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Dynamics of Josephson pancakes in layered superconductors
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%'e consider a pointlike vortex in a layered superconductor with linear defects in the superconducting
layers. We treat these defects as Josephson junctions with high critical current density. %e consider the
electrodynamics of these junctions within the framework of nonlocal Josephson electrodynamics. %'e

show that Josephson current through a linear defect in a superconducting layer results in a pointlike vor-

tex with a superconducting core residing in this layer (Josephson pancake). We find the mobility of a
Josephson pancake. We consider a small amplitude wave in a Josephson junction with nonlocal electro-
dynamics. We treat a bending wave for an infinite stack of Josephson pancakes. %'e find the dispersion
relation for these waves. We show that their velocities tend to a certain finite limit when the wavelength
tends to infinity.

I. INTRODUCTION

The most prominent high-temperature superconduc-
tors and, in particular, the Bi- and Tl-based compounds,
consist of a periodic stack of the two-dimensional CuO
layers (ab planes) where the superconductivity presum-
ably resides. These materials are extremely anisotropic
and, in particular, the density of the superconducting
current in the direction perpendicular to the layers (c
direction) is much less than in the ab planes. The
discovery of the layered anisotropic high-T, supercon-
ductors stimulated many theoretical studies of layered su-
perconductors with weak interlayer Josephson coupling.
In particular, the specific pointlike (or pancake) vortices
were introduced and investigated. '

A pointlike vortex is an elementary vortex existing in a
layered superconductor. The normal core of each of
these pointlike vortices resides only in one of the super-
conducting layers. An Abrikosov vortex in a layered su-
perconductor can be treated as an infinite stack of point-
like vortices. In the case of extremely weak interlayer
Josephson coupling, these vortices interact only via the
magnetic field existing between the superconducting lay-
ers. The self-energy of an isolated pointlike vortex is pro-
portional to ln(L/g), where L is the characteristic size of
the sample in the ab plane, and (=(,b is the coherence
length in the ab plane. Thus, the self-energy of an isolat-
ed pointlike vortex diverges when L /g~ ~ and it cannot
exist in the bulk of a macroscopic sample with L » g.

Interaction with the sample surface affects the value of
the self-energy of a pointlike vortex in the surface layer.
This interaction consists of repulsion and attraction. The
repulsion results from the interaction with the Meissner
screening current. The attraction results from the in-
crease of the superconducting current density of the
pointlike vortex caused by the sample surface. The corre-

lation between these two interactions is determined by
the external magnetic field H. At a certain value of H the
competition of attraction and repulsion leads to a stable
state localized near the sample surface. The existence of
this state results, in particular, in a specific thermally ac-
tivated mechanism of magnetization relaxation. '

A two-dimensional (2D) pointlike vortex can be strong-
ly affected by an interaction with a defect of the crystal-
line structure. This effect can be especially significant
when a defect exists in the plane where the normal core
of the pointlike vortex resides. In particular, interaction
with a linear defect in a superconducting layer can lead
to localization of a pointlike vortex in the direction per-
pendicular to the defect. In this case free motion of a
pointlike vortex is possible only along the defect. This
effect can be important for difFerent transport phenomena
as linear defects in superconducting layers are charac-
teristic for layered superconductors. In particular, grains
boundaries and twins result in linear defects in the super-
conducting layers.

A linear defect in a superconducting layer can be treat-
ed as a Josephson junction with a relatively high value of
the critical current density j,. It results in a relatively
small value of the characteristic space scale of variation
of the tunneling current j along the junction. In case of
a linear defect in a superconducting layer this length 1&

can become less or even much less than the penetration
depth A, . The value of lJ is given by the formula
lJ=A.z/k if lz(A, , where A,J is the Josephson length.
In the case when 1& (A, the relation between the tunneling
current j and the superconducting current j, is nonlocal
and the electrodynamics of such Josephson junction is
the nonlocal Josephson electrodynamics. '

In this paper we study the dynamics of a pointlike vor-
tex localized by a linear defect in a superconducting lay-
er. We show that this vortex (a Josephson pancake) has a
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superconducting core resulting in a high mobility at low
temperatures. We use here for calculations the
Lawrence-Doniach model in the limit of a very weak in-

terlayer Josephson coupling. We treat the linear defect in
the superconducting layer as a Josephson junction with a
relatively high critical current density and we consider it
within the framework of nonlocal Josephson electro-
dynamics.

We consider a small amplitude wave in a Josephson
junction with nonlocal electrodynamics and calculate the
dispersion relation. We find that the velocity of this wave
tends to a certain nonzero limit when the wavelength
tends to infinity. We consider a small amplitude bending
wave propagating along an infinite stack of Josephson
pancakes. We show that when the wavelength tends to
infinity the frequency of this wave is proportional to the
wave vector.

The paper is organized in the following way. In Sec.
II, we consider a Josephson junction with nonlocal elec-
trodynamics in a thin film. We calculate the current dis-
tribution and the mass for a Josephson vortex. We find
the dispersion relation for a small amplitude wave. In
Sec. III, we apply the results obtained in the previous sec-
tion to an infinite stack of superconducting layers, i.e., to
a layered superconductor. We consider the Josephson
pancake and calculate its mobility. We treat a small am-
plitude bending wave propagating along an infinite stack
of Josephson pancakes and find the dispersion relation for
this wave. In Sec. IV, we summarize the overall con-
clusions.

II. JOSEPHSON JUNC. l'ION WITH NONLOCAL
ELECl RODYNAMICS

Let us consider a superconducting film with the thick-
ness a and a Josephson junction along the y axis (see Fig.
1). We treat here the thin film limit, which means that
a ((5, where 5 is the penetration depth. In this case the
superconducting current density decreases with the
characteristic space scale of the order of'

52
5~= — »5.e

As a result the contribution of the vector potential A
to the current density j can be neglected and

FIG. 1. A superconducting film with a Josephson junction
(thick line).

8&(y) =2J dx cos(kx)8(x, y) .
0

It leads to the following equation for 8k(y):

d 8p 16ir5 j,—k 8k= — '
sing& .

cC p

(6)

(7)

The solution of Eq. (7) is given by the formula,

8n. 5 j, y' sing y' exp — y —y'
c4pk

8k(y}=

The inverse Fourier transformation leads then to the rela-
tions

B8 8'ir A
y d, sing(y')

By
' c4p — y —y' (9)

Using Eqs. (5) and (9) we find for the phase difference
y(y) the nonlinear integro-differential equation,

Bq 16~5'Je -,sing (y')
dy

By c@p —~ y —y' (10)

is the phase difFerence defined as

q(y)=8(+O, y) —8( —O,y) .

To find the space distributions of 8(x,y) and y(y) we

apply the Fourier cosine transformation to Eq. (3} intro-
ducing

C40j=, , V8, r «5 ir8~ 5
(2)

It follows from Eq. (10) that the value of the charac-
teristic space scale for y(y) is given by the length lz,
where

where 8 is the phase of the order parameter. It follows
from Eq. (2) and the continuity equation divj=0 that the
equation for 8(x,y) has the form

C40
lq=

16&5 j
B8 B8
BK By

(3)
Using the Hilbert transformation we can rewrite Eq.

(10) as

The boundary conditions for Eq. (3) are given at
x =+0 by the Josephson relation

dy' agsiny=— (12)

«'o aej„(+O,y}= (+O,y)= —j, sing(y) .
g 52 Bx

(4)

Here j, is the Josephson current critical density, and p(y}

The above consideration is valid if lz (&5e~. It means
that the critical current density of the Josephson junction
j, has to be high enough, i.e., j, »ac4p/16m. 25 .

The space distribution of the phase difference qr(y) for
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a Josephson vortex is given by the following exact solu-
tion of Eq. (10):

2

W„=—C f dy

q&(y) =2 arctan —+~ .
IJ

(13)
2

U CA' Bqr(y)

Se
(19)

Note that this solution was obtained in Ref. 6 while treat-
ing a Josephson junction with the nonlocal electrodynam-
ics.

Using Eq. (9) and the inverse Fourier transformation
we find that for r ))l& the current lines of a Josephson
vortex are circles and the current density j is given by the
formula

Mv
el (20)

where

It follows from Eq. (19) that W, i
~ U and we can thus in-

troduce the Josephson vortex mass M presenting 8',l as

~@o n Xr
8~5 r

(14)
m6 C
2e i»

(21)

where n is the unit vector along the z axis. The current
density distribution given by Eq. (14) is similar to the
current density distribution of a Pearl vortex. ' The only
difference is that the core of a Pearl vortex is normal and
the core of a Josephson vortex is superconducting. The
size of this superconducting core is of the order of lJ.

Let us now consider a nonstationary case and derive
the equation determining the phase difFerence distribu-
tion y(y, t) for a Josephson junction without damping.
As the value of y depends on time, the displacement
current arises in the junction. It means that the current
fiowing through the Josephson junction j„(+O,y) is a
sum of the Josephson tunneling current j, sing and the
displacement current

RC Bq)jd=
2e

(15)

where C is the capacity of the Josephson junction.
The same derivation as above leads then to the follow-

ing nonlinear integro-differential equation determining
the phase difference distribution cp(y, t) in the nonstation-
ary case:

1 B ip 1» ~ dy' Bq)
S1Q++

~,' Bt'
(16)

Here we introduced the characteristic plasma frequency
as

1/2
2ej,
CA

(17)

U(y) = x a
2e Bt

(18)

Let us suppose that the velocity v of Josephson vortex
is small, i.e., v «co lJ. In this case the solution of Eq.
(16) is given by Eq. (13), where instead of y we have to
substitute y —vt. The energy of the electrical field in the
Josephson junction is equal to

Motion of a Josephson vortex along the junction re-
sults in an electrical field localized inside the Joscphson
junction. The potential difference U(y) appearing due to
this electrical field across the junction is given by the for-
rnula

Let us now consider a small amplitude wave propaga-
ting in a Josephson junction with nonlocal electrodynam-
ics. In this case the solution of Eq. (17}has the form

cp(y, t) =cpa exp(iky i cot)—, (22)

dy
'

B{p . dz expikz
, =Eke = —myk

By —~ z
(23)

Using Eqs. (16), (22), and (23) we find that the disper-
sion relation co(k} has the form

co=co~(1+ ~k~1»)'»z, k5,~&&1 . (24)

In particular, it follows from Eq. (24) that for
I /5, it«k « I /1» the velocity of the wave tends to a cer-
tain value s, where

6)P ljs=
2

(25)

Note that in case of a Josephson junction with the local
electrodynamics the analogous dispersion relation co(k) is
given by the equation

co=co (1+k A. )'
P J

III. JOSKPHSON PANCAKE IN A I.AYKRED
SUPERCONDUCTOR

Let us consider a Josephson pointlike vortex in a lay-
ered superconductor, i.e., a Josephson pancake. We use
for calculations the Lawrence-Doniach model. %e con-
sider here the limit of very weak interlayer Josephson
coupling, neglecting the superconducting current in the
direction perpendicular to the superconducting layers.
We treat thus a layered superconductor as a periodic
stack of electromagnetically coupled super conducting
layers with the distance d between them.

where the amplitude yo«1. We neglect the contribu-
tion of the vector potential A to the superconducting
current density while deriving Eqs. (12) and (16). As
mentioned above it can be done if r «5,s or k5,s » l.

To determine the dependence of the frequency ~ on the
wave vector k we substitute cp(y, t) given by Eq. (22) in

Eq. (16). The integral in the right-hand side of Eq. (16) is
then equal to
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The free energy functional F in this case has the form
'2

2e

+ fd r(H —B)
8a

(27)

where n is the number of the layer, 0„ is the phase of the
order parameter in the nth layer, A=( A„, A }is the vec-
tor potential, H is the external magnetic field, B=V X A
is the magnetic field, and V=(V„,V„) is the gradient in

the layers plane.
Let us suppose that in each of the superconducting lay-

ers there is a linear defect (see Fig. 2). We treat these de-

fects as Josephson junctions coinciding with the lines

x =0, z =nd (n =0,+l, +2, . . . ). As we take into ac-

count only the electromagnetic coupling between the su-

perconducting layers the space scale for the magnetic

field variation inside the sample is the penetration depth

c40
lg=

216nkj, .
,

(28)

and the current density in the core of the Josephson pan-
cake is given by the equation

Let us consider a Josephson pancake located in the lay-
er n =0 and suppose that lz «)1.. In this case the core of
the Josephson pancake can be described as it was done in
the previous section. The only difFerence is in substitut-
ing A, instead of 5. It means that, in particular, the elec-
trodynamics of the Josephson junction is nonlocal if

bution which is the same as for a pointlike vortex. '

The only difFerence is that the core of a Josephson pan-
cake is superconducting. The size of this superconduct-

ing core is of the order of lJ instead of g for the normal

core of a pointlike vortex.
We calculate now the mobility of a Josephson pancake.

The motion of a Josephson pancake results in a voltage

U(y) applied to the Josephson junction. This voltage
leads to energy dissipation due to the resistive component
of the current flowing through the Josephson junction.
Using Eq. (18) we find that the rate of this dissipation Q
is equal to

Q= —f Udy=, f~ d ~ 2
dA' ~ By

dp =
4Re' — Br pj

(31)

2n c lJR
PJ

=
@2d0

(32)

The resistance R of the SIS-type Josephson junction re-
sults from the normal electrons. The number of these
electrons is exponentially small when ks T« h.

The mobility p~ of a pointlike vortex is determined by
the normal electrons in the core of the vortex. In the
viscous fiux-flow model the value of p is given by the
equation"

where R is the resistance per unit area of the Josephson
junction, v is the velocity, and pJ is the mobility of the
Josephson pancake. In the limit v ~0 the phase
difference p(y, t) is given by Eq. (13},where y is substitut-
ed by y vt. It f—ollows then from Eq. (31) that

c@'0 nXr
8@A, r

(29)
c p„g"' 'cp (33)

A —A, V A= 5(z), r)l@0 nXr
27T

(30)

Solution of Eq. (30) leads to the magnetic-field B distri-

Z

FIG. 2. A stack of superconducting layers with linear defects
(thick lines).

Variation of Eq. (27) with respect to the vector poten-
tial A results in the generalized London equation. Inside
the superconductor it has the following form

where y is a numerical factor of the order of unity, and

p„ is the resistivity in the normal state. It follows from
comparison of Eqs. (32) and (33) that at low tempera-
tures the mobility of a Josephson pancake becomes much
higher than the mobility of a pointlike vortex.

Let us now consider small oscillations of an infinite
stack of Josephson pancakes, i.e., of an Abrikosov vortex
localized by linear defects existing in each of the super-
conducting layers (see Fig. 2). The current density and
magnetic-field distributions of a Josephson pancake coin-
cide with analogous distributions for a pointlike vortex if
the distance from the core p is much larger than A, , i.e.,
p&&A, . Thus the interaction energy for an infinite stack
of Josephson pancakes may be written in the form

0 /
d2q dk q2+k2

8m " (2m} q [1+A, (q +k }]
X g exp[ik (z —z„)+iq(p„—p )], (34)

m, n

where p„=(x„,y„), z„=nd (n =0,+1,+2, . . . ) are the
coordinates of the Josephson pancakes of the stack. We
consider here the case when in the stationary state p„=0.
In case of small amplitude oscillations the energy E can
be expanded in series of ~q(p„—p )~ &&1. The energy
difference hE for small deviations from the stationary



6192 R. G. MINTS AND I. B. SNAPIRO 49

state is then equal to

d 40 p d qdk q +k
16' " (2~) q [1+ii, (q +k )]

X y ikdim —n»(y y }2 (35)

dlqc 4k d
N

— ln I+ sin P
32~S4C d2 2

(40)

The dependence to(p) is linear for small wave vectors,
i.e., for dp « 1 we find

m, n to= V dlJ/2n'C lpl "lpl
4A,

(41)

We obtain the equations of Josephson pancakes motion
equating My'„and the forces

(36)

Note that at low temperatures these bending oscilla-
tions of a localized Abrikosov vortex result in a contribu-
tion to the specific heat C, c(- T at low temperatures.

It results in the following set of equations:

d Co d2q dk q2+kz

(2n) q [I+A, (q +k }]
ikd ( m —

n)q 2(y
n, m

(37}

We take the solution of Eq. (37}in the form of a planar
wave

—i mt +ipnd
Vn t (38)

d@o d +A(2srn ,
—pd)

gin
64trzA, 4M „d+(2trn A), (39)

Using the Poisson summation formula and taking into
account that d «2@A, we obtain the dispersion relation
to(p) in the final form

where p is the wave vector ( tr/d &p —&m/d). To find

the dependence of the frequency co on the wave vector p
we substitute Eq. (38) into Eq. (37). It leads to the follow-

ing equation:

IV. SUMMARY

To summarize, we have shown that in a layered super-
conductor with a linear defect in a superconducting layer
Josephson pancakes exist. A Josephson pancake is a
pointlike vortex localized by a linear crystalline structure
defect. It has a superconducting core with a size of the
order of the Josephson length lJ. At low temperatures
the mobility of a Josephson pancake is much higher than
the mobility of a pointlike vortex. We have calculated
the dispersion relation for a small amplitude bending
wave propagating along an infinite stack of Josephson
pancakes. The velocity of this wave tends to a finite limit
when its wavelength tends to infinity. At low tempera-
tures these bending oscillations result in a contribution to
the specific heat which is proportional to the tempera-
ture.

We have shown that a small amplitude wave can prop-
agate in a Josephson junction with nonlocal electro-
dynamics.
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