon the vacancy
flux direction. The analysis of the possible role of these
effects is presented below.

It should be mentioned that we have no adequate ex-
perimental data permitting to state unambiguously that
P depends on the vacancy fiux direction. However, the
existence of such dependence can be supposed for the
reason that the bulk vacancy generation energy differs
from its generation energy on the surface; on the other
hand, it will be shown that this dependence can influence
significantly the mass transfer in a crystal placed in the
HF field.

II. FORMULATION OF THE PROBLEM

In the absence of sources and sinks of vacancies in the
volume of crystal the variation of their concentration in
time is determined by Fick's equation:

and (4)]

n ) J s=P) (Ns —ND —Na )
[Eq. (10) means that there is no electric current through
the solid body surface] and to specify the normal com-
ponent of the HF electric field, E'g, and stress, u„at the
surface (~0,

~

(( kT/~).

III. PERTURBATION METHOD

If the electric field is not too strong (the estimations
show that the effects of interest to us become essential
in the fields that do not perturb the vacancy concentra-
tion significantly), the vacancy concentration perturba-
tions caused by it are small, so we can solve Eqs. (7)—(9)
with the help of the perturbation method representing
the concentration as

N =Np+v +v +g,
where v and v are the HF perturbations of Grst and
second order, Np )) ~v

~

)) ~v ~, and g is a slowly vary-
ing perturbation, Np )) ~q ~. In this case we can obtain
from (7)—(11) by the first-order perturbation theory that

Bv~ 4vre—D Ev +D Np ) epvp =0,
Ot ~ekT

ON

Ot
+(V J )=o. (7) (V E')= —) e v. (14)

From here on the quantities with the subscript a will
correspond to the vacancies of sort o..

The flux density of vacancies of sort a is determined
as in (6) by diKusion and drift processes:

J = —DVN +DN e E

where E = 8 —Vy, 8' is the HF Geld vector, and y is
the slowly varying charge separation Geld potential. Con-
sidering the small-sized crystalline body deformation (in
particular, the deformation of discrete grains during the
ceramic sintering), we shall assume that the HF electric
Geld is quasistatic, i.e.,

In a quasimonochromatic electric Geld the concentra-
tion perturbations v oscillate with the field &equency,
O. However, in the second order of the perturbation the-
ory the HF field also influences the quasistationary va-
cancy fluxes that are of chief interest to us. Averaging
Eqs. (7)—(9) over the period of the HF field, we find that
the quasistationary vacancy fluxes are described by the
following equations:

(V j )=0,
D D ej + Vp = (v t),kT kT

VxE=O,

(V.E) = —) e N,
(9)

where j is a quasistationary vacancy flux density, p
kTg +Npe p is the chemical potential of vacancies of the
sort a. , and brackets () denote averaging over the period
of the HF Geld. Respectively, the boundary conditions
(10) and (ll), after averaging, rearrange as

where e is lattice dielectric constant, and the summa-
tion is over the sorts of particles. %le shall restrict our
consideration to a crystal having two sorts of vacancies
with the charges e = +e and with the same equilibrium
concentrations Np. In this case, for the unambiguous
determination of vacancy fluxes it is sufficient to supple-
ment Eqs. (7)—(9) with the boundary conditions [cf. (3)

n ) e~. =O,

) .3 ~ P )P ~ = P0o&0 ~~ + (Pi) ~ ~ )
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where Po ——(P), Pi ——P —Po.
The analysis of Eqs. (13) with the relevant boundary

conditions shows that v being harmonically dependent
on time are localized within a thin near-surface layer.
Its thickness is expressed by some combination of the

Debye-Huckel radius A = 8',"~ and the characteris-

tic diffusion length I = gD/O. (It should be mentioned
that in this layer the space charge oscillating with the
frequency 0 is localized, and when the values of A and
t are essentially different, the layer thickness is defined
by the smallest of them. ) Within this layer, the normal
components of quasistationary vacancy flux densities can
be considered unchanging, whereas the chemical poten-
tials, p, , have finite alterations, bp, in accordance with
Eqs. (15):

~Pm = Pns Pns e (v n E')dz.

n ) eg, =o, (19)

n ) j ~
—po). V ~ = po&o k'T-

+~.'„, +(~ ):...)
Here j, are the quasistationary vacancy flux densities at
the inner boundary of the HF space charge layer and p
is the effective pressure of the HF field on the vacancies
in this layer:

Here z is the coordinate counted along the outward nor-
mal to the surface, the integration is over the HF space-
charge layer, and p, denote the values of p, close to the
surface but beyond this layer. Hence, in the case being
considered the quasistationary vacancy fluxes problem
can be reduced to the solution of the uniform equations
(15) beyond the HF space-charge area, with the bound-
ary conditions (16) and (17) being transformed in an ap-
propriate manner:

(V' E) = —(n 8),Bx

we can present p in the conventional form of the field
pressure:

p =
8 ((~s) —(~s)) (21)

e FslD ~n Vv s —Xo
~

=0.
kT )

(22)

Within the framework of this approach the solution of
Eqs. (13) and (14) can be presented in sufficiently simple
form, if the HF space-charge layer is considered as a one-
dimensional structure. In particular, taking the normal
component of the electric field at the surface as

where fs is the value of the normal component of the
HF electric Geld at the inner boundary of the HF space-
charge layer.

It can be seen from (20) that the quasistationary va-
cancy fluxes and hence the plastic deformation of the
crystal are controlled by three factors: (1) the external
stresses [described by the first term in the right part of
(20)]; (2) the HF field ponderomotive effect on the va-
cancies in the thin near-surface layer (the second term);
and (3) the surface permeability asymmetry with respect
to the vacancy motion direction (the last term). These
effects are additive thus permitting one to carry on the
analysis of the relative role of each. It is interesting to
note that there is no small factor No in the second term
on the right part of (20), unlike the first term. It means
that the plastic deformations of a crystal in the HF field
can be essential even when the Geld pressure is much
smaller than the mechanical stresses.

To estimate the HF field influence on the mass trans-
fer processes in a crystal it is necessary [see (20)] to find
the effective field pressure, p, and total vacancy con-
centration perturbation at the surface, P v „using the
first-order perturbation theory equations (13) and (14)
with the appropriate boundary conditions. If the field
frequency is high enough, D A )) P~, the HF vacancy
fluxes through the crystal surface can be neglected, and
the boundary conditions can be written in the following
form:

e v n 8' dx.
rs = (Fsoe'"'+ c.c.)/2, (23)

Assuming that in a thin layer we have

eEsoA Kg —Kg C

0 + c.c.
kT (hi + hz) g~&ir~&—i(K&i + K~~)

2 (24)

2XKgK e +c
+ K~+ 2iK K

2 (25)

where

r. =RA /D,

hi z
—— 1 + i(ri + Kz) 6 1 —(r i —Kz) /2, Rehi q & 0.

(26)
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IV. DISCUSSION

As stated above, we distinguish two mechanisms of the
HF Geld influence on the mass transfer processes in a
limited crystal. In this section we shall analyze the role
of each separately, considering their dependence on such
factors as the frequency and amplitude of the external
Geld, concentration, and diffusion coefficients of vacan-
cies, size, and structure of the crystal.

According to (25) and (26), the amplitude of the nor-
mal component of the electric field in the space-charge
layer decreases with depth, i.e., the effective Geld pres-
sure on vacancies p (21) is positive. On the other hand,

p oc ~Esp
~

. So the vacancy concentration is lower at those
parts of the surface where the amplitude of the normal
component of the HF field is higher. Therefore, there
exists a quasistationary vacancy flux to these areas from
those having a smaller amplitude of the normal compo-
nent of the HF Geld. Respectively, an oppositely directed
macroscopic atom flux takes place, from the areas with
the strong Geld into the areas where the Geld is weaker. In
other words, an ionic crystal of quasispheric shape placed
into a uniform external electric field will experience, as a
result of the ponderomotive effect, a plastic deformation,
flattening in the direction of the external electric Geld
vector. The crystal can be deformed in a similar manner
under a monoaxial mechanical stress. This being so, it
is convenient to characterize the ponderomotive effect by
the value of the equivalent external stress, o@, that leads
to the same plastic deformation velocity [cf. (20)]:

aE = p/&p. (27)

To analyze the dependence of o.E upon the crystal prop-
erties and the Geld frequency it is useful to rewrite the
expressions (25) and (26) in the following form:

~iAtSp~ + c.c.
1 + 4~Gv/(ice)

2 (28)

where Gv = Npe2 P D /ukT is the crystal conductivity
associated with the vacancy motion. This form shows
that the spatial distribution of the HF electric Geld can
be calculated by standard methods of continuous me-
dia electrodynamics everywhere except the space-charge
layer, its thickness being equal to zero in the frame of
this description. In particular, it gives the opportu-
nity to account in a comparatively simple way the in-
fluence of the amorphized layer that exists at the sur-
face of a real crystal, where vacancy concentration, Np,
diffusion coefficients, and hence the conductivity associ-
ated with them, Gg, are considerably higher than the
bulk values. For instance, if the amorphized layer thick-
ness, a, is great in comparison with the thickness of
the space-charge layer, this being usual for dielectrics,
and the crystal has a ball-like shape with the radius
R, then Egp varies from'2+ (n Zp) at high frequen-

cies [0 )) 4+Gv/e, 47r(a/B)Gg/e] to —(n Ep) at low
frequencies (0 « max[4mGv/t, 47r(a/B) Gs/e]) [here
8'p characterizes the external electric field that equals
(E'pe' + c.c.)/2]. In this case Gv in (28) should be re-

placed by Gp.
From the above it follows that the effective Geld

pressure rises monotonically as the frequency decreases,
reaching at 0 « 4mGs/e its maximal value (the estima-
tions here and further on imply that 2

— 1)

16' l(n. ~p) I'. (29)

It means that at low frequencies (while 0 « 4vrGs/e)
the velocity of crystal deformation caused by the pon-
deromotive effect does not depend upon the vacancy con-
centration and hence upon the temperature. In other
words, oE increases with decreasing temperature in in-
verse proportion to Kp, reaching at Xp ——10 and E'p =1
kV/cm the values of order 2 x 10s Pa.

At high frequencies, when 0 )) 47rGs/e, the efFective
field pressure is proportional to the conductivity G~.

"=16 n. ~(" (30)

Respectively, the value of the equivalent mechanical com-
pression stress, ~@, in this case does not depend upon the
vacancy concentration:

e2 D

where Dp are vacancy diffusion coefficients in the amor-
phized layer.

The crystal surface permeability asymmetry with re-
spect to the vacancy motion direction leads to a macro-
scopic mass transfer only in the case when the diffusion
coefficients of positive- and negative-charged vacancies
are different. Another feature distinguishing this effect
&om the preceding one is that it is essential only if the
field frequency is high enough. In fact, at low frequen-
cies (0 « 4vrGs/e) we have rq 2 « 1 and it follows from
(24) that the amplitude of oscillations of total vacancy
concentration perturbation P v, decreases with 0 as a
consequence of electric Geld screening in the crystal:

e~fsp~AV, —Xp
Oe Di —D2

47r Gs gD, D2
(32)

At the same time, at high frequencies (0 )) 47rGs/e)
the value of P v, decreases with increasing 0:

) e~fgp~A 47rGg v 2(/Dy —/D2)
n. gD, +D,

e/flap/A
V Np

kT (34)

(33)

This is caused by the fact that the amount of vacancies
coming to the boundary during the half of the Geld period
decreases as the frequency rises.

Hence, there exists an optimal value of the field &e-
quency 0 4vrGg/e, corresponding to the maximal value
of /Qv ./,
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Here we assumed that Di and D2 are not very different, .
If the crystal surface permeability coefficient, P, is

greater when the vacancies move toward the surface than
when they go in the opposite direction, (i.e. , Pq and

P v, oscillate in phase), then (Pt P v, ) ) 0. In this
case the vacancy concentration averaged over the HF field
period is lower in those areas at the surface where the
electric field normal component is higher. Hence, crystal
surface permeability asymmetry leads to the flattening
of specimen in the direction of the external field vector,
similar to the ponderomotive effect. The velocity of the
respective plastic deformation can be also characterized
by the equivalent mechanical stress

(35)

The quantitative estimation of 0~ is difFicult because
no data on possible values of Pq are available. However,
if Pt Po and the frequency is of order of its optimal
value, then 0~ reaches highly significant values: o.@
efoA/~. In particular, for the typical values A = 10
10 " cm, cu = 3 x 10 cm, and fo ——1 kV/cm we

obtain 0.@ 3 x 10 —3 x 10 Pa. This is comparable
with the capillary stresses occurring in a powder compact
with the grain size about 1 p,m.
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