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We study the dynamical response of triangular Josephson-junction arrays, modeled as a network
of resistively and capacitively shunted junctions. A Bux-Bow regime is found to extend between a
lower vortex-depinning current and a higher critical current, in agreement with previous calculations
for square arrays. The upper current corresponds either to row-switching events accompanied by
steplike jumps in the array resistance, or to a depinning of the entire array. In the fiux-Bow regime,
the dynamical response to the bias current is roughly Ohmic, and the time-dependent voltage can
be well understood in terms of vortex degrees of freedom. The vortex friction coefBcient g depends
strongly on the McCumber-Stewart parameter P, and at large P is approximately independent of
the shunt resistance R. To account for this, we generalize a model of Geigenmiiller et at. to treat
energy loss from moving vortices to the phase analog of optical spin waves in a triangular lattice.
The value of rl at all values of P agrees quite well with this model in the low-density limit. The
vortex depinning current is estimated as 0.042I„ independent of the direction of applied current, in
agreement with static calculations by Lobb ei al. A simple argument suggests that quantum e8'ects
in vortex motion may become important when the Sux-Sow resistivity is of order h/( e2) per unit
frustration.

I. INTRODUCTION

The behavior of vortices in Josephson-junction arrays
(JJA's) has attracted much recent attention. ~ ~4 Such
vortices are coherent arrangements of phases of the super-
conducting order parameter, which may move through
the arraylike particles, in response to forces generated
by external currents. They can be generated by a mag-
netic Geld, or excited thermally. At low velocities, it has
been proposed that the motion of a vortex in a square
array can be described by a Josephson-like equation of
the form

27t. — + Id, sin 2' — —I

Here x is the vortex position along a line through the
plaquette centers and perpendicular to the external cur-
rent I, a is the lattice constant, R and C are the shunt
resistance and shunt capacitance of each junction, and I&
is the vortex-depinning current, which is linearly related
to the junction critical current I,. This equation may
describe the behavior of a vortex in a square array at low
velocities.

Because of the mass term in this equation, a vortex
might be expected to move ballistically under appropri-
ate circumstances —that is, a vortex, once set into mo-
tion, would remain in motion even if the driving current
is turned oK There are several experimental reports of
such motion. However, numerical calculations and an-
alytical studies, based on classical equations of motion,
have not yet produced such ballistic motion. ' ' ' The
numerical studies have been carried out either in square

arrays, ' ' or using a simpli6ed representation of the
Josephson interaction, in triangular arrays. " Instead of
ballistic motion, in these simulations, it is generally found
that the junctions in the wake of the vortex oscillate,
causing the vortex to lose its energy to the array. In an
analytical study based on a continuum model, ~o an equa-
tion of motion for individual vortices is derived for both
square and triangular arrays, starting &om an eH'ective
action for the array. This paper concludes that a narrow
window of vortex velocity exists in a triangular array,
for which ballistic motion may be possible. However, it
seems unlikely that this window is the regime which is
probed experimentally. 4 6

In this paper, we present dynamical calculations for
triangular Josephson-junction arrays. The calculations
are carried out within a classical model of resistively and
capacitively shunted junctions (RCSJ's). Our principal
aim is to study the motion of a single vortex in the pres-
ence of an applied dc current, to see if ballistic vortex
motion is possible. Since the depth of the vortex poten-
tial in a triangular array is believed to be smaller than
that of a square array, such motion would seem more
likely, at Grst glance, than in square arrays. However,
we find no such ballistic motion under any circumstances
investigated. Instead, the motion of the vortex, when it
is a coherent excitation of the array, generally falls into a
"Bux-Bow" regime, where the vortex moves with approx-
imately Ohmic resistivity, described by a characteristic
vortex viscosity.

As in previous simulations in square arrays, ' ' ' and
in similar studies in triangular arrays based on a sim-
plified Josephson coupling, we find that the Bux-How
region terminates at sufEciently high current in either
of two ways. One possibility is for the entire lattice of
Josephson junctions to be "depinned" causing the volt-
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age to increase sharply. A second decay mode, which
predominates in suHiciently underdamped arrays, is for
the vortex to excite row switching events, which pro-
duce steplike increases of the array resistance as an entire
row of junctions switches from superconducting to nor-
mal. Both such decay modes have been in a variety of
experiments 5'8 ~ ~8

Perhaps the most striking result of our simulations,
also reported previously in square arrays, ' is the per-
sistence of the quasi-Ohmic Hux-How regime even in high-
resistance arrays where, according to simple models, bal-
listic motion should be possible. To account for this,
we generalize a model of Geigenmiiller et aL to obtain
a simple, nearly analytic model from which an efFective
vortex friction coeHicient can be computed at any value
of the vortex velocity and junction McCumber-Stewart
coefficient~

P = 2eR I,C/h. (2)

P is a dimensionless measure of damping in a single junc-
tion (large P means low damping). In our generaliza-
tion, we take explicit account of the array lattice struc-
ture, so that a short-wavelength cutofF appears naturally
in the resulting expression for the vortex friction coefB-
cient. The model gives semiquantitative agreement with
our numerical experiments. In particular, like the con-
tinuum model of Ref. 9 for square arrays, it accounts for
the persistence of this friction coeHicient even at high
values of the shunt resistance R. The present model is,
in principle, applicable to dissipation from an arbitrary
density of vortices moving with arbitrary velocities, and
to losses produced by ac external currents. However, we
test it here only for single vortex motion.

The remainder of this paper is organized as follows. In
Sec. II, we describe our calculational model and numeri-
cal method. Section III reports the results of our critical
current calculations in triangular arrays both with and
without vortices. Section IV describes in greater detail
our numerical results in the Hux-How regime, and Secs.
V and VI summarize the vortex-&iction model, and our
investigation of possible ballistic vortex motion. A brief
discussion follows in Sec. VII.
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FIG. 1. Schematic diagram of an 8 x 8 triangular Joseph-
son-junction array. Each intersection represents a supercon-
ducting grain, which is connected to its six nearest neighbors
by Josephson coupling. (a) and (b) correspond, respectively,
to [101] and [211] current injection direction. Free bound-

ary conditions are used in the direction of current injection,
while periodic boundary conditions are used in the transverse
direction.

can discard the induced screening current.
With these assumptions, the current between grains i

and g ls

d Vip
I;~ = C;z —Vz + + I,,;z sin(P; —Pz —A,i). (3)dt

5 dVi—:V; —Vi = ——(P; —Pi)2e dt (4)

Here I;~ is the total current f'rom grain i to grain j; C;.
and R;i are the shunt capacitance and shunt resistance
between grain i and grain j; I,,;~ is the critical current of
the Josephson junction between grain i and grain j; p;
is the ph~e of the order pmameter on g ain i. Vj and
A;i are the voltage difFerence and magnetic gauge phase
factor between grain i and grain j, defined by

II. MODEL

The relevant geometry of our triangular array is shown
in Fig. 1. Within the interior of the array, each super-
conducting grain is connected to its six nearest neigh-
bors via Josephson coupling. The boundary conditions
involve fixed external current injection. We consider two
directions of current injection, as illustrated in Fig. 1, the
so-called [101]direction, and the [211] direction. 2

We describe the dynamics within the RCSJ model
at zero temperature, as previously described for square
arrays. ' In this model, the current through each junc-
tion is the sum of three terms: a charge Bow through
an efFective intergrain capacitance, a current through a
shunt resistance, and a Josephson supercurrent. We as-
sume that the supercurrent is sufficiently weak that we

X'

A~= A dl,

where 4o = A,c/(2e) is the Hux quantum, A is the vec-
tor potential of the applied magnetic Geld, and x; is the
position of the center of grain i. In the present paper,
we include only the intergrain capacitance, discarding the
capacitance between the grains and ground. Current con-
servation at each grain is described by KirchhofF's law:

Iij = li;ext &

2

where I;.,„t is the external current fed into grain i. We
assume that all the capacitances, critical currents, and
shunt resistances have unique values C, I„and B. Fi-
nally, the use of classical equations of motion implies the
assumption that quant»m efFects arising &om the non-
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commutativity of charge and phase variables can be ne-
glected.

Our boundary conditions are shown in Fig. l. In the
direction of current injection, we introduce a uniform
current I, ,„t ——I into each boundary grain along one
edge, and extract the uniform current from each bound-
ary grain on the other edge. In the transverse direction,
we use periodic boundary conditions, as in our previous
work. The gauge factor A,~ satisfies

) ~;, =2~ =2~f,BS

plsquet te 0

where B is the magnetic Geld strength, S is the area of
each triangular plaquette, @p is the Hux quantum. f
is the so-called frustration. Note that the primitive cell
of a triangular array consists of two adjacent triangular
plaquettes.

The coupled equations (3), (4), and (5) are solved as
described previously. We use a fourth-order Runge-
Kutta algorithm with time step b,t, where b,t ranges
from 0.01tp to 0.05tp [tp ——5/(2eRI, ) is a characteris
tic damping time], depending on the desired precision of
calculation. Further details may be found in Ref. 14.

III. CRITICAL CURRENT AND
VORTEX-DEPINNING CURRENT

When f = 0, with dc bias current injected in the [101]
direction, we find a critical current of exactly 2I, . This
value can be easily understood, since in this case no cur-
rent passes through the junctions perpendicular to the
bias current, so that the entire array behaves much like a
single junction. With [211]current injection, the critical
current is found to be approximately 1.76I,. This value
can be understood by considering the single triangular
plaquette shown in Fig. 2. For such an arrangement,
the injected current I is related to the phase difference

P by I/I, = sing+ sin(2$). The right-hand side can-
not exceed (I/I, ) ~ = 1.7602, which corresponds to our
numerically obtained array value. We have checked the
phase configuration for each grain in the array in this
geometry, and find that it decomposes exactly into unit

TABLE I. Numerical values of the critical current for an
N x N triangular array at f = 1/(2N ), for [101] current
injection.

8
0.090

12
0.063

16
0.054

24
0.048

cells of this type.
Next, we discuss the dynamical response of an array

under dc bias and in the presence of a single vortex. Such
a vortex can be introduced by considering an N x N
array containing 2N~ triangular plaquettes, and a Qux

f = 1/(2N2) (N being the number of junctions spanning
the array in one direction, as in Fig. 1). Table I lists the
critical currents Ig for f = 1/(2N ) as a function of N for
[101] current injection. This critical current appears to
be independent of P, at least in the range 0 ( P & 1000.
The critical currents are extracted from an I —(V) plot,
such as shown in Fig. 3 for [101] current injection at
I9 = 0 and P = 10, and Fig. 4 for [211] direction at
P = 0. Extrapolating by eye a plot of I~ versus 1/N
towards N = oo at f = 1/(2N ), we estimate a critical
current of about 0.042I, for bias current injected in the
[101] direction. In the [211] direction, for N = 8, we

estimate a value of about 0.041I„possibly dependent
on the initial phase configuration. In both cases, our
calculated critical currents are in reasonable agreement
with those obtained by Bobbert, using a piecewise linear
function to approximate the sinusoidal coupling function.

The array critical current at field f = 1/(2N2) can be
interpreted as the depinning current of a single vortex.
It is of interest to compare our calculated value with the
energy barrier for depinning. This energy barrier was

calculated by Lobb et al. ,
i who used static methods to

obtain a value of about 0.043@I,/(2e). This represents
the energy which must be overcome in order to move a
vortex horn the center of one triangular plaquette to the
center of an adjacent plaquette.

To make this comparison, and also to account for
the apparent isotropy of the vortex depinning current,
we have used a simple model for the vortex potential
U(r)[r = (z, y)]. Since U(z, y) must have the array pe-
riodicity, we express it as a Fourier series involving only
Fourier components &om the reciprocal lattice. The sim-

plest approximation consistent with the point symmetry
of the lattice is to include only the smallest-magnitude
Fourier components, i.e.,

U(r) = Up+ Ui) cos(K r), (6)

FIG. 2. Schematic illustration of a triangular plaquette of
Josephson junctions at zero magnetic field, subjected to an
injected current I as shown. The critical current for this ar-
rangement is 1.7602I, .

where we take Uq ) 0 and K is one of the six smallest
reciprocal lattice vectors. (r = 0 is interpreted as a grain
center, and hence a maximum in the potential. ) The
potential barrier for vortex depinning in this model is

readily shown to be just Uq.
To estimate the critical current in this picture, we add

to the vortex potential energy a term ~4pJ x r[/c, where

J is the external current density. This term corresponds
to the Magnus force J x z@p/c on a single vortex. When
this term is included, we Gnd numerically that the bar-
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rier for vortex motion between adjacent triangular pla-
quettes disappears at aha/(2e) = 0.984' for current in-
jected in the [101]direction. Taking Uq ——0.043AI /(2e)
from the results of Lobb et al. ,

M and using J = I/a for
[101]current injection, we see that our calculated vortex-
depinning current of 0.042I is in excellent agreement
with the static results. This calculation also suggests
that expression (6) is a reasonable approximation for the
vortex potential.

IV. SINGLE VORTEX MOTION:
NUMERICAL RESULTS

As shown in Fig. 3 and Fig. 4, the I (V)-characteris-
tics display a long low voltage tail at currents above the
vortex-depinning current. This current regime is approx-
imately Ohmic. Since the I (V)-characteristics in this
region can be understood in terms of single vortex mo-
tion in the array, this region is often called the Qux-How
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regime.
At P = 0, the Bux-Bow regime extends to about 1.9I,

and 1.5I, for a current biased in the [101] and [211] di-
rections. Both of these values are close to the critical
current of the array at f = 0. Above these currents, the
whole array is depinned and the vortex picture is not ap-
plicable. At sufBciently large values of P, with the current
injected at the [101]direction, the flux-Bow regime termi-
nates at lower currents, where there is a "row-switching"
eventis i7 rather than the depinning of the entire array—
that is, one or more rows of junctions parallel to the di-
rection of current injection switch &om the supercurrent
state to the resistively dissipative state. This occurs, for
example, near I = 1.5I, at I9 = 10 in 8 x 8 array. Above
this row-switching threshold, the picture of Ohmic re-
sistance by Qux How of vortices is no longer valid. At
yet higher P values, the Bux-Bow regime terminates at
smaller currents, and there may be more than one row-
switching event before the entire array is depinned. At

P = 100 in an 8 x 8 array, for example, we find two row-
switching events in our calculations. As in Ref. 9, we also
find the staircaselike structure in the I (V) curve in the-
Bux-Bow region, which may arise &om the interaction of
the vortex with its image neighboring vortices generated
by the periodic boundary conditions.

Figures 5(a) and 5(b) show the time-dependent space-
averaged voltage drop V(t) across the array —that is,
the difference between the average voltage on the line of
grains where the current is injected, and the line &om
which it is extracted —at two current values in the Bux-
Bow regime. In both cases, P = 0 and the current is
injected in the [101] direction. V(t) is characterized by
periodic sharp peaks which resemble the time-dependent
voltage of a single junction, the frequency of which in-
creases with increasing bias current.

If the single vortex picture is correct, the spike fre-
quency v„ is related to (V). The period of oscillation

should correspond to the motion of a vortex by one unit
cell. Furthermore, a complete vortex circuit around the
lattice should produce a phase change of 2z across the
array. Then using the Josephson relation, we obtain

where T is the period for one complete vortex circuit. For
an N x N array, T = N/v„. Our numerical results are
in excellent agreement with this relation, thus confirming
the vortex motion picture in the Bux-Bow regime.

By examining the time-dependent voltage of each sin-

gle junction, one can also deduce the actual vortex path
in the array. This path is displayed in Fig. 5(c) for an
8 x 8 array with bias current in the [101] direction. We
find that this path is independent of current magnitude
in the [101] direction. As shown in the figure, it is a
straight trajectory through the middle of the array.

The behavior of vortices is more complex when current
is applied in the [211]direction. In this case, the Bux-Bow
regime in an 8 x 8 overdamped array consists of three dis-
tinct subregions with different slopes as shown in Fig. 4.
A typical voltage trace V(t) from each subregion is shown
in Figs. 6(a), 6(b), and 6(c). The relationship between
spike frequency and time-averaged voltage still holds, im-

plying that the picture of vortex motion is still correct
in this direction. However, the vortex path is different
in. each of the three subregions. These paths, as deduced
from the time-dependent voltages of each junction, are
shown in Figs. 6(d), 6(e), and 6(f).

At suKciently low bias current in [101]direction, V(t)
shows a double-peaked structure. We believe that this
structure originates in the special geometry of the tri-
angular lattice, in which each primitive cell has two tri-
angular plaquettes which are inequivalent. When a bias
current is applied in the [101] direction, the vortex will
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pass alternately through each of these plaquettes, some-
how producing a double-peaked structure in V(t). As
the bias current increases, the double-peaked structure in
V(t) seems to disappear. However, the time-dependent
voltage of each individual junction still exhibits a double-
peaked structure. The disappearance of the double-peak
structure in V(t) is therefore due to space averaging. We
conclude that our simple vortex potential is qualitatively
correct even at higher bias current. Of course, above the
array depinning current (I = 2I, for this direction), the
vortex picture breaks down and V(t) shows no simple be-
havior, just as was found previously for square arrays.
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As noted above, in the flux-now regime, the Joseph-
son network behaves approximately ohmically. In this
Ohmic regime, we can de6ne a vortex-friction coegcient
rl by equating the driving force Je'o/c to the frictional
drag force rlv, where v is the vortex velocity. This gives
(assuming current injected in the [101) direction)

1.89
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(8)
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where I = aJ is the current injected into one node.
This vortex-friction coeKcient can be estimated in a

simple way by equating the frictional losses to the power
dissipated in the shunt resistances when the vortex moves
with constant velocity. The result of this procedure for
a square array iss

&a)' ra~)' 1
(bio)., =

I

22e i a 28

(c) and for a triangular array (cf. Appendix A)

(10)

rl can also be obtained directly from the calculated I(V}-
characteristics (cf. Appendix B). Our numerical results
for different values of P in 8 x 8 arrays are shown in

TABLE II. Numerical values of 0 as a function of p in an
8 x 8 triangular array. p is estimated from the numerical I(V)-
characteristics of the corresponding arrays. q is calculated
from Eq. (Bl) in Appendix B, and is estimated by drawing
a straight line by eye through the I (V) characteristic in-the
fiux-Sow regime.

FIG. 5. Time-dependent voltage traces and vortex motion
path in the array for 8 x 8 overdamped arrays (P = 0) at

f = 1/128 with current injected in the [101] direction for
two different applied currents to = 5/(.2eRI, ) is a natural
unit of time. The bias current and time-averaged voltages
are (a) I/I, = 0.2, (V)/N RI, = 2.39 x 10; (b') I/I = 1.0,
(V)/NRI = 1.91 x 10 . (c) Path of vortex motion in this
array; the disks represent successive positions of the vortex in
the array.
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Table II. This table shows that g varies approximately as
Pi~ at large P values, and difFers considerably from the
result (10). Indeed, at sufficiently large values of P, the
friction coefficient actually appears to be independent of
the shunt resistance R. A similar result was also found
previously in square arrays.

A more accurate theoretical calculation of the &ic-
tional damping requires taking account of the loss of vor-
tex energy to "spin-wave-like" excitations in the array.
A continuum theory of this kind has been proposed by
Geigenmiiller et aL In Appendix C, we give a detailed,
quasianalytical theory for the friction coefficient, based
on the loss of energy &om a vortex moving with velocity
v to spin-wave modes. The model is more general than
that of Ref. 9, in that it takes explicit account of the
lattice structure of the array, so that a short-wavelength
cutofF appears naturally, and allows for an arbitrary ex-
ternal current source to excite the spin-wave modes (for
example, one arising from a high density of vortices). The
6nal result for g in a square array is

,

(
(go) q) 2mz

and in a triangular array

+3,
( (bio)ari )

where the dimensionless integral I' is given in Appendix
C.

It is sometimes useful to transform g into an analogous
expression for array resistivity. Using the force balance
equation (8), and noting that the electric field hss mag-

nitude 8 = 2x[h/(2e)]n„v, where n, = 4f/(+Sa ) is the
number of vortices per unit area, we obtain Ohm's law
in the form

where the array resistivity is (after considerable simplifi-
cation)

work for triangular arrays, although the numerical coef-
ficient may difFer by as much as a factor of 2. The trend
is also consistent with the experimental results of Ref. 8.
Note that v = 1 is a reasonable velocity to consider in
this comparison, because larger velocities tend to trigger
row-switching events in underdamped arrays.

Table III also lists the variation of g with v at several
values of P. Evidently, g is nearly independent of v at
large v™but goes to zero below a threshold value of order
v = 0.2, where the damped pole in the integral (C8)
moves outside the first Brillouin zone of the triangular
lattice. Once again, this agrees with the results found in
the continuum theory of Ref. 9 for a square lattice. The
results also agree quite well with our numerical results,
as shown by a comparison of Tables II and III (bottom).

VI. ABSENCE OF BALLISTIC VORTEX MOTION

A rather surprising result of our simulations is the
absence of ballistic vortex motion. Such motion might
have been expected, at least in the highly underdamped
regime; and there have been some experimental reports
of such behavior. 4 s In order to check for ballistic mo-

tion, we apply a large bias current to the array in the
fiux-fiow regime, so that the vortex acquires a high ini-

tial velocity, then we turn off the bias current. Since
the efFective mass of the vortex is presumably large in
the high-P regime, the vortex might be expected to move
several lattice spacings because of its large initial kinetic
energy, even after the driving current is removed. But
&om the calculated time-dependent voltage of the indi-
vidual junctions, we find that the vortex travels at most
through one primitive cell after the bias current is shut

ofF, whatever its initial velocity, for all values of P con-
sidered (0 & p & 1000). This is consistent with previous
calculations. ~

It is of some interest to compare our results with those
of Ref. 10. This paper considers the triangular array in
a continuum approximation and concludes that a narrow
vortex velocity window exists where ballistic motion is

32m fR
3I

'g 0 89P ('I7p)pqp (14)

Table III shows the friction coefBcient as calculated
from the model of Appendix C. As can be seen, the re-
sulting coefficient is strongly dependent upon P, in agree-
ment with our n»merical "experiment. " If, for example,
we choose the scaled vortex velocity v = 1.0 [as defined
in Eq. (C7)], our analytic expression for il is well approx-
imated in square array by the simple expression

~/(«) q

0.2
0.5

e 1.0
2.0

1
0.040
0.67
1 ~ 14
1.38

10
0.061
3.16
3.25
2.82

50
0.064
7.67
6.75
5.10

100
0.064
11.0
9.33
6.83

225
0.064
16.7
13.7
10.1

400
0.064
22.4
18.2
14.1

TABLE III. Numerical values of g as obtained from the
semianslyticsl theory of Appendix C st several values of P and
v for square and triangular arrays. The values are obtained
by use of Eqs. (11), (12), and (CS) carrying out the integral
numerically.

and in a triangular array by

~ = 0.34P'~'(qo) „;.
The Pi~z trend is consistent with the results of numerical
calculations in Ref. 9 for square arrays and in the present

gl(«)~„
0.2
0.5

8 1.0
2.0

1
0.014
0.20
0.38
0.48

10
0.025
0.94
1.19
1.06

50
0.027
2.32
2.55
1.98

100
0.027
3.36
3.56
2.66

225
0.028
5.13
5.25
3.86

400
0.028
6.91
6.84
5.06
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possible. It is suggested that this window extends from
the vortex-depinning current to roughly twice that cur-
rent. We can envision two possible reasons why we do
not see this ballistic regime in our own calculations. The
Grst is that the depi~~ing current is rather dependent
on lattice size, typically being larger for the smaller lat-
tices. For our size regime, this may narrow the window
nearly to zero. In addition, the vortex velocity is not
constant just above the depinning current, but instead
is quite time dependent, because of the periodic pinning
potential. This time dependence is not considered in the
model of Ref. 10, which assumes a constant vortex ve-

locity in estimating the width of the ballistic "window. "
Thus, the effects of this time dependence could possibly
also suppress this window.

In view of these results, the explanation for the bal-
listic motion which is observed in experiments seems un-
clear. No numerical calculation has yet found such mo-
tion from classical equations. Conceivably, the ballistic
regime arises when quantum eHects reduce the vortex-
friction coefBcient below classical predictions, but this
remains to be proven.

corrections as vortex-vortex interactions. It is amusing
to note that several groups have reported evidence (both
experimental and theoretical24) for a superconductor-to-
insulator transition in quasi-two-dimensional supercon-
ductors in a magnetic Eeld at a resistance per square of
order h/(2e)2; this transition is generally attributed to
disorder eKects, and thus may be unrelated to the sim-

ple criterion for arrays mentioned above. Thus a detailed
calculation of quant»m eKects on vortex motion rexn. ains
an important problem for future study.
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APPENDIX A: SIMPLE ESTIMATE
OF VORTEX-FRICTION COEFFICIENT

VII. DISCUSSION AND CONCLUSIONS

CI, = (2e) '
(16)

We have simulated the dynamical response of triangu-
lar Josephson-junction arrays, using a classical model of
resistively and capacitively shunted Josephson junctions
described by coupled second-order differential equations.
In the flux-How regime, the dynamical response of the
network, including the time-dependent voltage, is well
described in terms of vortex degrees of &eedom. The vor-
tices, however, experience higher viscous damping than
predicted on the basis of a simplified model, and in appar-
ent contrast to experiment do not exhibit ballistic motion
at any bias current we have investigated. The damping is
reasonably well described, however, by a model which de-
scribes loss of vortex energy to plasma (or "phase wave")
oscillations in the Josephson network.

It is of interest to make a crude estimate of the pa-
rameters where quantum corrections might need to be
included in these calculations. In a naive picture, such
corrections would start to matter when the characteris-
tic charging energy (2e)2/C becoines comparable to the
Josephson energy SI,/(2e). This condition gives

In this appendix, we present a simple estimation of
the &iction coeScient for a single vortex moving in a
triangular array. If we assume that such a vortex moves
&om the center of one plaquette to the center of a nearest-
neighbor plaquette, it must cross one junction. Since the
change in phase difference is 2n'/3 when the vortex crosses
the junction, the average voltage across the junction is

2n'/3 5 2x/3 2

2e b,t 2e Ks a/„+3 2e a
3

where ht is the time required for the vortex to move from
one plaquette center to the next, a is the lattice constant,
and v is the time-averaged vortex velocity.

We next compute the effective frictional coefBcient by
equating the resistively dissipated energy to that ex-
pected for a particle moving in a viscous medium. Now

the efI'ective resistance between two nearest-neighbor
grains is deined as the voltage drop which is produced
when a unit current is injected into one such grain and
extracted &om the other. Since there are six nearest
neighbors in a triangular lattice, the effective resistance
in an infinite triangular array is R/3, where R is the
single-junction resistance. Equating the resistively dis-

sipated power to the &ictional losses, we obtain

This can be translated into a condition on the lattice
resistivity, using Eqs. (12), (13), and (15), with the result F)'2("')'-"' =

2(R/3)

(ri
2R 3 (2 )

where the constant of proportionality is approximately
1.1. This result suggests that quant»m corrections might
become important when the resistance per square of this
two-dimensional network is comparable to the "quantum
of resistance" A, /(2e)2 per unit frustration. Of course,
this naive estimate does not take account of such obvious

This implies that the vortex-&ictional coeKcient in an

ininite triangular array is

(A1)
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A sile&ar calculation for a square array gives3'5

2e) ~
a ) 2R (A2)

sine function as sin(P; —P~) = P; —P~, and, within that
assnmption, calculate the losses coming from an arbitrary
I;,,„q(t). With the introduction of the Fourier transforms
P(k, u) and I,„t(k,w), we can transform (Cl) into the
form

APPENDIX B:EXTRACTION
OF q FROM I-(V) CHARACTERISTICS Here

P(k, (u) = I.„,(k, ~)/t(k)
i~ hau~C
2eR 2e

(C2)

In the fiux-flow region, the time- and space-averaged
voltage (V) across an M x N array is approximately pro-
portional to the bias current I. We define a dimensionless
proportionality coefficient p by

(V) = HENRI,

where N is the number of junctions along the direction of
the bias current. If we assume periodic transverse bound-
ary conditions and [101]current injection, a complete cir-
cuit of a vortex around the array produces a phase change
of 2z across the array in the direction paraUel to the cur-
rent injection. The Josephson relation then implies that

t(k) = ) [1 —exp(ik R)),
NN

the sum runs over the set of nearest-neighbor lattice vec-
tors R, and the allowed k values run over the first Brji-
louin zone of the grain lattice.

The energy dissipation in the ijth bond in the time
interval [ T, T] i—s

+T
DE;, = I;, (t)V,, (t)dt,

—T

or, in Fourier transform,

AE; = ~ eke'I; ~ V,' ~' A ~, u)', C3

2 (h& (2vr t 1

pMN (2e) ( a ) 2R
1

(no)e. .
pMN

(Bl)

where a is the lattice constant and v is the transverse
vortex velocity. Since the &iction coefEcient gq„ is re-
lated to v by Eq. (8), we obtain, on combining the above
relations,

where

1 sin[(~ —~')T]
A (d) (d

ur —cu'

The total energy loss EEt, t = g~, ~
AE;z. Using the

Josephson relation between phase and voltage, and the
equations of motion (Cl) in the small phase difference
approximation, and making the relevant Fourier trans-
forms, we can finally express the total energy loss as

OO OO

b,E, , = ) d~ d(u'
2eN t k

APPENDIX C: ANALYTICAL MODEL
FOR VORTEX-FRICTION COEFFICIENT

i~'I,„g(k, ~)I;„,(k, (u')

Ic+ 2~R
(C4)

We consider a d-dimensional periodic network of
RCSJ's, assuming zero shunt capacitance to ground, and
also assuming that the shunt resistance, junction critical
current, and shunt capacitance all vanish except between
nearest neighbors, for which they take the values R, I„
and C, respectively.

With these assumptions, the equations of motion for
the phases may be written in the form

h—&).4', + ).4*, + I.).»n(4*, ) = 4;ext,
2 2 2

(Cl)

where the s»ms run over the nearest neighbors to the
grain i and P;~ = P, —

P~
We wiD calculate the losses produced by an externally

applied current due to excitation of "spin waves, " i.e.,
small-amplitude phase Quctuations. Thus, we expand the

where N is the number of grains in the lattice, and the
sum r~ms over the first Brillouin zone.

This result is valid for an arbitrary external current
source. We now specialize to a vortex moving with ve-
locity v. According to Geige~muller et al. , such a vortex
traveling in the y direction has associated with it a charge
density

Q (x, t) = C—v 2zb(z)b(y —vt).v n a
2e Bx

The corresponding space and time Fourier transform is

Q (k, ur) = (2vr) ~ C—v( —ik )h(~ —vs).2e
(C5)

Of course, this charge density was derived for a vortex
moving in a continuum superconductor, and cannot be
exactly correct for a superconducting array. However,
by imposing the additional requirement that Qv(k, ur)
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vanish for k outside the 6rst Brillouin zone, we produce
an approximate charge density which is properly discrete.

The external current corresponding to this charge dis-
tribution is

The expression for g can be written most compactly
by using the dimensionless variables k,' = ak, , i = x
or y, where a is the bond length. We also introduce a
dimensionless vortex velocity

I,„g(k, (u) = —iioQ (k, ~). v=v auo, (C7)

We substitute this into Eq. (C4) and convert the sum
over k into an integral, with the help of a factor 8/(4vr2),
where 8 is the area of the array. The integrand vanishes
unless ~ = u'. Next, we explicitly evaluate the real part,
using the fact that A(ur, u) = —,and dividing by 2T. The
two integrals over &equency can be done immediately,
since they involve b functions, and the final result for the
time rate of energy loss Rom the vortex into the spin-
wave modes reduces to

where ~o = /2eI, /hC is the Josephson plasma fre-
quency. After some algebra, we obtain Eqs. (l 1) and
(12), respectively, for rl in a square array and a trian
gular array. In both cases the dimensionless integral I'
takes the form

dE
dt

= gv (C6)
1

t(k', k„') )
' (C8)

where ri is an efFective vortex &iction coefficient. Form
(C6) properly corresponds to a frictional force of the form
—gv, since the rate of energy loss is the dot product of
the force with the velocity.

and (bio),q and (rlo)|,„are given by Eq. (9) and Eq. (10).
The integral for both lattices runs over the scaled first
Brillouin zone of the array (defined by taking the bond
length a = 1).
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