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Within the framework of the ladder-diagram approximation, the manifestly gauge-invariant expres-
sion for the static electromagnetic response kernel of the anisotropic narrow-band superconductor con-
sisting of Bloch electrons is derived, on the basis of the charge-conserving current expression for them
under the magnetic field. For the two-dimensional square lattice, the magnetic penetration depth A, (T)
is calculated as a function of hole density n, and temperature T (<T,). The resultant A;(0) has a
symmetrical dependence on the hole and electron densities, and is almost unaffected by the anisotropy of
the order parameter. The behavior of A, (T)/A.(0) as a function of T/T, for the d-wave state substan-
tially deviates from those for the extended and usual s-wave states for all T < T,. The obtained results
are compared with those of the effective hole- and electron-mass approximations.

I. INTRODUCTION

In spite of a number of experimental and theoretical
works, the pairing state of high-T, superconductors has
not been fully understood. The magnetic penetration
depth A, (T) (as a function of temperature 7) is one of the
most important quantities that give information on the
pairing state. In most recent experiments on A, (T) of
single-crystal oxide superconductors,!™* the s-wave-like
behaviors of the weak- and strong-coupling superconduc-
tivities are observed. While, in some studies,’ the simple
power-law behavior A, (T)~T? at very low temperature
is reported.

In the recent hydrodynamical strong-coupling treat-
ment,® which involves some phenomenological effective
mass approximation, A; (T) for the d-wave state has been
calculated. In most theoretical studies for high-T, super-
conductors, however, the pairing interaction is assumed
to work over the whole region of the narrow band, and
various properties are calculated for Bloch electrons in
the narrow tight-binding model. The effect of the van
Hove singularity on A; (T) also should be examined, since
these oxide superconductors have the quasi-two-
dimensional character. Furthermore, in most high-T, su-
perconductors, the carriers are found to be holelike.
Therefore, we consider it worthwhile to investigate
theoretically A, (T) of the anisotropic superconductor
consisting of Bloch electrons and that consisting of holes
in detail.

Some studies have already treated this problem.
Schneider and Frick’ have investigated the effect of the
anisotropy due to the layered structure on the behavior of
Ap(T). They have calculated A,(T) by making the
difference between the paramagnetic term in the super-
conducting state and that in the normal state. For low
hole density n,, their A; (0) at T =0K has approximately
the London form but with hole mass and hole density.’
Hirsch and Mirsiglio® have investigated A, (T) of the lay-
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ered system with a different mechanism, by using the
charge-conserving expression for the current carried by
Bloch electrons under the magnetic field. However, they
have not explicitly examined the problem of the gauge in-
variance. By using the charge-conserving expression for
the current carried by Bloch electrons under the magnet-
ic field,” Ohkawa has derived the expression for A (T) of
the impure strongly correlated superconductor and has
calculated A (T) for the d-wave state analytically for low
temperature'” and numerically.!' However, he has not
explicitly examined the gauge invariance of the elec-
tromagnetic response kernel of this system. His approxi-
mated A, (0) was written only in the usual London form
with heavy electron mass and electron density. !!

In a previous paper,'? by using the above current ex-
pression for Bloch electrons,’ the present author also de-
rived the expression for A (T) of the anisotropic
narrow-band superconductor; the expression essentially
coincides with the pure (and no correlation) limit of
Ohkawa’s; %11 A, for the two-dimensional square lattice
has been calculated numerically as a function of chemical
potential u and temperature T (<T,). The resultant
AL (T) in Ref. 12, however, is based on the simple pairing
approximation, and is not gauge invariant basically. In
the present work, in Sec. II we give the slightly corrected
expression for the current carried by Bloch electrons un-
der the weak long-wavelength electromagnetic field; by
using this expression, we show that the ladder diagram
approximation'>!* is consistent with the gauge invari-
ance for the general anisotropic narrow-band supercon-
ductor consisting of Bloch electrons. Within the frame-
work of this approximation, in Sec. III we derive the
manifestly gauge-invariant expression for the static elec-
tromagnetic response kernel, and calculate A; for the
two-dimensional square lattice as a function of hole den-
sity n;, and temperature T (<T,). We also compare the
obtained results with those of the effective hole- and
electron-mass approximations. A conclusion is given in
Sec. IV.
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II. MODEL AND FORMULATION

In this section, we apply the ladder diagram approxi-
mation'>!* to the electromagnetic response of the general
narrow-band anisotropic superconductor consisting of
Bloch electrons. We consider the following general
tight-binding model on a D-dimensional lattice:

H= ¥ t(r—r)e} c., +H.c.

(r,r')o
St t S Va—Omgne, @D
r,o (r,r')oo’

where ¢t (r—r’) is the transfer integral and V(r—r’) the
attractive interaction; c,, and n,, are, respectively, the
annihilation and number operators for an electron of spin
o with the chemical potential p at the rth site. By using
the Nambu notation!® and by dropping some nonessential
terms, we rewrite Eq. (2.1) into the Fourier transformed
form

2N > V(q)‘l’k+q/273‘l’k q/z‘l’k PR 3% +q/2 0
k,k',q

(2.2)

where €,=3,t(r)e ¥ and V(q)=3,V(r)e ‘% with r
relative lattice sites; ‘Ill [clT,c w b (1=1,2,3) are
Pauli matrices, and N is the total number of the lattice
sites. The wave-number summations are restricted
within the unit cell of the reciprocal lattice.

We consider only the singlet superconducting state.
The temperature Green’s function in the Hartree-Fock
approximation is given by

Gk io,)=— ["dre™ (W (r¥f0)

={iﬂ)n—(€k—ﬂ)T3_Ale}-l 5 (2.3)
where w, =(2n +1)7T with T the temperature and n is

an integer, 5=1/T, and
AkEEV(k—q)(cﬂ“ch )/N
q

is the order parameter chosen to be real and is deter-
mined by

A= — LS V(k—q)r,Glaio,)n

N

nq
V(k—q)A
=— —1-2—$tanh———q~rl ,

N<  2E, 2T

(2.4)

with E, =1/ (e, —u)*+ A]. Equation (2.4) is expressed in
the form of the self energy (in which we have neglected
some contribution in proportion to 73, for it is only to
|

=i :
pl@)=—eI¥, ¢, ¥ +qn (L=0),
X

. t 9€; .
,P(q)= —eE\I/k_q/Z a“k' Towk+q/2 (,u-zl = 1,. .
k i
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give a nonessential correction to €, ); we will use this ex-
pression (2.4) to see the generalized Ward’s identity
below. We determine pu by

€ — E,
k 'utah——

1_
E, 2T

_ _ 1 _1
ne=2—nh—-ﬁ§nk=—ﬁ§

(2.5)

where n, is the electron density.

If the system is under a weak long-wavelength elec-
tromagnetic field described by the vector and scalar po-
tentials 4;(r)(i =1,...,D) and @(r) respectively, and in
addition the Coulomb potential between electrons is
switched on, then the following terms are added to the
Hamiltonian (2.2):

H'=H, +Hd+HC , (2.6)
p*——E EJ" —q)4,(q), 2.7
q u=0
e? 32
Hy= 2c2N2% ”2;1 3k, ak \Pk+q/2+q 7273
Xy _qn-q24i(Q)4;(q"), (2.8)
He=—= 3 v(@¥ g7
2N, % 1
X\yk—'q/Z‘I’L—qﬂT Witqn 2.9

where v(q)=2me?/q for D =2 (4me?/q? for D =3) is the
Coulomb potential. In Eq. (2.7), we have used the
(D +1)-dimensional metric'*

1 (u,v=1,...,D)
guw=1"1 (p=v=0) (2.10)
0 (otherwise).
The four-component vector potential is given by
A;(q) (u=i=1,...,D)
A4,(q)= cp(q) (u=0). (2.11)

Equations (2.7) and (2.8) are the coupling terms to the
external field. They are constructed to yield the follow-
ing current expressions when the derivatives are taken
with respect to — 4,(—q)/cN." The current carried by
Bloch electrons under the weak long-wavelength field
A4,(q) should be expressed as

j(@=jb(q)+ji(q) (2.12)
where the four-component paramagnetic- and
diamagnetic-current densities are given by

7D)’
(2.13)
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and
o 3 Ta v 4,.(q) (u=i=1,...,D)
_ € _ , ., : =i=1,...,D),
f,‘f<q)= CNkzq'j§1 akiakj k—q/2+q/2T3¥k+q/2—q 249 H 2.14)
0 (p=0),

respectively. In Eq. (2.13), 7 is the 2 X2 unit matrix; the
(1,...,D)th and Oth components are the paramagnetic-
current and charge densities, respectively. The previous
expression® ' for j2(q) should be slightly corrected into
the form (2.14) (the only q'=q terms in Eq. (2.14) were
taken in the previous expression). Under this correction,
and if only terms up to the first order in 4,(q) as well as
in g are considered, then the following equation of con-
tinuity is satisfied for the original Hamiltonian H +H':

D
pl@)+iZ q;ji(q)=0, (2.15)

i=1
where p(q) denotes the derivative of p(q) with respect to
time. If we concentrate on the linear response to the
weak field 4,(q), the Fourier transform of the expecta-
tion value of the current density is expressed as
D
4
Jﬂ(q,(l))—_‘-—"—‘; zoKﬂv(q)w)Av(q,w) ’ (2.16)
=

where the electromagnetic response kernel K ,,(q,0) is
given by

- d
K, (q0)=Ki, (q0)+K},(q0). (2.17)
Here, the paramagnetic term is described by
4 ,
K,’;v(q,a))=—clzr-Pw(q,w+18), (2.18)

with
J

, 1 r8 0,7, . .
Put@iog) == [(dre™ (L@ nit—a0) ,

(2.19)
and the diamagnetic term is obtained as
d
K.(q,0)
47e? asz
EYREY s ="‘=1,-"$
(2.20)

0 (otherwise).

In Eq. (2.19), { ) denotes the thermal average of the sys-
tem under no field.
In the ladder diagram approximation, as shown di-
agrammatically in Fig. 1, P,,,(q,i®,, ) is expressed as
. _eT
Puv(q’lwm )= _N—zTr[Yy(p— P+ )G(p+ )
np

13,14

XTp4+,p_)G(p_)], (221
where p,=(ptq/2,iv,tiw, /2); the free vertex
Yup—,p4 ) is given by

% 0 (u=i=1,...,D)
o To \wW=I1=1, ...,
(p_.pi)=19:
PP+ (2.22)

T3 ([l-=0);

the vertex function " (p ;. ,p _ ) satisfies the linear integral
equation

Typsp )=V pssp- )—YVT-zﬁmh )T,k 4,k _)G(k_)rs7(p—k)
Lk

+I7(q)r3%2Tr[r3G(k+)I‘V(k+,k_)G(k_)] ,
Lk

with k, =(k+q/2,iv,*ie,, /2) and V(k)=V(k)+v(k);
the last term on the right-hand side of Eq. (2.23)
expresses the vacuum-polarization correction.!* In our
scheme, the effect of the Coulomb interaction v(p—k) in
the second term of Eq. (2.23) is considered to be small.
Therefore, below, we will take V(p-k) in this term as
V(p—k) (as in the usual non-Bloch treatment!*) so as to
be consistent with Eq. (2.4) [instead of adding v(k—q) to
V(k—q) in Eq. (2.4)].

This approximation is consistent with the gauge invari-
ance as shown below. With the help of Eq. (2.4), we can
show that 73G ~Yp_)—G p,)7; satisfies the same
equation that is constructed for $2_.T" (p,,p_)gq, [with
q=(q,iw,, )] from Eq. (2.23). Hence, we obtain the gen-
eralized Ward identity

D
ST,p4p-)9,=7G " p_)—G Hpy)rs.

v=0

(2.24)

(2.23)

P+ FV(D+oD_)

7“(9_-9-{.)
Pyvo@.top)= e? x = - —-
Q q
P_
+
+
- - = YT - —<— 4
a Q
P-
P-
P+ K,
+ - —<-
P_ k_ a

FIG. 1. The equations for the polarizability kernel P,, and
the vertex I',. Solid and wavy lines represent electron and the
sum of the pairing and Coulomb interactions, respectively.
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By using this identity and Eq. (2.21), we can easily show
(for small q)

477'
pel 2 P,w(q,tw )q,

2
47're

1=l P

Finally, from Egs. (2.17), (2.18), (2.20) and the analytical-
ly continued form of Eq. (2.25), we can see that the
gauge-invariance condition

D
j=1

(2.25)

0(@@)0=0, (2.26)

is satisfied for the general potential ¥ (q).

III. RESPONSE KERNEL AND PENETRATION DEPTH

Here, by using the ladder diagram approximation ex-
amined in Sec. II, we derive the manifestly gauge-
invariant expression for the electromagnetic response
kernel K;; (i,j = .,D) at zero frequency, and calcu-
late the penetratlon depth for the two-dimensional square
lattice (D =2). We assume that the transfer integral —¢
and the attractive interaction — ¥ work only between the
nearest neighbor sites: €,=—ty, and V(k)=—Vy,
with y, =2 [cos(k,a)+cos(k,a)] and a the lattice con-
stant. The order parameter has the following forms for
the possible extended s- and d-wave states: Af=A%wj
(@=s,d) with w{=cos(k,a)+cos(k,a), w{=cos(k,a)
—cos(k,a). From Eq. (2.4), we can see that A” is deter-
mined by

L YRl w B amsa) (3.1
SN2 g, mhyp (eTsd) '
where E, =V (e,—pn)*+(A%)Xw{)2. Here, we note that

our potential can be rewritten as
V(ip—k)=—V[{wiw] +wiw{ +wf,"wi" +wp’w£y 1,
(3.2)

with wy =V 2sin(k;a) (i =x,).
We assume that the solution T';(p . ,p_) (i =1,...,D)
to Eq. (2.23) has the form

riP)+ 33 Spwbxbiqio, )+ V(g in, )T

for the superconducting a-wave state (a¢=s or d). After
some manipulation, we can obtain the expressions for X B
(B=s,d,p,,p,) and Y;; (the details of these expressxons
with general iw,, and the properties of the collective
mode are now in preparation to be published elsewhere).
At ©=0, the analytically continued forms of X5, X5, and
Y;; vanish. We expand Eq. (2.23) (written in terms of X5
and X2 ) up to the order of g2. We can solve this equa-
tion by using Eq. (3.1), integration by parts, and some
symmetries. For a-wave state, when we take the limit
g—0, only X5 has the essential contribution terms of the
order O(g~!) as

D
2A“2R,qu
X5(qo=0)=——I="1—v—1, (3.3)
2 qIleqm
Lm=1
where R;; is given by
Af 9e o€ oAY
Rijzi —k k f——k——(ek—p)—-—k
N4 E} 9k; ok; ak;
of(Ey) 1 E,
—t == — .
3E, 2E, tanh 3T (3.4)

We have finite values of the order O (1) for X5 (i =x,y).
However, these coefficients only correct nonessentially
y:(k)=0€, /dk; 1y in [';, corresponding to that correction
of €, by the self-energy, which we have neglected in Eq.
(2.4). So, we neglect these coefficients, and our solution
reduces to that for the pure a-wave potential
V(p—k)=—Vwywg. [If we retain these corrections,
d€, /3k; in Eqs. (3.4)-(3.6) are replaced by the corrected
ones.] It should be noted that the Coulomb potential has
no effect on the vertex at ®=0. The rather complicated
expression (3.4) can be rewritten as

aek Oe 3f(E,) e,
i 2 ok, ok, oE,  okok, k| O

Eq. (3.5) can be easily transformed (by integrating the
second term by parts) into its original form (3.4). By us-
ing Eq. (3.3), we can reduce Eq. (2.21) to

2 2 afk aek af(Ek
P;(q,0)= <~ 3k, dk; OE,

D
( zRiI(II (3 Rng,)

—92 =1 - m=1 , (3.6)
2 QIleqm
Lm=1

where the second term on the right-hand side is interpret-
ed as the contribution from the collective mode. Finally,
from Egs. (2.17)-(2.20), (3.5), and (3.6), we obtain the
gauge-invariant form for the static total K;; as

D D
( ERi[q])( 2 ijqm)

0)_41re R, - =1 . m=1
2 qulmqm
ILm=1

(3.7

This form is easily seen to satisfy the gauge-invariance
condition at zero frequency: EleK,.jqj =0 (K,; becomes
purely transverse). Furthermore, it is considered to be
the generalized form of the hydrodynamical kernel'® for
the singlet superconducting state as seen later; R;; can be
interpreted as the superfluid density per effective mass. If
R;; has the simple form R;8;; as in our case, it follows
that K; is of the form
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4rre?

_ q:4;
K’I(q’O)-—T 8,1_7 Rii . (3.8)

The London penetration depth of our two-dimensional
square-lattice system (D =2) is obtained from Eq. (3.7) or
(3.8) as

_a_ 4me?
)\.L(T) 2=—CZ_RX"(T)
_aret 1 [, (24 U E) | Pe
o2 N% ok, | OE,  ak2 *
(3.9)

This expression coincides with that obtained in the previ-
ous report!? for the transverse field in the Hartree-Fock
approximation. Here, however, Eq. (3.7) or (3.8) guaran-
tees that the expression (3.9) is really gauge invariant.
The expression (3.9) also essentially coincides with the
pure limit of Ohkawa’s more general one.'®!! The gauge
invariance, however, has not been examined explicitly in
Ohkawa’s papers.'®!!

For general n,, we calculate A;(7) numerically. The
chemical potential u is determined by Eq. (2.5). At
T=0K, only the second term in Eq. (3.9) contributes,
and the resultant A, (0) as a function of n, is almost not
affected by the anisotropy of Af as shown in Fig. 2. We
also see the symmetrical dependence on hole and electron
densities.

The resultant behavior of A, (T) /A, (0) as a function of
T /T, is affected by the anisotropy of Af as shown in Fig.
3 (in the figures, the results for the usual s-wave state and
the empirical two-fluid model are added for comparison).
The extended s-wave behavior is almost equal to the usu-
al s-wave one, while the d-wave one substantially deviates
from the s-wave one for all T < T,. These results for the

AL (0)/(c2/8ne2ta?) 172

o.o% / ) \_ 0.3 :\;
[ o

extended’ . < ‘extended| 0.2

L -s/ - usual-g o =s
i AN 0.1
0.0 0.5 1.0 1.5 2.8"°

"h
FIG. 2. The penetration depth A, (0) and the transition tem-
perature T, as functions of hole density #,. The result for the
effective hole- (electron-) mass approximation A2 (0) [A$(0)] is
also shown.
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fixed n, are almost identical with those obtained for the
fixed y in the previous report.'? The d-wave (extended s-
wave) gap has nodes (no node) on the Fermi surface and
yields T-linear (exponential) behavior of A, (T) in the
low-temperature region.

For the d-wave state, the similar behavior has already
been obtained by the recent hydrodynamical treatment®
and by the previous works for Bloch electrons. "2 The
result in Fig. 3 seems to show that the experimental re-
sults' ~* for the high-T, superconductors have the s-wave
character even in the near-T, region (where Ohkawa!® as-
serts the existence of the d-wave state to explain the
NMR experiments). If we take the s-wave state for high-
T, superconductivity, however, the experimental simple
power-law result for A, (T) at very low temperature® and
the NMR experiments'® remain unresolved.

For different n, in Fig. 3, A (T)/A.(0) differs by a
small amount, since the available part of k space in Eq.
(3.9) differs a little for different u. However, no special
feature due to the van Hove singularity has not been ob-
tained even at n, =1 (where the Fermi level is located at
the point of this singularity) as seen in Fig. 3.

We next compare the above results with those of the
following effective mass approximation. For holelike
(electronlike) carriers with hole (electron) mass
m,=1/2ta® (m,=1/2ta?), Eq. (3.5) can be approximate-
ly rewritten as

nk 2k;k; f(Ey)
Rij=_1___1_ 1 _Jg+n§8ij
mg mg |[NY me OE,
(E=e,h), (3.10)

where ng is the superfluid density tensor for holelike
(§=h) or electronlike (§=e) carriers; wy as well as €; in
E, are replaced by their suitably expanded forms. For
&=h, we interpret k; as k{=k;tm/a, and we should
make this approximation only after replacing n, in Eq.
(3.5) safely by —(2—n,). Hence, Egs. (3.7) and (3.9) are
approximated by

1.0 e
N N 1-(1/704
0.8f N
o~ L \\\\ \\\‘\\
E 0.6+ V/t=2.0 ‘\\‘\\
g n =10 £
= =0.2, 1. . N
Z 1 B N NCE
- - —d \ \ 1
0.2 extended-s \\ "~
L e usual-s \
0l R
0.0 0.2 0.4 0.6 0.8 1.0
T/T¢

FIG. 3. The reduced penetration depth A (T)/A.(0) as a
function of reduced temperature 7 /T..
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D D
( znﬁql X 2 nﬁnqm)

2 = -
Kg(q,O)z 41re2 ng_ I=1 _ m=1 ’
mé—C
S 9Unimm
ILm=1
(3.11)
and
4mnt (T)e?
M(T)P=—T— (3.12)
mgc

respectively, for holelike (§=h) or electronlike (£=e)
carriers. For £=h (£=e), Eq. (3.11) has the hydro-
dynamical form'® but with hole (electron) mass and
superfluid-hole density n,-’}( T) [superfluid-electron density
n;(T)] given by Eq. (3.10). In view of this, our expres-
sion (3.7) for the original kernel is considered to be the
generalized form of the hydrodynamical kernel for the
singlet superconducting state. Equation (3.12) for £=h
also has the London form but with hole mass m, and
superfluid-hole density n (T).

At T=0K, n{,(T) in Eq. (3.12) is equal to ng as seen
from Eq. (3.10); this result for T=0K coincides with
that already obtained by other treatments.”® As seen in
Fig. 2, in the holelike-carrier (electronlike-carrier) region
of low (high) n,, the resultant A% (0) [A%(0)] as a function
of n, coincides with the original A;(0) calculated from
Eq. (3.9). These, however, deviate from the original
A; (0) as the carrier densities increase. Especially, for low
ny, we cannot use the effective electron-mass approxima-
tion (§=e) with n, as far as the absolute value of A, (0) is
concerned.

At finite temperature, the resultant behavior of the ra-
tio A% (T)/A%(0) as a function of T/T, in Fig. 4 qualita-
tively agrees with the original one shown in Fig. 3.

IV. CONCLUSION AND DISCUSSION

In this work, we have examined the Meissner effect in
the anisotropic narrow-band superconductor consisting

1.0 T
L R e =TT
0.8 { \ .
o~ L g \‘ E
e L v/t 2.0\
= 0.6 L
= N -
N r ’ N
= 0.4L ------- usual-\s\. N
e (n,=0. 81\
= extended—s "\ S
0.2 + (n,=0.2) \ T
| ——4d (np=0.6) N
0.0 bt N
00 02 04 06 08 1.0
T/Te

FIG. 4. The reduced penetration depth in the effective hole-
mass approximation A% (T)/A%(0) as a function of reduced tem-
perature T/T,.

of Bloch electrons, within the framework of the ladder di-
agram approximation. We have slightly corrected the
previous charge-conserving expression’” !> for the
current carried by Bloch electron under the magnetic
field (though this correction makes no change in our re-
sult). By using this expression, we have shown that the
ladder diagram approximation is consistent with the
gauge invariance also in our system. The obtained
gauge-invariant static electromagnetic response kernel
K;; has the generalized form of the hydrodynamical ker-
nel; '® if the carriers are holelike, the obtained form is ap-
proximated by the hydrodynamical one but with hole
mass m,, and superfluid-hole density tensor; the Coulomb
potential between electrons has no effect on K;; at zero
frequency. The resultant expression for the London
penetration depth A; coincides with that obtained for the
transverse field within the pairing approximation; for low
n,,our A; is approximated by the London form but with
hole mass m;, and superfluid-hole density, even at finite T.

We have calculated A; for the two-dimensional square
lattices as a function of hole density n, and temperature
T. The resultant A;(0) has the symmetrical dependence
on hole and electron densities, and it is almost not
affected by the anisotropy of the order parameter. The
behavior of A;(T)/A;(0) as a function T /T, for the ex-
tended s-wave state is almost equal to the usual s-wave
one, while the d-wave one substantially deviates from the
s-wave one for all T <T,. The high-T, superconductors
seem to show the s-wave character even in the near-T, re-
gion as far as A, (T) is concerned. No special feature due
to the van Hove singularity has not been obtained in the
T dependence of A .

We have compared the above results with those in the
effective hole- and electron-mass approximations. The
results for A, (0) in these approximations coincide with
our original one in the corresponding low carrier-density
regions, but deviate from it as the carrier densities in-
crease. It should be noted that we cannot use the
effective electron-mass approximation (with electron den-
sity) when we calculate A; for holelike carriers, as far as
the absolute value is concerned. The T-dependence of
Ar(T)/A (0) in the effective hole-mass approximation
qualitatively agrees with that of the original one.

There are some problems in the treatment of this work.
It has been assumed that there is no renormalization
effect in the band structure (except for the small transfer
t) and that two electrons can occupy the same site. This
should be altered to explain the properties of the real
high-T, oxides in which the strong Coulomb repulsion
exists on Cu sites. The effects of impurities, the inter-
layer hopping (causing anisotropic mass) and coupling,
and the strong coupling to the certain bosons have also
been neglected. Including these effects remains a future
problem.
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