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%e present a model for layered superconductors, where the order parameter between the layers is

nonzero, due to proximity effects. In the limit of decoupled layers, this model gives all the terms of the
usual Lawrence-Doniach free energy, as well as new terms arising from the existence of an order param-
eter between the layers. The corresponding Josephson coupling is found to be field dependent. The

upper critical field normal to the layers has positive curvature as a function of T, and decreases with in-

creasing interlayer distance, contrary to the predictions of the Lawrence-Doniach model. In addition,
the anisotropy deduced from the critical fields 0,2 is markedly different from the low-field anisotropy.

I. IN+RODUCTION

The high-T, superconductors are layered compounds
made of alternating superconducting (S) layers, the Cu02
planes, and insulating or metallic layers. They pertain to
a larger class of materials including cuprate superconduc-
tor artificial multilayers Y 1:2:3/Pr 1:2:3(Ref. 1), conven-
tional superconductor multilayers with modulated com-
position (Ref. 2), low-temperature layered compounds
such as chalcogenides (Ref. 3), and quasi-two-dimensional
(quasi-2D) organic superconductors (Ref. 4}. One of the
main features of these superconductors is the weak inter-
layer coupling, leading to electronic anisotropy, which
becomes extreme in the Bi 2:2:1:2(Ref. 5), the Y/Pr mul-
tilayers (Ref. 1), and the organic compound (BEDT-
TTF)zCu(SCN)2 (Ref. 6). This results in a short eff'ective

coherence length P across the layers, which becomes
smaller than the interlayer distance d.

The simplest description relies on the three-
dimensional Ginzburg-Landau (3DGL) model, and ac-
counts for the anisotropy through an electronic mass an-
isotropy constant. It is defined as I =(M/m)'~, where
m and M are masses along and across the layers, respec-
tively. This constant is involved in the superconducting
properties, such as magnetization, critical fields, critical
currents, and resistivity (Ref. 7). However, specific
features of weakly coupled layered systems, such as the
quasi-2D character of the superconducting properties, lie
beyond this description.

The simplest model able to account for such a behavior
is the Lawrence-Doniach (LD) model, which retains the
CxL model for order parameter variations along each lay-
er but couples them through Josephson tunneling (Ref.
8}. This model differs from the 3DGL one mainly in its

consequences concerning thermal 6uctuations in the
mixed (vortex) state (melting of the vortex lattice,
Kosterlitz-Thouless transition), but also in specific
features for fields very close to the layer direction, e.g.,
kinks, the lock-in transition, and the intrinsic pinning by
the layers (Ref. 9). In the weak-field and low temperature
regime the LD model does not diff'er much from the
3DGL model, provided an effective mass anisotropy I,z
is defined from the Josephson coupling. One should em-
phasize that this coupling is assumed to be temperature
independent, so the same is true for the anisotropy con-
stant. Values of I,z of the order of 10 to 10, obtained
recently by torque magnetometry, point towards a very
weak Josephson coupling in compounds like Bi 2:2:1:2
(Refs. 5, 6, and 10).

However, even the LD model, in its usual formulation,
misses some important points. First, it assumes infinitely
thin layers, since it describes the order parameter as a
quantity that is zero between the layers, and equal to a
function %„(x,y} on the nth layer, where x and y are the
coordinates in the layers. The discreteness of 4 across
the layers leads to a dimensional crossover at a tempera-
ture T' below T„where P (T') is of order d/&2 (Ref.
3). Below T', the parallel orbital critical field H, 2

diverges in the LD model, since such a field cannot des-
troy superconductivity in the layers. Modifying the LD
model by accounting for a finite layer thickness do leads
indeed to a finite orbital H, z (Ref. 11). Besides, in lower
fields vortices may penetrate the 1ayers if do is large
enough, just as in the artificial Y 1:2:3/Pr 1:2:3superlat-
tices (Ref. 12).

Secondly, the Josephson coupling is taken as a con-
stant. However, it is known from the microscopic deriva-
tion of the Josephson tunneling current in a
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superconductor-insulator-superconductor (SIS) or
superconductor —normal-metal —superconductor (SNS)
junction that this coupling occurs through a proximity
effect (Ref. 13). The order parameter ~II extends through
the junction within a region depending on the charac-
teristics of the superconducting and junction materials,
such as the superconducting coherence length gs(T) or
the normal coherence length gz(T). Therefore, the cou-

pling should not be a universal quantity but may depend
on field and temperature, especially in the SNS case,
where 4 can extend over a large length. This may be im-

portant for high-temperature compounds involving me-
tallic layers that separate the superconducting layers, or
in superlattices such as Y 1:2:3/(Y,Pr) 1:2:3.

The main consequence of this should be a temperature
and field dependence of the effective anisotropy. Indeed,
in the low-field regime the anisotropy directly reflects the
Josephson coupling and can therefore be extremely large
if the latter is weak. On the other hand, a high enough
magnetic field is known to decrease the proximity effect,
thus affecting the Josephson coupling and the anisotropy
(Ref. 14). Moreover, in copper oxide superconductors or
superlattices, the superconducting or normal layers are
themselves made of coupled atomic planes, so they are
anisotropic, and this should be distinguished from the
effective anisotropy of the overall structure. The same
kind of distinction has to be made between the effective
coherence length g of the layered structure and the
coherence lengths gs or gN of the individual layers. For
instance, in the Lawrence-Doniach model, below the
crossover temperature T', P is much smaller than d. In
this case P is meaningless and the microscopic varia-
tions of the order parameter are indeed governed by the
parameters gs or g~.

Thus a more general model is required, which may de-
scribe the coupling by proximity effect and may be able to
yield both the LD model for weak coupling and a true 3D
model for strong coupling, depending on the parameters.
Such a model was recently proposed by Theodorakis
(Ref. 15). It assumes a z-dependent GL parameter a, and
a uniform mass I for electrons along the normal to the
layers z. This model is three dimensional in nature, but it
is able to treat the proximity effects in a simplified
manner. In Ref. 15, a was taken to be small between the
layers, without changing sign. This resulted in the possi-
bility of a LD behavior at low temperature and a 3D
behavior close to T, . In the LD regime, additional terms

appeared, which may introduce new physics, such as the
alternation of the sign of the order parameter from layer
to layer. Note that a similar assumption of spatially
dependent Ginzburg-Landau parameters was studied nu-

merically in Ref. 16.
In this paper we extend the model by including the

possibility of a(z) changing sign. Thus the coefficient
a(z} of the quadratic term is negative for S (supercon-
ducting) layers, and positive for N (normal) or I (insulat-
ing) layers. As a first stage, we focus on the case of very
thin layers. We explore in Sec. II the zero-field behavior
of the order parameter, and obtain an effective Josephson
coupling. In Sec. III we show explicitly that our model
can be mapped onto an effective LD model, with an

effective field and temperature-dependent Josephson cou-
pling. Furthermore, we obtain once more the new kinetic
term of Ref. 15, whereby the gradients of neighboring or-
der parameters are coupled. The upper critical field is
calculated in Sec. IV for both perpendicular and parallel
configurations. Finally, Sec. V is concerned with a quali-
tative summary of our work, and some experimental pre-
dictions of our model.

II. THE MODEL AND ZERO-FIELD RESULTS

Let us write the free-energy functional for our model in
zero field:

f f fdxdy dz ~(z)I+I'+Pl+I'/2

+ + 'i)+ + +
2m az 2m

(2. 1)

a(z) = —a, g 5(z/d —n)+az, (2.2)

where a& and a2 are positive temperature-dependent
quantities, while d is the interlayer spacing. We note that
outside the 5 functions a(z} is always positive, and thus
the order parameter tends to be very small. In fact, it
would be exactly zero, were it not for the a& terms, which
create superconductivity on the layers at z =nd. Physi-
cally, this means that the source of superconductivity lies
within the layers, but the finite stiffness of the order pa-
rameter makes it extend outside the layers. We simply
assume here that the electrons have the same masses m

along and M across the layers also when crossing the in-
tervening space. The 5-function description is valid, pro-
vided we neglect the variation of the order parameter
within the layers, as is indeed the case for very thin lay-
ers. 5 functions have been used in the past as well (Ref.
17), but in the entirely difFerent context of superconduct-
ing twinning planes along the layers. In the general case,
the sum of 5 functions in Eq. (2.2) can be considered, for
instance, as the limit of a sum of functions with finite
width, like the Gaussian shapes assumed in Ref. 15.

Expression (2.1) can be rewritten in a dimensionless
form, by expressing the energy in units of d az/P, ~%~ in

units of Qaz/P, and x, y, and z in units of d:

where V~~ is the gradient parallel to the layers, and
I o=(M/m)' is the bare anisotropy. This bare anisot-

ropy I p reffects the anisotropy of individual layers and
must be carefully distinguished from the effective anisot-
ropy I,z that is measured and that we shall encounter
later.

One should emphasize that even though we adopt here
a continuous description, the gradients in the z direction
may be large and they may generate an important ampli-
tude modulation of the order parameter at the scale of
the layered structure. This will be shown to be the case,
under some conditions concerning the variation of the
"source" term a(z).

The parameter a(z) takes a distinctive form, involving
5 functions:
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f f fdx dy dz [1—a(T) & 5(z —n)]lel

+ lel'/2+ vI',
I v~~q I'+ v

az

These expressions are valid for any value of v, large or
small.

In the limit of a well-localized order parameter, or
close to T„we expect a to be small. Then Eq. (2.7)
reduces to

(2.3)
P(z) =a cosh( Iz n ——1/2I /&v), (2.g)

with I 0=M/m, a(T)=a&/az, and v=5 /2Mazd
=gz/dz, where g is the coherence length, which deter-
mines the decay of the order parameter outside the lay-
ers. In the limit v &&1 the order parameter is well local-
ized on the layers, giving rise to a quasi-2D layered su-
perconductor while in the opposite limit v && 1 it is nearly
uniform, leading to a true 3D superconductor.

The significance of the parameter a(T) can be made
clearer by considering for instance do to be the thickness
of the superconducting layers, and by making the as-
sumption a(z)=as for nd —do/2&z &nd +do/2, while
a(z)=a& for nd+d /02 &z &(n+ 1)d —do/2. If do is
much smaller than d, this a(z) variation can be modeled
by Eq. (2.2), provided a&=a& and a&=(az —as)do/d
This expresses the model parameters a, and az in terms
of the physical parameters az and as for "normal" and
"superconducting" regions, respectively.

Let us find the state of equilibrium for this free energy,
assuming a real periodic order parameter that is maximal
on the layers. Afterwards we shall examine the case of a
complex order parameter, obtaining a current of the
Josephson type, and hence an effective Josephson cou-
pling between the layers.

We first solve the problem assuming a real order pa-
rameter %=/(z) that varies only along the z axis. The
GL equation reads

2+
v = 1 —g a(T)5(z n) 4—+ l+l 4 . (2.4)

Bz

—a(T)%(n)=v (n+) — (n —)
aq B%

Bz az
(2.5)

The order parameter attains the same maximum value $0
on all the layers, and the same minimum value a halfway
in between. Of course, g(z) has a kink on each layer, due
to the 5 functions.

The first integral of Eq. (2.4), obtained by multiplying
it by Bg/Bz and integrating, when combined with the
boundary condition leads to

a(T)fo/2=[v($0 —a }(1+$0/2+a /2)]'~ . (2.6)

A further integration of that first integral leads to the ex-
act solution of Eq. (2.4),

2+aa/g(z)=cn +(1+a )/viz n —1/2I, —
2+2a

(2.7)

for n ~ z ~ n +1, where cn is a Jacobian elliptic function.

The solution g(z) will be periodic, and subject to the
boundary condition

whereby

go=a cosh(1/2&v) . (2.9)

(2.11)

where j is the same constant everywhere, due to the
periodicity and continuity of 1(. This constant is simply
related to the Ginzburg-Landau current, which is equal
to 2eljaz/Mpd. The first integral of the real part of Eq.
(2.4}gives the exact relation

1/2
1 2 —1/2 a VJ Xx x —~2-'/2 x+ 1+x+

a /P 2 a4

2
Iz n —1/21 —.

The boundary condition of Eq. (2.5) becomes

a(T}$0=2[v(go—a }(1+$0/2+a /2+vj /a $0)]'~
(2.13)

We shall now make the approximations v(& 1, a =0, and
$0»a, corresponding to the superconductivity being lo-
calized in the layers. Then we may neglect the a terms
within the integrand of Eq. (2.12), to obtain

f(z}=a cosh (Iz n —1/2I—/Vv)
' 1/2

~ 2

+ sinh (Iz n —1/2I/&v)—
a4

(2.14)

This equation is valid for all values of v, as long as a is
small. Hence, it is also valid at T . When we combine it
with Eq. (2.6) it yields a(T, )=2 vtanh(1/2~v), as well
as tPO. This equation defines the effective T, of the struc-
ture. As expected, T, is less than T„the intrinsic critical
temperature of the superconducting layer, defined by
a) =0.

Actually, let us now restrict ourselves to the limit
v «1, corresponding to the case $0»a. Then Eqs. (2.6)
and (2.9) give $0= —2+a ( T) /2v, as well as

a =4e '~ "[—2+a (T)/2v] .2 —1/~v (2.10)

We observe that, since $0 and a are zero at T„
a (Tz, )=4v, for a layered system at small v. We have

thus the full periodic solution for a real %.
Let us now proceed by examining the case of a com-

plex order parameter. We shall consider again the
periodic state, and we shall let %=pe't. Then g(z) at-
tains its maximum value Po on the layers, while its
minimum value a occurs halfway between them. Equa-
tion (2.5) implies that BP/Bz is continuous everywhere,
just like p, but it has kinks on the layers. In fact, the
imaginary part of Eq. (2.4}yields
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Integrating the relation (2.11}from n to n + 1, we find

j&v/a =tan(hP/2),

with b,P=P„+,—P„, and

a/go=2e ' "cos(b,P/2) .

(2.15)

(2.16)

~ = 2j= —e '~ "posing, p .
v

(2.17)

can be found from Eq. (2.13) to be
$0= —2+a (T)/2v, leading thus to the Josephson equa-
tion

determined uniquely everywhere by the value %'„on the
layer through the continuity condition %(n}=ip„,we can
generalize the equilibrium solution to nonequilibrium
states, where %'„can take any complex value. This is
especially useful in the v((1 limit, since it provides a
way of determining the effective Josephson coupling in
our model.

It is easiest to obtain the mapping mentioned above at
H, 2, where 0' is small, and where the nonlinear free-
energy terms can be dropped. Then it is passible to ex-
press the free energy as a function of the 4„'s.

At 0,2, the free energy is

The Ginzburg-Landau current is proportional to
tt (BPIBz ). From Eq. (2.11) then it must be proportional
to j, and hence also proportional to sink/, through Eq.
(2.17). It is therefore of the Josephson type. In the LD
model, such a current is derived from an energy term
il ~%'„+

&

—'p„~, where g is the Josephson coupling.
Therefore, in this context, we may consider the current as
being due to precisely such a term in our free energy,
where in fact g turns out to be

1 e-"~" .
Mdz Vv

(2.18)

In terms of our dimensionless quantities, then, this free-
energy term is

(2.19}

This is valid at any temperature, but in zero magnetic
Geld. Note that the coeKcient falls exponentially as the
interlayer distance increases. This means that the
effective anisotropy parameter I,z derived from the
Josephson coupling is exponentially large. Such a cou-
pling will be obtained in fact at 0,2 and, hence, at T, as
well, in Sec. III, where we show that our model is
mapped exactly onto an effective Lawrence-Doniach
model in the limit v &&1, with the novel terms of Ref. 15
appearing as well.

III. THE EXACT MAPPING AT H, 2

As a central result of this paper, we present here a
model that leads to all the usual LD terms, as well as the
novel terms of Ref. 15, at least in the limit v&&1. Our
order parameter is continuous everywhere and, hence,
nonzero between the layers, in contrast to the LD model,
and in agreement with Ref. 15. However, our exact re-
sults improve the variational results of the latter refer-
ence for the v((1 case.

%'e shall achieve our goal of showing that the usual
LD terms are obtained if we can map the free energy of
our model onto the LD model. Indeed, since %(z) is

f dxdydz I a(T) g 5(z n)

+ I'oIli q'I'+ III,+I' (3.1)

with II= —iV —A, where ~~P~ is always expressed in
units of Qaz/P, the free energy in units of d az/P, the
vector potential A in units of A'c/2ed, and the magnetic
field in units of iiic/2ed . In the gauge A =Hxy, where
the field is perpendicular to the layers, the equation that
minimizes the free energy is separable. Thus the order
parameter is simply a product of a function of x and y,
and of a function of z. %e shall think of the order pa-
rameter then as attaining the value %„(x,y) on the nth
layer, while it achieves a minimum in the z direction at
z =n +b„, with b„a constant in [0,1]. More precisely,

%'=f„(x,y)cosh[y(z —n b„)],— (3.2)

for n ~z ~ n +1. The actual value of the constant y will
be determined by the x,y part of the equation of motion.

The continuity of '0 at z =n gives

iP„=f„cosh(yb„)=f„,cosh[y(1 b„,)] . —(3.3)

This relation, valid for all x and y, leads also to

f„sinh(yb„) = (cothy )~p„—ip„+ i/sinhy (3.4)

and

f„sinh[y(1 b„)]=(coth—y )~p„+,—ip„ /sinhy . (3.5)

These relations also hold if the f„'s and 4„'s are replaced
by their gradients.

Let us calculate then the resulting free energy, by in-
serting Eq. (3.2) in Eq. (3.1), and integrating from z = n to
z =n+1. We shall present this calculation in some
greater detail for a particular term, say the kinetic energy
along the layers. After the integration over z, this term
takes the form

vI 0J dx dy )ll((f„( —+ sinh[y(1 b„)]cosh[y(—1 b„)]+ si—nh(yb„)cosh(yb„)
oo 2y

Combining Eqs. (3.3) and (3.4) gives

~ii~~f„~ sinh(yb„)cosh(yb„)=(ll~~~p„)'[cothy(II~[% ) (11~~% +i)/sinhy] .

(3.6)

(3.7)
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We see already the appearance of the terms (II~~V„)(II~~V„+&
)'+c.c. of Ref. 15, which couple the gradients of the order

parameters of neighboring layers. Similar repeated use of Eqs. (3.3), (3.4), and (3.5) gives then that the total free energy
of Eq. (3.1) is exactly equal to

~'

+K [(Ilgq )( Iigq } + ( 111% ) ( 111% }] (3.8}

where

2 = —a( T) /2+ (vy /2+ 1/2y )tanh(y/2)

1 v+ cosh (y/2),
4

(3.9)

1 —vy
v,s=(1/2y+ vy/2)/sinhy — coshy/sinh y,

(3.10)

E =VI 2 coth
1 0

1

2sjnh y

E2=vt 0(cothy —y ')
2 sinhy

(3.11)

(3.12)

y =Q v '+ I'OH . (3.13)

This important result shows that v,&, our efFective
Josephson coupling, is field dependent at H, 2, exactly as
proposed in Ref. 18. Furthermore, at T =T„H,2 is zero,
and thus

The x,y part of the equation of motion shows that a11 the
f„'s behave like exp( Hx /2), confi—rming thus the im-
plication of Eq. (3.3) that f„/f„, is independent of x
andy. It also gives

As far as the effective anisotropy I,& of the system is
concerned, it appears in the coefBcient v,&I,& of the term

I II~~V„ I, and is given hence by the relation I'~&=X& /v, z.
So at H =0, for small v,

&
1/2~@ro V

eff 2
(3.15)

As the field increases, y increases. Since y is quite large
for small v, the exponentials dominate the behavior of
r„, and hence I',~ increases with increasing field (Ref.
18).

Thus models such as ours, or such as that of Ref. 15,
indicate that the continuity of 4 over all space has criti-
cal consequences, namely, the explicit dependence of the
efFective Josephson coupling on H and T. Note that the
boundary condition at the layers has not been used at all
in Sec. III, so it has no effect on the field dependence of
Ver'

A final remark is that the coefficients (3.9)—(3.12) of the
effective free energy were derived explicitly and are thus
valid for any value of v at H, 2. We note that we do not
obtain terms of the form %„%„*+2etc. , because of the
presence of the 5 function in our model, which restricts
the layers to interact only with their neighboring ones.

v,yT, )=2~ve (3.14)
IV. UPPER CRITICAL FIELDS

if v=g /d is taken to be quite small.
However, the effective Josephson coupling was derived

earlier for zero fields and for all temperatures. We see
that the result of Eq. (3.14) at T, and zero field is precise-
ly the one given by Eq. (2.19) as well. Thus this is a use-
ful check of our calculation.

For a given temperature T difFerent from T„Eqs.
(2.19), (3.10), and (3.13) indicate that v,gH =0) is
difFerent from v,s(H=H, 2). Thus clearly v,s is field
dependent. The interpretation of this field dependence
can be seen from Eqs. (3.10) and (3.13): an increasing
field reduces the order parameter between the S layers.
Indeed, for small v an increasing field increases y, and
hence the exponential factors in (3.10) tend to decrease
v ff from its zero-field value. We should stress that this
field dependence can be considered as a T dependence as
well, since one moves along the H, z(T) line. Thus v,s. in
creases as T approaches T, . Furthermore, Eq. (2.19) indi-
cates that v,& may have an additional temperature depen-
dence as well, if a2 and thus v is temperature dependent.

In this section we shall derive the upper critical field,
for magnetic fields both perpendicular and parallel to the
layers. This involves solving the equation

0= 1 —a( T) g 5(z n) 4+vt'0111%—+vtl, '0, (4.1)

where Il = i V A. — —

A. Perpendicular fields

H, 2
= [~ ( T)—4v] /4v I 0 . (4.2)

We deduce then that a(T, )=2&v for the single layer.
However the meaning of the rescaling of a11 quantities
needs clarification in this case, where d is infinite. Taking

Let us first examine the case of a single layer, i.e., a
thin S layer embedded in a very thick N layer. We take
A =Hxy and H =Hz. Then the exact solution is
0'=exp( —ylzl Hx /2), where —y =HI'o+v '. The
corresponding exact H, 2 for this single layer, for any
value of v, is
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the example (see Sec. II) of an 5 layer of thickness do, one
finds that T, is defined by I —as/aN=2$/do. On the
other hand, in terms of the true physical field (not the re-
scaled one) H h, the order parameter decay length in the

region is lz=d/y=g(1+H „/Ho) ', where

HO=Ac/2erQ . One finds as well the physical critical
field

a(T)lv=2y tanh(y/2), (4.4)

valid for all values of v. In particular, at H =0 we obtain
again that for the multilayer a(T, )=2v vtanh(1/2v v),
which is a(T, )=1 for v»1, and a(T, )=2v'v for v« l.
Furthermore, we can easily ascertain that H, 2 has always

got a positive curvature, at least if v varies slowly with
temperature. We have here another main result of our
model, already obtained in other treatments which took
into account inequivalent layers and proximity effects
(Ref. 14), again distinctly different from the predictions of
the usual LD model.

Again, for an a(z) function alternating between a~ and

a~, one obtains at T„
1 —as /aviv =2(g/do)tanh(d/2g),

showing that T, depends on the interlayer distance. d.
Starting from T, , the critical temperature for the S layer,

T, decreases with increasing d and saturates at the value

given earlier for the single layer case. Comparison with

data on Nb/Cu multilayers (Ref. 19}shows that this gen-

eral trend is verified in this system.
If a( T) »v, then y »1. The H, 2 of the multilayer, as

given by Eq. (4.4), then reduces to the H, 2 of the single

layer, given in Eq. (4.2). Indeed, if v « 1, then the layers
are really quite far apart, and hence rather independent.
The upper critical field then would be simply that of the
single layer. We call the regime a(T) »v the quasi 2D-
regime, since the layers are almost independent.

But it should be noted that H, z depends on v, and

therefore on the distance between the layers, contrary ta
the result of the usual LD model. In particular, as the
layer spacing d increases, H, 2 depends on d through the
hyperbolic tangent of Eq. (4.4). More precisely, one has

1 as/a&=2(g —/dolN)tanh(d/2l~) . (4.5)

From this expression it is easy to show that H'„h de-

H'„=Ho(do/4$ )[(1—as/aN) —4g Ido] . (4.3)

One must remember that g is here the normal region
coherence length and controls the order parameter decay
(proximity effect) in zero field. Equation (4.3) shows that
if as varies linearly with temperature, while aiv and g
vary slowly with T, then H, 2 is linear at T„but acquires
a parabolic upturn behavior away from T, .

Now we proceed to the case of many layers in a per-
pendicular field, where the order parameter is periodic
along z, and equal to f (z)exp( Hx l2—). We can easily
verify that f (z)=cosh[y(z n ——1/2)], for n &z & n +1,
where y is the same as the one for the single layer. The
boundary condition (2.5} enables us to determine H, 2

through the equation

creases as d increases. This trend is again qualitatively
verified in Nb/Cu multilayers (Ref. 19). More experi-
ments are needed on artificial multilayers, and also a
more detailed theory, to check the validity of the above
treatment of proximity effects.

If, on the other hand, v&)a(T), then 1»y, and

H, 2
= [a( T) 1]—Ivt'o. This is precisely the upper critical

field that we would have if the 5 functions were so close
to each other, that they formed a superconducting con-
tinuum. In that case, the +„5(z n—) would become

fdn 5(z n)—=1, and we would obtain thus a "bulk"

H, 2. We call the case v)&a(T) the quasi 3D c-ase, since
the S layers almost form a superconducting continuum
there.

Let us notice that this situation involves a very weak
modulation of the order parameter, and thus a genuine
3D superconductor. This is different from the so-called
3D region of the LD model, where g »d, but the order
parameter is still assumed to be discontinuous.

It is also worth noting that, close to T„H,2 has a
linear behavior, both in the case v»1, where the layers
are strongly coupled by the proximity effect, as well as in
the case v&&1, provided v varies slowly with T. Howev-
er, the slope of H, z is different in the two regions, and
thus there is a crossover in the region a(T) = v, where

H, z changes shape.

B. Parallel fields

Let us consider a single layer in a parallel field Hx and
a vector potential A = —Hzy. We have then to solve the
equation

5 %'0=[1—a(T)5(z)]%+vt OH z P v-
iz

subject to the boundary condition

—a(T)%'(0)=2v (0+) .
B+
az

(4.6)

(4.7)

We may assume that 4 is a function of z only. In that
case the solutions of Eq. (4.6) are the parabolic cylinder
functions D (+z+2roH ), with p = —(2roHv} ' —1/2.
But the parabolic cylinder function D (z)~0 if z —+ ~,
and D~(z)~~ if z~ —ao. Thus we must restrict our-

selves to the solution

4=D ( ~z~ +21 OH ) .

The boundary condition (4.7) is satisfied only if

(4.g)

r(3/4+1/4r~v)
a T r(1/4+1/4I OHv)

(4.9)

a relation that determines H,~2 implicitly for any value of
V.

If we assume that I OHv is small, then we can use a

property of the I functions:

r( +3/4) =1+ for y~ ~ .
v'y r(y + 1/4) 64y 2

Thus we obtain
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2 a(T)
r,v 2v'v

1/2

(4.11)

valid only for a single layer close to T„where
a( T, )=2 v v. Note again that the a( T, ) of the single lay-
er is the same as that of the multilayer only if v « 1.

On the other hand, if I OHv is large, then we obtain

of fivFN/ks T (Ref .13), where vs is the Fermi velocity of
the nonsuperconducting regions. One should also men-
tion the possibility of SWS structures, where the weakly
superconducting W layers have a lower T, than the S lay-
ers. In this case v diverges at T, , so the quasi-3D and
quasi-2D regimes may be obtained in the same material
as T is varied (Ref. 20).

H ~~z =0.547az( T)/l, v', (4.12)
V. CONCLUDING REMARKS

valid for the single layer in the region away from T„
a( T) »2v'v. Thus, close to T, the parallel upper critical
field for a single layer behaves like the square root of
(1—T/T, ), while further away it has a parabolic upturn
behavior.

Consider now the multilayer case. We have to solve
the equation

8 'p0= 1 —a(T)+5(z n) —4+vI OH z 4 v—, (4.13)
azz

subject to the boundary condition (2.5}.
In the quasi-2D case of v«1, the layers are so far

apart that they are practically independent, and so H, ~2

for the multilayer is the same as that of the single layer.
In the quasi-3D case of v »1 though, the 5 functions are
so close together, that we can replace +„5(z n) by-

f dn 5(z n}= 1.—Then we have

0=[1—a(T)]4+vI'OH z %' v-
az2 ' (4.14)

corresponding to H~~z = [a( T)—1]/vt'o. If a(T) is linear
in T, and v varies slowly with T, then H,~~z is linear in T.

We note that for the multilayer, when v&)1 we have
H,z/H, z =I'0. On the other hand, in the quasi-2D case
of v ((1,and for the region of a( T)» v v away from T„
Eqs. (4.2) and (4.12) imply that H,~~z/H, z =2.188I'0.
Thus the ratio H,~'z/H, z is equal to I'0 in the quasi-3D
case, but it is 2.188 times larger in the quasi-2D regime.
Besides this numerical factor, the main result is that at
H, z the multilayer has the ratio H,'~z/H, z of the bulk S
material. This is due to the extension of the order param-
eter in between the layers. This behavior differs strongly
from that predicted by the LD model, where H, 2 diverges
below the dimensional crossover, and where the ratio
H,z/H, z diverges. Moreover, the ratio H, 'z/H, z we find
should not be confused with I,I, the effective anisotropy
of Sec III, which comes from the effective Josephson cou-
pling, and which is in general much greater.

We shall conclude this section by discussing briefly the
temperature dependence of v. It is well known from the
theory of the proximity effect in superconductors (Ref.
13) that, in the case of a contact between a superconduc-
tor and an insulator, the order parameter decays within a
length g'=go/l, where l is of the order of an atomic dis-
tance, and go is the BCS coherence length. In high-T, su-
perconductors, go= /, and so our g' is of the order of some
interatomic distances, and depends little on T, provided
the nonsuperconducting regions between the supercon-
ducting layers are insulating. If, on the other hand, the
latter are assumed to be metallic, g would be of the order

The standard Lawrence-Doniach model assumes that
the Josephson coupling is constant, and that the order
parameter is precisely zero between the superconducting
layers. In this paper, we examined the behavior of the su-

perconducting order parameter for a well-layered super-
conductor, within a model that allows continuous varia-
tions of the order parameter between the layers. Such a
model treats the proximity effect in a simplified manner
but presents the great advantage of allowing exact calcu-
lations. It is able to cover a wide variety of physical situ-
ations, generalizing the Lawrence-Doniach model of
weakly coupled layers. Although this model can in prin-
ciple be solved for any thickness of the constituting (S,N)
layers, we presented here exact results for the case of thin
S layers. In zero field, and in the nonsuperconducting re-
gions between the layers, the order parameter decays
within a characteristic length /=de'v, generally smaller
than the interlayer spacing d. In this limit, the free ener-

gy of our model is mapped onto an effective free energy
of the LD type, with additional kinetic terms coupling
the gradients, along the layers, of neighboring order pa-
rameters. We emphasize that these terms result here
from the fact that the order parameter is allowed to
spread in the interlayer region. A further consequence is
that the coupling between the planes becomes field depen-
dent, as it should be in real physical systems. This
feature is an important generalization of the LD model.
We also derived the upper critical field, both in the per-
pendicular and parallel field orientations. Near T„ the
perpendicular upper critical field has the positive curva-
ture that is characteristic of layered superconductors, and
which is solely due to the fact that the order parameter is
not uniform along the z axis, but varies periodically
throughout space. This, after all, is why the inclusion of
inequivalent layers in the standard LD model results also
in a positive curvature of H~z (Ref. 14).

Furthermore, H,~~z does not diverge any more, since the
superconductivity is distributed along the z axis, and can
therefore be destroyed by a finite magnetic field. More-
over, the anisotropy, which can be deduced from the ra-
tio H,2/H, 2 does not reflect the Josephson coupling. It
is therefore smaller than the low-field anisotropy de-

duced, for instance, from torque magnetometry. This is
consistent, in general, with experiments on coppper oxide
materials. This points towards the fact that the anisotro-

py of complex multilayered structures is not a universal
quantity, as it is assumed in the pure 3D description, but
depends on the way it is extracted from experiments,
which may probe either the individual layer anisotropy,
or the effective interlayer coupling.

Our model predicts that H2 decreases with increasing
interlayer distance, due to the weakening of the supercon-
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ductivity by the proximity effect. Such a prediction could
be tested experimentally in Y,Pr superlattices, by varying
the interlayer distance d at fixed temperature, provided
one effectively measures H, z. Another testable prediction
of our model is the field dependence of the Josephson
coupling. Experiments that tested these predictions
would offer a means of probing the new physics that lie

beyond the LD model. In particular, besides the general-
ized LD physics found in the case of a weak proximity
effect, there is also the possibility of a true 3D supercon-
ductivity with nearly homogeneous order parameter.
This situation is definitely different from the so called 3D

regime of the LD model, and could be obtained with
varying temperature.
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