PHYSICAL REVIEW B

VOLUME 49, NUMBER 9

1 MARCH 1994-1

Effect of lattice vibrations on the ordering tendencies in substitutional binary alloys
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The effect of lattice vibrations on the ordering tendencies and phase stability of substitutional binary
alloys is analyzed. The alloy Hamiltonian is cast onto an Ising-like Hamiltonian through a cluster ex-
pansion of the vibrational free energy computed in the harmonic approximation. The temperature
dependence of the vibrational effective cluster interactions (VECI’s) is found for a general d-dimensional
alloy. Analytic results for the VECI’s for d =1 are derived. It is argued that the vibrations can have
pronounced effects on the phase diagram and on the short-range order at high temperatures.

The effect of the lattice vibrations on the phase stabili-
ty of binary substitutional alloys can be drastic. Recent
studies support this statement with both experimental
and theoretical results. Anthony, Okamoto, and Fultz!
measured the vibrational entropy of ordered and disor-
dered Ni;Al and showed that its contribution to the
phase stability is comparable in magnitude to that of the
configurational entropy. Theoretical computations of
phase diagrams that include crude approximations to ac-
count for the lattice vibrations,?”® show that the predict-
ed phase stability can be changed significantly when the
vibrations are brought into the model, improving the
agreement with experiment. In this paper, we develop
the formalism to include the vibrations into the first-
principle models to predict phase stability in substitution-
al alloys.

The energetics of the alloy can be modeled with an
Ising-like Hamiltonian that results from mapping the al-
loy Hamiltonian onto a lattice model using a cluster-
expansion technique.” In these lattice models, the occu-
pancy of site n is labeled by a spinlike variable o,
[0,=+1(—1) when an 4 (B) atom is on site n]. The
configuration (or substitutional state) of an N-site alloy is
described by an N-dimensional vector {o} of 1’'s and
—1I’s. The alloy Hamiltonian is

E({o})=3 Va0,{c}), 1

where the sum is over all clusters a of lattice points. The
cluster function o, is the product of all the spin variables
on cluster a and ¥V, is the effective cluster interaction
(ECI). The free energy of this Hamiltonian can be com-
puted with techniques like the cluster variation method?
or Monte Carlo sampling® and the results can then be
used to construct the phase diagram of the alloy system.
Values for the ECI’s of a given system can be obtained
by projecting the ground-state energy onto the cluster
functions,'®!! or by perturbing the local composition of a
suitable chosen disordered reference medium.!? In either
case, the effective interactions only contain zero-
temperature chemical information and no effect of vibra-
tions or electronic excitations. However, different alloy
configurations have different vibrational spectra and vi-
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brational free energies. Therefore, lattice vibrations can
influence the stability of ordered phases. The variation of
the interactions caused by thermal expansion and elec-
tronic excitations will not be considered.

The behavior of a model alloy system that has both
substitutional and vibrational degrees of freedom is
characterized by two different time scales. The lattice vi-
brations take place in time scales of the order of 10~ 13
sec, while substitutional interchanges occur in time scales
that are several orders of magnitude longer. If we assume
the vibrational degrees of freedom are ergodic over the
time scale of substitutional excitations, the alloy partition
function can be coarse grained by integrating, for each
substitutional configuration, over all vibrational states.!
Since the only significant degrees of freedom left after
this coarse graining are substitutional, the total free ener-
gy can be obtained in the phase space of a lattice model.
The Hamiltonian of this lattice model includes the
ground-state energy and vibrational free energy of a fixed
atomic configuration {o}. In analogy with (1), this
temperature-dependent Hamiltonian can be expanded in
cluster functions to get

F(T,{a})=S V (T)o{o}). 2)

Although the expansion coefficients ¥ ,(T) contain both
chemical (ground-state) and vibrational effects, we will
still use the term “effective cluster interaction” (ECI) to
refer to them. The purely vibrational part of this interac-
tion will be referred to as VECI (vibrational effective
cluster interaction). Similar to the definition of the pure-
ly chemical ECI,’ the nearest-neighbor VECI is defined
as

Vo1 =3(F5) +(F38) —(Fi% ) —(F3%))
EAZ,IFVib , 3)

where ( F)i% ) is the average vibrational free energy of all
configurations that have M- and N-type atoms at the sites
of the pair cluster considered. The operator A, is
defined in (3) for convenience.

The low- and high-temperature limits of the vibrational
free energy in the harmonic approximation for a given
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configuration of the binary alloy are given by!*

low T»Fin=£_ 5

> En+1)g,T"+2,

n=0,1,...
high T—F"™T)=—T InT+pu,T @)
+FlT—1_ﬂ_T—3+ cee
24 2880

where p, is the nth moment of the vibrational density of
states (VDOS), with p defined as the logarithmic average
of the frequencies, ¢ is the Riemann zeta function,'> and
g, is the nth derivative of the VDOS at the origin. The
Boltzmann and Planck constants have been set to 1. In
(4), only g, and u, depend on the configuration of the al-
loy. Therefore, the leading high-temperature term,
— T InT, does not contribute to the VECI.

After expressing the moments of the VDOS in terms of
the dynamical matrix'® and using (3) to get the VECU’s,
the final result is

low T—V, ()= %AzlerD 172

- 2 ;(n+1)A2y1gnT"+2 ,
n=0,1,... (5)

hlgh T— Vz‘ 1 ( T) = A2, ,ln detD + FIT;AL 1TrD

™|~

A T

where D is the dynamical matrix.'* These results can be
easily generalized for any VECI (V,) replacing the
operator A, ; by conveniently defined Aa’s.7 Expressions
(5) are completely general for harmonic alloys, account-
ing even for relaxation of the atoms away from the ideal
lattice sites (which have been recently proven to be im-
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portant in the determination of phase stability; see, for
example, Ref. 17).

We can already derive some conclusions. At T =0, the
VECT’s are determined by the zero-point vibration. The
first power of T in the low-temperature limit is d +1
where d is the dimensionality of the system (because for
n <d—1, g, vanishes). At high temperature, the VECI’s
are linear in T, with the first correction being of the order
of 1/T. This fact will have important consequences for
the transition temperatures of ordered alloys, and the
short-range order at high T (see below).

If the force constants are known for a three-
dimensional alloy on an arbitrary lattice, the terms in Eq.
(5) can be computed numerically. We will now show that
analytic results can be obtained for a simplified one-
dimensional model. Although these results might not be
quantitatively correct for higher-dimensional systems,
they may still give insight into how the vibrations
influence the configurational disorder.

Consider a one-dimensional alloy of 4 and B atoms of
masses M , and M. Each nearest-neighbor pair is con-
nected with an ideal spring of constant ¥ 44, ¥ g, OT ¥ 45
depending on the occupation of the pair. The dynamical
matrix is symmetric tridiagonal with elements

Di=(y;—1itvii+1)/M;
and
Di,i+1=_?’i,i+1\/MiMi+1 .

To test the analytic results we obtained, we performed
numerical calculations of the VECI’s on chains of
10000-50 000 atoms, averaging over 150 configurations.

The high-temperature form of the VECI’s can be
solved exactly, using (5) and the dynamical matrix for the
linear chain defined above. After lengthy algebra, the
final result for the nearest-neighbor VECI is

. 1 Y 44Y BB 1 | Y44 . VBB 1 1 1
high T—V, |(T)=—~1n | 144788 | 1 | Va4 | VBB RN E
1g — 2,1( ) 3 n 'VABZ 48 M, M, Y 4B M, M, T
1 Yaa |© [vss |’ 1 1 1 1
AA BB
—— |3 + i _ 2 = .
s760 | |ar, | 72| ar, | T2V Mmoo, || ©

The first term in the rhs of (6) was already obtained by
Bakker!'® and Matthew et al.!® The numerical results we
obtained agree with (6) within numerical precision. Simi-
lar derivations show that all the other VECI’s vanish in
the infinite-temperature limit. As a consequence, the
cluster expansion is convergent at high temperatures.

The low-temperature coefficients cannot be solved ex-
actly but a good approximation can be obtained by
analyzing the elastic limit. We replace the binary chain
by a monatomic one with the same elastic properties.
The values of u, and g, can then be expressed in terms of
the lattice-averaged cluster functions on the point cluster
({o)) and the nearest-neighbor cluster ({0, ,)). After
linearizing p; and g, around the chain with random oc-

[
cupation ({o,)=0, (o, ) =0) we obtain

2 - 1 o) a-
T a2 VM 4m ql/?

low T—V, ((T)=— VMT?

-3 (Z)a_aﬂ,/zM”zT“—F R V)]
64m
where
1 1 1 _
ay= + + ’ M'_(MA‘*‘MB)/Z,

Y44 VBB Y4B
£(0)=1.645, £(2)=1.082 .

To test the two approximations made to obtain the
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low-temperature result (7), i.e., the elastic limit and the
linearization, we computed ¥, ;(7=0) numerically for
137 different sets of the parameters of the system (M ,,
Mg, ¥ 44> VB> ¥ 48 )- In Fig. 1 the numerical results are
compared with those in (7). Reasonable agreement is ob-
tained. Formula (7) fails to predict the ordering tenden-
cies at low T of isotopic disordered chains, i.e., those
chains for which all the spring constants are equal.

To estimate the temperature range for which Eq. (6)
and (7) are valid, we computed ¥, ;(T) numerically for a
linear chain with y,,=1, vp=3, vy 4=1.2, M =1,
Mp=1.5. Figure 2 shows the results. The Debye tem-
peratures for pure A4, pure B, and ordered AB structures
are shown in the temperature axis. The slight difference
in the slope at high T is due to numerical errors, while
the differences at low T are due to approximations intro-
duced to derive (7). It can be seen that two terms in the
high-T limit and two terms in the low-T limit suffice to
represent the temperature dependence of the VECI at all
temperatures.

Most of the important features of alloy phase diagrams
occur at temperatures that are generally of the order or
larger than the Debye temperatures of the system. From
Fig. 2 we then expect that the first term in the high-7 ex-
pansion will dominate the VECI’s. The value of the
VECI for this example is a sizable fraction of the temper-
ature (recall k3 =1), and therefore will significantly effect
the phase diagram.

The leading term of the VECI at high T is independent
of the masses of the atoms for the linear chain [see (6)].
This is also a well-known result for an alloy in any dimen-
sions. From the leading term in (6), we see that if the
spring constant between the 4 and B atoms is smaller
than the geometrical average of the spring constants be-
tween like atoms, the vibrations will induce ordering in
the alloy, while phase separation will be favored other-
wise. On the other hand, an arithmetic average for y 45
would induce ordering. The importance of the results ob-
tained can be illustrated by considering two examples:

0.2 F
O]
simulation o :
computed with (7 +
0.1 P (7) @ﬁﬁ
og°-‘2+++
A
- it
e L . ¥ it
& 0 P ¥ 1
E : MM*
:>N +,$:;$2
_0 l +4d) -
: ++ T5oof
s 30
),.,J*'o"w
<
_O 2 -Oo <
o

Systems (see caption)

FIG. 1. Comparison of the zero-temperature VECI comput-
ed with Eq. (7) and numerical results. The 137 different systems
scan the sets of parameters 0.3 <7y g, ¥ 43 <3, and 1 <Mz <3,
while keeping 7 ,,=1 and M ,=1. The systems are ordered in
the horizontal axis in increasing value of V,, as obtained nu-
merically. It can be seen that Eq. (7) underestimates the abso-
lute value of the VECI for large VECI’s.
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FIG. 2. Nearest-neighbor VECI as a function of temperature
for a linear chain with y,,=1, yps=3, Yy =12, M,=1,
Mjy=1.5. Debye temperatures for different configurations are
also indicated.

the change in the predicted transition temperatures for
ordering and phase-separating systems and the limit of
the short-range order (SRO) parameter at infinite temper-
ature.

Consider the phase stability of substitutional binary al-
loys on the fcc and bcce lattices with nearest-neighbor
ECI’s and nearest-neighbor central force constants. If
the transition temperatures are higher than the Debye
temperatures of the system, only the first term in the
high-temperature VECI needs to be kept. Then, the total
nearest-neighbor effective pair interaction becomes
V,1=Vc+TVy, where V. is the chemical ECI and
Vy=1A, IndetD. From numerical experiments, we
have found that for 3D lattices a good estimate for

.3
Vy is Eln(YAAYBB /7’2,48)

(this result is exact in simple cubic lattices with nearest-
neighbor central force constants®®). Table I summarizes
the transition temperatures for fcc and bcc alloys with
composition 1+ as a function of the VECI (generalization
to arbitrary composition is straightforward). We can see
that a relatively small force constant disorder will have a
pronounced effect on the transition temperatures. Due to
the high transition temperature for phase separating fcc
alloys, the result of vibrations will be noticed best in these
systems: for alloys where ¥ ¥ pp /7% =1.3 (which is a
reasonable value), vibrations lower the transition temper-
ature by a factor 2 from the value one would get neglect-

TABLE 1. Transition temperatures for equiatomic alloys on
the fcc and bee lattices with nearest-neighbor chemical (V)
and vibrational (7TV),) effective cluster interactions.
V21=Vc+TVy is the total nearest-neighbor effective cluster
interaction.

Lattice Segregation (¥, <0) Ordering (7, >0)
T, T,
fec < - 9.8 e o 1.7
Vel 149.8V, Ve 117V,
T T,
bee c__ 6.5 fe 6.5
Vel 146.5V, Ve 1—6.5V,
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ing the vibrations. The frustrated geometry of the fcc lat-
tice will make the effect less pronounced for ordering sys-
tems. For the bcc lattice, the magnitude of the effect is
the same for ordering and segregating alloys. In lattice
dynamic studies of binary alloys, it is sometimes assumed
that y 5=V V44Yps When better estimates are not
available. We can see from our results that this is a risky
assumption when studying phase stability, because a
small deviation in the value of ¥ 45 induces a big change
in the predicted phase diagram.

Another manifestation of the temperature dependence
of the ECI’s will show up in the average atomic
configuration at infinite temperature. It is generally as-
sumed that in this limit the Warren-Cowley SRO param-
eter (a) vanishes, based on the fact that the completely
disordered state has the highest configurational entropy.
This is valid only when the ECI’s approach a constant
value at high 7. From the derivation above, we see that
if the lattice vibrations are considered, the vibrational en-
tropy introduces a linear T dependence in the ECI’s at
high T. It can be easily shown that, in that case, a will
approach a finite nonzero value when T— . This value
can be predicted if the leading high-temperature term of
the VECD’s is known [see (5)]. This possible behavior of
the SRO was already pointed out by Miller?! and some
experimental evidence to support it is available for Ni-Fe
and Ni-Cu alloys.?>?
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To summarize, the contribution of the lattice vibra-
tions to the free energy can be included in the calculation
of phase diagrams using the formalism developed in this
paper. By integrating out the vibrational degrees of free-
dom, we obtain an Ising-like Hamiltonian with
temperature-dependent effective interactions. When the
dynamical matrix as a function of the alloy substitutional
state {0} is known, (5) provides the general procedure to
get the temperature-dependent vibrational ECI’s that
have to be added to the chemical ECI’s to compute phase
diagrams. For temperatures larger than the Debye tem-
peratures of the system, the vibrational ECI’s become
linear in temperature. For a one-dimensional alloy with
nearest-neighbor spring constants, analytic expressions
have been obtained for the high- [see (6)] and low- [see
(7)] temperature forms of the vibrational ECI on the
nearest-neighbor pair. For this simplified model, the
cluster expansion of the vibrational free energy is rapidly
convergent at high temperatures. The vibrational contri-
butions to the ordering tendencies should be included in
future phase diagram computations, as their effect could
be comparable to that of chemical effective interactions.
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