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Evolution from BCS superconductivity to Bose condensation: Role of the parameter keg'
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We argue that the natural variable to establish the crossover from Cooper-pair-based superconductivi-

ty to Bose-Einstein condensation of bound-electron pairs is the product kF(of Fermi electron wave vec-

tor times the coherence length for two-electron correlation, and that Cooper-pair-based superconductivi-

ty is stable against bosonization down to kF(=2m. We also propose that the experimental plot by
Uemura et al. , relating the superconducting temperature T, to the Fermi temperature TF for a variety
of "exotic" as well as conventional superconductors, can be rationalized by correlating the ratio T, /TF
to kF g. It appears in this way that the high-T, superconductors lie in the plot by Uemura et al. near the
"instability" line kF g = 2n

Uemura et al. ' have recently proposed to distinguish a
class of "exotic" superconductors (including cuprate,
bismuthate, organic, Chevrel-phase, heavy fermions, and
fullerene systems} from the more conventional supercon-
ductors (like Nb} by the value of the ratio T, /Tz between
the experimental superconducting temperature and the
(effective) Fermi temperature, which turns out to be
about one hundred times larger for the "exotic" than for
the conventional superconductors. Uemura et al. have
also suggested that this substantial difference might be an
indication that the "exotic" superconductors are in some
sense intermediate between conventional BCS supercon-
ductors and Bose-condensed systems.

In order to establish a possible connection between the
physical consequences of this suggestion and the experi-
mental relation between T, and Tz, one should first try to
figure out the appropriate variable to determine the
crossover between Cooper-pair-based (BCS}superconduc-
tivity and Bose-Einstein (BE) condensation. One could
then attempt to use that variable as a sort of "normal"
coordinate in the plot constructed by Uernura et al.
(hereafter referred to simply as the Uemura plot), by
figuring out a phenomenological relation (independent of
the underlying super conducting mechanism) between
that variable and the ratio T, /T~, thus encompassing the
difference between the "exotic" and conventional super-
conductors. Completion of this program might further
turn out to be useful both experimentally (by suggesting
possibly in which direction one should move in the
Uemura plot to improve T, ) and theoretically (by giving
hints on the underlying dynamics related to high-T, su-

perconductivity). In this paper we shall propose how to
meet this program by a rather general argument on the
stability of the Cooper-pair-based superconductivity.

Evolution from weak- to strong-coupling superconduc-
tivity has been addressed a few years ago by Nozieres and

Schmitt-Rink (hereafter referred to as NSR) following
the pioneering work by I.egget. Central to this work is
the well-known argument that the BCS wave function
has built in the Bose-Einstein condensation as a limiting
case, since it reduces to the BE condensate wave function
when the (average) occupation numbers (nz ) can be
neglected with respect to unity for all wave vectors k
(and for both spin projections o }. NSR follow the evolu-
tion from Cooper-pair-based superconductivity to BE
condensation through the increase of the coupling
strength associated to an effective fermionic attractive
potential, and conclude that the evolution is "smooth. "
Although this result is appealing from a theoretical point
of view, it does not allow for a direct comparison with the
Uemura plot since the coupling strength of the effective
fermionic attraction is not a quantity that could be real-
istically inferred from experiments. Besides, associating
an effective coupling strength to a given class of super-
conductors would unavoidably require one to face at the
outset the problem of the mechanism responsible for su-

perconductivity, which need not be actually necessary to
unravel the kind of message conveyed by the Uemura
plot.

We need thus to figure out a more significant variable
than the coupling strength to follow the evolution from
BCS superconductivity to BE condensation. The new

variable should be selected according to the following cri-
teria: (i) the evolution from BCS to BE should turn out
to be as much as possible uniUersal, i.e., independent of
the details of the interaction potential and of the single-
particle density of states; (ii) when using the new variable
to rationalize the Uemura plot, it should be possible to
subject that variable to an independent experimental
check. We shall illustrate in the following why we pro-
pose to identify the product kFg as the desired variable.

Following NSR, we introduce the model fermionic
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Hamiltonian

H =g EgC g ncg n
k, cr

than the conventional superconductors (for which
g-10 —10 A). Theoretically, g can be obtained from
the pair-correlation function with opposite spins

+ g Vt ir. ct+q/2 ic ir. ~q
k, k', q

g(r)=, l&& l+tt(r)+I(0)lc &I', (6)

XC k'+q/2 gCk+ql2, f

where ck is the destruction operator for fermions with
wave vector lt and spin o, ei, is a single-particle (or quasi-
particle) dispersion relation, and Vi, i,. is an "efFective"
fermionic attraction. In its simplest version,
ei, =It /2m ' —p, where m ' is an effective (quasi)particle
mass and p is the chemical potential. Although the use
of the Hamiltonian (1) has obvious shortcomings, by rest-
ing on a continuum model (where no effect of the lattice
structure is included) and by disregarding dynamical
efFects, we believe that it is sufhcient for our purposes.

The variational procedure with the usual BCS trial
wave function

l4) =g (Qi +vgcg tc g i )l0)
k

leads to the two familiar coupled equations

2@i,gi, +(1—2vi, ) g Vi, q 4i,.=0,
kl

(2)

(3)

pg 0 1—
Ek

(4)

where n is the particle density, 0 the quantiza-
tion volume, and /&=2m„v„=hz/Ei, with bi,
=—gi, Vi, i, ai, v& and Ez =Qei, +hi, . Note that, pro-
vided vi, ((1 for a11 lt, Eq. (3) reduces to the Schrodinger
equation for the relative motion of two particles with
equal mass m interacting via Vk k. and with eigenvalue
2p. In this limit bosonization of bound-electron pairs is
fully achieved.

Solution of Eqs. (3) and (4) gets considerably siinplified
by considering a separable potential. NSR choose

where 4 (r) is the fermion field operator, by identifying

J~rg(r)r2 X I~i&i, l'

g2—
rg r
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Our definition (7) correctly reduces to the Pippard coher-
ence length go=(de&/dk)k /mb, k in the weak-coupling

F F
limit (actually, g~gyr/2v 2=1.11$ owhen 6 ((1) and
to the bound-state radius ro in the strong-coupling limit.
It turns out that the behavior of g versus 6 is also
"smooth, "although it strongly depends on the parameter
kp of the interaction. A reasonable attempt to eliminate
the coupling constant 6 from further considerations is
then to replace it by a dimensionless parameter contain-
ing g. Since kF is the only other independent physical
length scale in the problem, we replace the original pair
of variables (G, ko) by the alternative pair (keg, ko) and
study the crossover from BCS superconductivity to BE
condensation as a function of keg for given ko. "

In Fig. 1 we report the chemical potential p, versus kFg
for a wide range of values of the reduced density nlko
(=10 with a= —5, —4, . . ., +4). Positive values of p
have been normalized by the Fermi energy eF
( =kF/2m, by our definition), while negative values of p
have been normalized by half of the eigenvalue s'o of the

1
Vk kt = VNkNkt, Nk =

+1+(lt/ko )

(5)

where the strength V((0) and the characteristic wave
vector ko are the parameters of the interaction. With
this potential, b,i, =hoivi, and the associated two-body ei-
genvalue problem has (in three dimensions) the only ei-
genvalue 2@=—eo= —(ko/m )(6 —1) for 6) 1,
where 6 = —VQm'ko/4m. &0 is the dimensionless cou-
pling constant, while the bound-state radius has the
asymptotic behavior rp k p 6 for 6—+ oo.
agreement with the results by NSR, we find that the solu-
tions (bo, p) of Eqs. (3) and (4) evolve smoothly as func-
tions of G for given ko, although (ho, p) depend strongly
on kp for given G. ' No connection with the Uemura
plot is evidently possible at this level.

A suggestion to Sgure out a more signi5cant variable
than the coupling strength comes from the observation
that "exotic" superconductors of the Uemura plot have a
considerable shorter coherence length g (-20 50 A)—

0
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FIG. 1. Chemical potential p versus keg (at zero tempera-
ture). The normalization of p and the meaning of the different
curves are explained in the text. The two limiting curves corre-
sponding to the values 10 and 10 of the reduced density n/k0
are indicated.
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associated two-body problem. The two curves for the re-
ported extreme values of n /ko act as limiting (accumula-
tion} curves for all practical purposes. The striking
feature of Fig. 1 is that, when expressed in terms of keg,
the behavior of the chemical potential becomes universal
(i.e., independent of the parameter ko of the interaction
potential}, but possibly for an "intermediate" range

'Sk+$82m where the normalization values ez and eo
(depending on the sign of )u} actually lose their mean-
ing. ' This remarkable universal behavior of p versus
k~g strongly suggests that k„g is indeed the appropriate
uariable to follow the evolution from BCS superconduc-
tivity to BEcondensation.

Note in addition from Fig. 1 that p gets pinned to
(about) the normal-state value e~ when k F(R2n, and
that )M drops rather abruptly from e~ at keg =2m. In oth-
er words, Fig. 1 shows that, when the coherence length g
equals the Fermi wavelength A,~ =2m/kz of the electrons,
the system becomes unstable against bosonization and the
Fermi surface is wiped out. We expect that the instabili-
ty of the Cooper-pair-based superconductivity when
kF(=2m, inasmuch as it is consequence of a genuine
quantum-mechanical effect, should actually persist
beyond the limits of validity of the procedure we have
followed to establish it. In this sense, the stability cri-
terion kzg~ 2m should be regarded as the analog for the
problem at hand of the Ioffe-Regel criterion for transport
in disordered systems.

It still remains to figure out how the Uemura plot for
T, versus TF could be mapped out in terms of the vari-
able keg. To this end, we remark that the variable kzgo
appears in the characteristic weak-limit BCS expression
for T, obtained from k~T, /hk =erin. (y being Euler's

constant) by eliminating b, k in favor of the Pippard
F

coherence length go, namely,

in Fig. 2 where the lines with kz(=10, 10, 10, 10, and
10 are drawn (full lines} together with the "instability"
line kFg = 2m (broken line). We note the following
features from Fig. 2: (i) a linear trend of log, &T, versus

log, oT~ results for any given value of k~g (ii) the line
with kF(=2m. remarkably appears to be the natural upper
boundary for the experimental data, suggesting that the
systems near the boundary are close to a Fermi surface
instability; (iii) what distinguishes the "exotic" from the
conventional superconductors in the Uemura plot is the
smaller value of kF( associated to the former ones (apart
from a possible difference in rn'); (iv) high values of T,
result when kFg is "small" ( —10) and m' is not too
large. '

To obtain an independent check on whether our propo-
sal to interpret the Uemura plot is correct, one should
compare the values of k~g associated via Eq. (9} to the
various samples in the Uemura plot with independently
measured values of kFg,„(as obtained by critical
magnetic-field measurements). ' Preliminary checks with
the experimental data available to us give indeed en-

couraging results for this comparison. A complete list of
data on T„Tz, kF, and g,„ for all samples reported in
the Uemura plot is, however, required to draw a definite
conclusion about the success of the comparison.

Some final comments are in order. First, we remark
that intrinsic to the procedure of how the values of TF
are located in the Uemura plot is an effective angular
averaging which washes out all nonspherical features of
the Fermi surface. Otherwise, no meaningful connection
between the Uemura plot and our expression (9} could
even have been attempted. It may thus be possible that
more specific criteria for instability toward bosonization,
which would take into account the asymmetry of the Fer-
mi surface (especially in reduced dimensionality), could

2e~ ~F
B c (8)

k~ being Boltzmann's constant and 2er/m=0 36. Th.e.
question naturally arises whether an expression like (8)
could be used not only asymptotically in the weak-
coupling limit, but also down to kF(=2m whenever the
concept of a Fermi surface is still preserved. To answer
this question, we have followed again NSR and evaluated
the thermodynamic potential within the ladder approxi-
mation in the particle-particle channel for the normal
state (i.e., for T~ T, ). In this way, T, and p, (T, ) have
been determined versus G, or alternatively versus kz(, for
given ko. The result is that the relation

10

10'
hC

ka T, =0.40
F

holds universally for k~g ~ 2m, independent of ko. '

We can now envisage interpreting the Uemura plot in
terms of the variable k~g, by assuming Eq. (9) to hold
phenomenologically (that is, irrespective of the assump-
tions used to derive it} and thus superimposing on the
log, pT versus log, oTz plot (with TF =eF /ka ) the
straight lines with kFf=constant. The result is reported

10
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FIG. 2. Uexnura plot vnth superimposed lines of log10T,
versus log&OTF according to Eq. (9) of the text for the values 2e
(broken line) and 10, 10~, 10', 10~, 10' (full lines) of kF(. Experi-
mental points are reproduced from Ref. 1.
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result in smaller values (than 2n ) for the product of the
relevant values of k and of the coherence size. Second,
we emphasize that in our approach we have not taken
into account any lattice efFect. It is likely that the ten-
dency toward bosonization may result in an instability of
the coupled electron-lattice system (such as the onset of a
charge-density wave or a structural modulation) that
could actually overwhelm superconductivity. This could
be possibly the reason why no physical system appears to
cross the "forbidden" boundary at kz(=2m in the Uemu-

ra plot. A consequence of this sort of speculation would
thus be that producing samples with even higher T,
would require one to move along the line kzg=2n in the
Uemura plot.

We are indebted to A. Bianconi, C. Di Castro, and J.
Ranninger for valuable discussions. One of us (F.P.)
gratefully acknowledges partial research support from
Europa Metalli-LMI S.p.A.
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These two criteria were borne out in the original BCS sugges-
tion to express their theoretical results in the form of ratios of
experimentally accessible quantities, which are independent
of the interaction potential and of the single-particle density
of states.

7As in the BCS approach, we rely on a description of the normal
state in terms of quasiparticles.

We have eliminated at the outset the Hartree-Fock-like terms

by setting Vq q =0 for the diagonal components. This choice
will by no means invalidate our results, since it turns out that
these terms are irrelevant in the parameter region of physical
interest.

NSR (Ref. 2) state instead that rp-kp ' for G~ 00. Since bo-
sonization can be achieved only when rp «n ', NSR are
able to follow the evolution from BCS to BE condensation as
a function of 6 only in the "dilute limit" n/k p «1 for the re-
duced (three-dimensional) density, that is, for given density n

only when kp »kF. This limitation has prevented NSR from
connecting the two physical limits (BCS and BE) irrespective
of kp. Our finding that rp —k p

'6 ', on the other hand, en-
ables us to satisfy the bosonization condition (n /kp )/
G «1 even in the "dense limit" n/kp »1, provided G is
large enough.
Probably the most suited quantity to follow the evolution
from BCS superconductivity to BE condensation is the chem-
ical potential p, which almost coincides with the Fermi ener-

gy in the weak-coupling limit and reduces to (half of) the
lowest eigenvalue of the associated two-body problem in the
strong-coupling limit. Furthermore, p can also be the object
of direct measurements: cf. G. Rietveld, N. Y. Chen, and D.
van der Marel, Phys. Rev. Lett. 69, 2578 (1992), and refer-
ences quoted therein.

~tA physical quantity directly related to kryo is the (average)
number of electrons JVz within a correlation volume in d di-
mensions. When d =3 one gets JV, =(kryo)'/18m, while when
d=2 one gets JVz=(kryo) /8 Sin. ce in the Uemura plot
three-dimensional as we11 as (quasi-) two-dimensional systems
are treated on the same footing, we prefer to use simply k„g
as the variable replacing G.

~~We have verified that the universal behavior shown in Fig. 1

for k„g & 2o and kryo& m
' is independent of the choice of the

single-particle dispersion relation el, and of the shape of the
interaction potential embodied by the function wz, provided
obviously that these functions do not behave in a pathological
way in k space.

'3The difi'erence between the numerical prefactors of Eqs. (8)
and (9) is due to the difi'erence between our definition (7) for f
and the Pippard coherence length go. We have also verified
that Eq. (9) holds for kFg& 2n both in three and in two di-
mensions. This is a requisite to apply Eq. (9) to the Uemura
plot, since the data there reported pertain to fully three-
dimensional as well as to (quasi-) two-dimensional systems.

~4lt is interesting to apply Eq. (9) also to superiluid 3He, for
which k+=0.78 A, m /m =2.76 (where m is the bare
mass of the 'He atom), and /=200 A. Equation (9) then pro-
vides for T, the value 4.5 mK, which compares reasonably
well with the experimental value (2.6 mK) if we consider the
fact that Eq. (9) applies to s-wave pairing while the pairing in
He is known to be p-wave. It is thus essentially the large

value of kryo (=160) which accounts for the three orders of
magnitude difference between the superfluid temperature of
'He and He. One should also mention in this context that
common features between He and heavy-fermion systems
have already been pointed out by R. Tournier et al. , J. Magn.
Magn. Mater. 76-77, 552 (1988) (see especially their Fig. 6).

~sWhen comparing the values of the coherence length g ob-
tained by our definition (7) with the experimental values, one
should be aware of the fact that different numerical factors (of
order unity) plague alternative definitions of the (zero-
temperature) coherence length. The relation between our g
and the experimentally determined g,„~ can be determined by
relating g,„~ to the Pippard coherence length go, in the limit
when a microscopic derivation of the Ginzburg-Landau equa-
tion from BCS is justified. From the clean-limit expression
(,„~=0.87/0 [cf. E. Helfand and N. R. Werthamer, Phys. Rev.
147, 288 (1966), and references quoted therein] we then obtain
/=1.25$,„~, which we assume to apply for all materials re-
ported in the Uemura plot.


