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Evidence of aging in spin-glass mean-field models
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We study numerically the out-of-equilibrium dynamics of the hypercubic cell spin glass in high dimen-

sionalities. We obtain evidence of aging effects qualitatively similar both to experiments and to simula-

tions of low-dimensional models. This suggests that the Sherrington-Kirkpatrick model as we11 as other
mean-field finite connectivity lattices can be used to study these effects analytically.

There has been a long-standing and mainly unresolved
controversy on which kind of models can describe real
(experimental) spin glasses, focused on whether the
mean-field models (as opposed to low-dimensional mod-
els) can or cannot describe, even at a qualitative level, the
essential features of them. This controversy has been
mainly centered on the nature of the ground-state struc-
ture. '

However, because of the long time scales involved in
spin-glass dynamics, most experiments are effectively per-
formed out of equilibrium. Thus, spin-glass physics is
usually described as being essentially dynamical. Indeed,
the main point concerning the relevance of a given model
should be its dynamical behavior —whether or not it
resembles the experimental one.

Spin glasses exhibit the striking phenomenon of aging:
their dynamical properties depend on their history even
after very long times and they continue to evolve long
after thermalization at a subcritical temperature.

A fully microscopic description of these effects in real-
istic spin glasses is still lacking. There have been several
phenomenological attempts to describe the physical
mechanism of aging; ' and some numerical studies of
the three-dimensional Edwards-Anderson (3D EA) model
have given results showing aging effects in good agree-
ment with experiments. '

Thus, the present understanding of the problem is at
two extremes: on the one hand, there are phenomenolog-
ical models whose physics is explicit but without a direct
reference to the microscopy and, on the other hand, there
are simulations of microscopic models close to real ma-
terials of which an analytical description seems at present
far off.

The interest of studying mean-field models is that they
may provide a bridge between the phenomenology and
the microscopy of real systems. It was only recently
shown that mean-field dynamical models can exhibit ag-
ing effects even in the thermodynamic limit. ' Although
the model considered there (spherical spin glass with
multispin interactions) is simple enough that even analyt-
ic results for the nonequilibrium dynamics could be
found, the price paid was that it is quite unrealistic.

The scope of this work is to show that the dynamical

behavior of the mean-field models is strikingly similar to
the behavior of the low-dimensional models and, more-
over, that they mimic very well the experimental observa-
tions. With this aim we give evidence of aging phenome-
na in a model whose behavior is expected to approach,
for high dimensionality D, that of high-dimensional spin
glasses on a hypercubic lattice and, in particular, that of
the Sherrington-Kirkpatrick (SK) model (as D ~~).

The fact that mean-field models capture the essential
characteristics of spin-glass experiments is promising be-
cause they are technically much simpler than realistic
models. Indeed, it has been argued that mean-field mod-
els can be solved analytically whenever their long-term
memory is weak; i.e., whenever the response to a constant
field applied during a fixed time interval decreases to zero
after long enough times. ' We will show below that this
happens in this model.

In principle, one would like to demonstrate aging
effects in the SK model, as the archetypical mean-field
model. However, the use of Monte Carlo dynamics is
strongly limited because of its full connectivity. A whole
sweep of the lattice requires a computer time which
grows as N (N is the number of spins) and this restricts
the sizes that can be analyzed. As we shall discuss below,
this implies a strong limitation in the range of times free
of finite-size effects. In order to study mean-field dynam-
ics up to large enough sizes it is then convenient to
choose lattices which are also mean-field models but with
connectivity growing slower than N(see, e.g., Ref. 11).

The model we consider has been introduced in Ref. 12,
where its equilibrium properties have been studied. It
consists of a single hypercubic cell in D dimensions; on
each of its corners there is a +1 spin that interacts with
its D nearest neighbors. The total number of spins is
%=2 . The Hamiltonian is of the usual type

H= —g J;o;cr
(~j&

where (ij ) denotes nearest neighbors and the probability
distribution of the couplings is given by
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with J= I/&D.
This model is particularly interesting since for large di-

mension 2D it is expected to mimic the full lattice of di-
mension D (Ref. 12}and to approach in the D ~ oo limit
the SK model. ' As regards numerical simulations, the
computation time for a whole sweep of the cell grows as
N ln N. Indeed, Monte Carlo simulations of the SK mod-
el for more than a few thousand spins become quickly un-
feasible while throughout this paper we consider D = 15,
17, i.e., N=2', 2' spins.

Recently, Eissfeller and Opper' have devised a very
powerful Monte Carlo procedure to solve the mean-field
dynamical equations in the limit N~ao, i.e., with no
finite-size effects. Unfortunately, this method requires a
computer time that grows faster than the square of the
number of time steps. As we discuss below, large times
are essential to distinguish aging phenomena from an or-
dinary nonequilibrium relaxation. Thus, this semianalyti-
cal method would have required enormous computer
times to arrive at the times here considered.

We perform here a usual heat-bath dynamics. Even if
the short-time behavior may depend on the update pro-
cedure used, we expect long-time features to be essential-

ly independent of it. The computer time is linear in the
simulated time and, as we shall see, finite-size effects are
not the limiting factor.

We have simulated "field jump" experiments after a
fast cooling to a subcritical temperature which is after-
wards kept constant and measured the averaged magneti-
zation:

m(r)= —g (o, (r))1

and the correlation function

The overbar denotes a mean over different realizations of
the couplings and ( ) denotes an average over noise real-
izations. The number of samples taken will be denoted

N, . We will present in detail the results for T=0.2T,
(T, = 1), and at the end we will indicate the dependence of
these results with the temperature.

In this kind of simulation one should carefully select
the appropriate time window corresponding to the exper-
imental physical situation. For long enough times, a
finite system eventually reaches equilibrium and all aging
effects disappear. A necessary (though not sufficient)
condition for having aging phenomena is that the time
needed for the system to achieve the thermodynamic
(Gibbs-Boltzmann) distribution be longer than the experi-
rnental time. In a computer simulation of the kind we
consider here N is finite, and one has to check that the
observation times be small enough that the system is not
a11owed to reach "thermal death" due to finite size.

The method we use to check this is to consider several
copies of the system with the same couplings starting
from different random configurations and evolving with
different realizations of thermal noise. We then calculate
the evolution of the square of the overlap between the

configurations. This is a quantity that starts from
O(1/N) and tends to (q ),~, the mean-square overlap
calculated with the equilibrium measure. Roughly,
(q ),„=0.7. ' Since we only consider times such that
the value of (q )(t) remains small ((q )(t) S0.04), the
different copies are not able to cross barriers in their
search for the few deepest states.

A more subtle problem is that of small times: once one
is satisfied that the dynamics is nonequilibrium one has to
check that this is an asymptotic aging process, i.e., not an
ordinary out of equilibrium transient. In a realistic sys-
tern the question is ultimately resolved by the actual time
scales involved, as compared with the experimental time.
The model we are discussing being only qualitatively real-
istic, we have to content ourselves with some other cri-
terion. We have chosen the following: we consider the
asymptotic nonequilibrium regime to start at the time
when one-time quantities (energy, magnetization, etc.) are
near to their asymptotic values and approach them with
their asymptotic power law. Because we are avoiding
finite-size effects, "asymptotic" means a large time limit
taken after the large-N limit.

We have analyzed the relaxation of the energy and per-
formed a separate power-law fit for each time interval
[30—100, 100—300, 300-1000, 1000—3000, 3000—10000
Monte Carlo sweeps (MC's)]. We found time exponents
which were roughly consistent for these intervals
(= —0.3) while the first 30 steps deviate from this
behavior.

We have simulated thermoremanent magnetization
(TRM) and zero-field-cooling (ZFC) experiments. In the
TRM experiments, the sample is rapidly cooled from
above the critical temperature down to a temperature T
in the spin-glass phase (T( T,} with a small field h ap-
plied. Then, the system is allowed to evolve during a
"waiting" time t at the constant temperature T and field

h. After t the field is cut off and the relaxation of the
magnetization m (t + t ), i.e., the TRM, is measured as a
function of the subsequent time t. In the ZFC experi-
ments, the sample is cooled from above T, in zero field

and after a waiting time t a small field is applied. Then,
the increase of m(t+t ), i.e., the ZFC magnetization, is
measured.

The starting configuration in the simulations was
chosen at random corresponding to a fast quench to a
temperature T& T'. This is slightly different from the
experimental procedures in that our scheme corresponds
to a fast enough quench such that the initial magnetiza-
tion is still zero even in the TRM case. The difference is,
however, small, since the magnetization rapidly grows to
its final value. If linear response theory holds (as it
should for small fields) one expects that the sum of the
magnetizations obtained from the TRM and the ZFC
processes with the same t and h yield the magnetization
associated to a constant field h applied since the tempera-
ture quench [the field-cooled magnetization (FCM)]. Be-
cause of the particular initial conditions, the sum of the
ZFC plus the TRM is not a constant, but a curve for the
FCM that saturates very fast. We have analyzed the
TRM, the ZFC magnetization, their sum, and the FCM
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FIG. 1. Zero-field-cooled magnetization and ther-
moremanent magnetization and their sum for waiting time

t =100, and the magnetization corresponding to a constant
field. For all the curves D=17, T=0.2, and h =0.1.

FIG. 3. Autocorrelation function C(t+t, t ) vs time t for
waiting times t =30, 100, 300, 1000, 3000; D = 15; and T=0.2.

for t =100 and 1000, D=17, and h =0.1: the linear
response theory holds within 5%. In Fig. 1, we show the
plot for t =100. We henceforth concentrate only on
TRM simulations.

In Fig. 2, we show the TRM simulations for D =17,
h =0. 1 and waiting times t =100, 300, 1000, 3000,
10000, with N, =10 for t =100, 300 and N, =5 for the
rest. The curves clearly depend on the waiting time: the
response decreases with t . These curves are very similar
to, e.g., the corresponding experimental curves for the
indium-diluted chromium thiospinel of Ref. 16.

In Fig. 3, we show the decay of the correlation [Eq. (1)]
vs t for D=15, h=0, averaged over five samples. We
note that the system distances from itself with a speed
that decreases with t: the phenomenon of "weak ergo-
dicity breaking. " These curves are remarkably similar
to those of the 3D EA model.

In Fig. 4, we show the fitting for t « t of the correla-
tion curves We pl.ot C(t+t, t )t in terms of tIt
The exponent that makes the curves superpose is a =0.01
and thus the departure from a pure function of tlt is

very small. Similarly there is a small departure from a
pure dependence on t lt on the sector t » t .

We have also performed simulations at higher temper-
atures (up to T=O. 8). As expected, aging eff'ects are still
present but they decrease with increasing temperatures
and they disappear as it approaches the critical tempera-
ture. In addition, we have analyzed the response of the
model to changes in the temperature during the waiting
time.

First, we have performed "temperature jurnp" simula-
tions in the manner of the experiments of Ref. 17. The
system has been kept at a constant temperature T 5T—
during t„when the temperature has been suddenly
changed to T and afterwards it has been kept constant.
These results are presented in Fig. 5. We have measured
the correlation function (1) for various values of 5T and
we have found the following.

If 5T & 0 and t & t~ the system behaves as a younger
system and the greater the value of 5T, the younger the
system seems to be.

If 5T &0 and t & t, the system seems to be older and
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FIG. 2. Thermoremanent magnetization for waiting times
t = 100, 300, 1000, 3000, 10000;D = 17; T=0.2; and h =0.1.

FIG. 4. Fitting (for t « t ) of the correlation functions of
Fig. 3. The plot shows the autocorrelation functions times
t ' for each waiting time vs t/t .
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FIG. 5. Autocorrelation function C(t+t, t ) vs time t in a
"temperature jump" simulation. D =15, t„=3000, T=0.2, and
5T=+0.01.

the greater the absolute value of 5T the older the system
seems to be.

At times smaller than the waiting time (t &t ) the
response of the system is the opposite. The 5T&0
(5T&0) curve is below (above} the reference 5T=O
curve. Furthermore, the responses are in this range of
times asymmetric as can be seen in the inset of Fig. 5.
We do not have a full understanding of this point and to
draw a definite conclusion a more detailed analysis is
needed.

Second, we have performed some temperature cycling
simulations in the manner of the experiments in Refs. 18
and 19. We have found that the system is very insensitive
to short high-temperature pulses during the waiting time
in the whole range of subcritical temperatures. This last

result seems to indicate that the total waiting times we
have been using are rather short: assuming the effect of a
high-temperature pulse is somehow proportional to its
absolute duration, then a small percentage of a small
waiting time necessarily has a small effect. If this is the
case one should not draw conclusions on the symmetry or
asymmetry of the response to small changes of tempera-
ture since one expects asymmetries to be pronounced
only at very long times.

The model studied has both frustration and disorder.
It is interesting to understand the relative importance of
these two features as regards aging effects. With this aim
we have studied the fully frustrated model on the hy-
percubic cell. We have measured the correlation func-
tions (1} at constant temperature for various waiting
times and we have not observed any aging effect. Howev-
er, we have found that a very small amount of disorder
introduced changing at random the sign of a fixed small
percentage of the bonds suSces to make the system ex-
hibit these effects.

In conclusion, there is at present good evidence of ag-
ing effects in mean-field systems with ergodicity breaking
in the thermodynamic limit: "weak" and "true" ergodici-

ty breaking coexist. Our numerical results suggest that
mean-field models have a qualitatively similar dynamical
behavior to that of low-dimensional systems (cf. Refs. 8
and 9).
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