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Strong-coupling corrections to the Bardeen-Cooper-Schrieffer ratios for a d-wave superconductor
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We have calculated, for a d-wave superconductor, the strong-coupling corrections to the Bardeen-
Cooper-Schrieffer (BCS) ratios: hC( T, )/y T„260/T„y T, /H, (0),h, (0) as well as the ratios for the nor-

malized slope in the specific-heat jump at T, and London penetration depth. We have used a step-
function approximation for the gap function and considered an Einstein spectral density for the bosons.
We have obtained terms up to O(T, /co&) (here T, /~& is the strong-coupling parameter and co& is the
Einstein energy). While our results are approximate for the strong-coupling cases, the weak-coupling re-

sults are exact. These weak-coupling ratios are no longer universal and depend on the d-wave con-
sidered. Our formulas are also applicable for some extended s-wave superconductors which have a basis

function with a zero average over the Fermi surface.

I. INTRODUCTION

It is now commonly believed' that some heavy-
fermion superconductors (e.g., UPt3) are d-wave super-
conductors. There has been some evidence that the
high-temperature oxide superconductors are also d-wave
superconductors. In the present study, we calculate
the strong-coupling corrections to the Bardeen-Cooper-
Schrieffer (BCS) ratios' such as 250/T„hC(T, )/y T„
y T, /H, (0), etc., for a d-wave superconductor. These ra-
tios are universal in the BCS theory of an isotropic
strong-coupling superconductor and have been studied
extensively. " ' Among these studies, the imaginary-
axis approach of Marsiglio and Carbotte' is especially
convenient. These authors showed quite amazingly that
even for a strong-coupling isotropic superconductor,
universal formulas for all these ratios with only a single
strong-coupling parameter T, /col„(where co&„ is the
Allen-Dynes expression for the average phonon energy)
can be obtained by fitting the derived analytic expressions
[up to 0 ( T, /co&„) terms] to the experimental and numeri-
cal data. For a d-wave superconductor, these ratios are
no longer universal even in the weak-coupling limit. One
expects that in addition to the variable T, /coi„ the vari-
ous ratios will also depend on the d wave considered.
More recently, Millis, Sachdev, and Varma' and Willi-
ams and Carbotte have calculated some of the proper-
ties of a d-wave superconductor stabilized by antiferro-
magnetic spin fluctuations. In this model the anisotropy
is kept only in the numerator of the Eliashberg equations.
Schachinger and Carbotte ' have studied the dependence
of the jump in the specific heat and the slope in the
specific heat at T, on the strong-coupling ratio T, /coz
(coz is the Einstein frequency for the boson mode), by
solving the corresponding Eliashberg equations for a d-
wave superconductor. They found large strong-coupling
corrections to these two quantities. One of their interest-
ing results is the nonmonotonic dependence of the slope
in the specific heat at T, on the strong-coupling
ratioT, /coE, which is qualitatively different from that of
an isotropic superconductor.

In the present study, we follow the imaginary-axis ap-
proach' with the step-function approximation to the
gap. For brevity, we have used a simple Einstein spec-
trum for the boson responsible for the superconductivity.
Our objective is to understand the general dependence of
these ratios on the strong-coupling variable T, /coz and
on the character of the d wave. We have obtained
corrections up to O(T, /coz) terms. The reader should
note that implied in our use of the Eliashberg equations is
the assumption that the system in its normal state has
settled into a Fermi-liquid phase. This may not neces-
sarily be the case. If not, the correct procedure to follow
would depend on the nature of this new state and the usu-
al small parameter T, /Tz (where Tz is the Fermi energy)
would need to be replaced by something else. In Sec. II
we consider first the specific-heat jump and the slope at
T, . In Sec. III the correction to the gap-T, ratio is stud-
ied. More ratios are calculated in Sec. IV. Conclusions
are given in Sec. V.

[c0 +b,„(co ) )
'i

(2)

where b,&(co„)are the gaps and Zz(co„) are the renormal-
ization factors defined at the Matsubara frequencies

co„=m.T(2n+1), n =0,+1,+2, . . . .

( . . ) stands for the average taken over the Fermi sur-
face Sz, i.e.,

II. STRONG-COUPLING CORRECTION
TO h, C(T, )/y T,

We begin with the Eliashberg equations written on the
imaginary-frequency axis (kz =8=1),
b q(co„)Zq(co„)

&&(co )
mT g A~ (m —n)— , , (1)2 +g2 (~ )]k/2
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dS~ dS~
&I(1)&=I, "f(I ) f, (4)

a, =
&gI, &,

a, , =&g„'inIl}„I& . (12)
Further, A,~,(m —n) has the form

A~ (m —n) = —
gl, ril, A, (m n—), (5)

2vA (v)dv
A, m n=- " +(corn con)

The basis function g& satisfies the conditions

(6)

with ril, as the basis function of the d wave and A.(m n—)

depending on the spectral density A (v} through the rela-
tion

1=F(T)+G (T)b p+ J(T)b p,

where

F(T)=A[e+(—', —s)u +(s——")u ]

ka4
G(T)= —

I 1 —(1+y,s)u
2y, (n T)

(13)

(14)

a;I will be needed later. After some lengthy calculations
as shown in Appendix A, for an Einstein spectral density
Eq. (1) becomes

&g„&=0,

& rl„'& =1 .

(7)

(8)

It may be mentioned that some extended s-wave bases
also satisfy Eqs. (7) and (8).

To make the analytic calculation possible, we follow
the step-function approximation'

Spy/g lf Icog I
+ cop~

0 otherwise (9)

A,a6J(T)=
4

1—
yl(m. T)

+[y, ( —'„' —6s) —1]u },
3 2 +
8yi

where c and u are defined as

(15)

(16)

a3 bp
2 3a5 b'o

(10)

with a3 and a5 defined as

Here coo represents the maximum boson frequency in the
system. We restrict our spectra to those in which the im-
portant boson frequencies are much higher than T, and
much less than coo. This allows an expansion in the
strong-coupling parameter T/v, which becomes T/coE
when an Einstein spectral density is used.

For T near T„using Eqs. (5), (7), and (9), Eq. (2) be-
comes

Z„(~„)=1+ g„y X(m —n)~
7TT

~n m

1.13ma=in ' =ln
1.13coE

(17)

(18)

and

y, = =0.4754,4

128

93/(5)

(19)

(20)

Here g(n} is the Riemann zeta function. In the deriva-
tion of Eqs. (13)—(16}, O((T/coE)s) and higher-order
terms have been neglected.

To calculate the specific-heat jump, we use the
Bardeen-Stephen formula for the free energy,

hF
N(0)

= —mTg I [co +bz(co„)]' —ice I] Z~(co )
—Zl, (co ) 2 2

[cp +b,„(co ) ]'
(21)

Here N(0) is the density of single-particle states at the
Fermi level in the normal phase; Zl, (co ) is the renor-
malization factor for the normal state. From Appendix
A, we have Zl, (co„)=Z&N(co„)=1. With the help of Eqs.
(9) and (11),Eq. (21) becomes

= —
—,
' [a4C2( T)bp ——3a6C3( T)b,p], (22)

with

hp(T) = A, S+A2S

with

A, =—T, Idb p/dTI r = T,F'/G,

A, —=—,
' T,'Id'~p'/de'I,

(25)

(26)

I

where higher-order terms have been neglected. Using
Eq. (13), we obtain that

C (T)= g( )

8(m T)

C (T) 93$(5)
128(n.T)

(23)

(24)

T,F'
(F"/2F' —G'/G +F'J/G ),

G

S=1—T/T, .

(27)
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With the help of Eq. (25), Eq. (22) can be rewritten as

F~ F—N= — (a4C2A tS +[2a4C2A ( A2+a4C2A )
N(0) o 2 2 0 2

S N

—4a6C~A, /3]S ) .

f =(yT ) N(0)a4C2Af

3N(0) 4 p 3 5 p 2 p
q = —a6C3A &

——a4C2A, —2a4C~A, A~yT' . 3 3

(31)

(29)

Here the superscript 0 means that it is calculated at T, .
From Eq. (29), the normalized specific-heat jump near T,
becomes A, =

p [I+[(2+y,)e—8/3]u +Ssu ],
2 Q'4

with

(33)

The quantity A& defined in Eq. (26) can be calculated
from Eqs. (14}and (15}as

Ss =yi(y i+2)z~ —( —", y, +2)z+ —'„'y, + —",, . (34)

with

=f —q(l —T/T, ), (30)
Then the normalized speci6c-heat jump at T„
f—=b,C(T, )/y T„is calculated from Eq. (31) as

f= ' [1+(48.9s —52. 6}(T, /io@ }+(8.7s —23.5e+22. 3)n (T, /a)@) ] .
a4

The normalized slope of the specific heat at T„

(35)

g= T, b—(T, )/EC(T, )=q/f,

can be calculated from Eqs. (26), (27},(31), and (32); we obtain

& 8.85s —9.43+(5.81 —3.90s }y z

4 (5.39e —24. 36e+34.87)y+10.64', +3.2e —27.73 T 4—7r' ~c ~E (36)

Here y, which is d-wave dependent, is defined as

2

=0.681
CX6 CX6

Q4 CX4

(37)

a4= —",, a6=5.62, and a3=a5=0. The other averages

which will be needed later on are a&I =0.287, a4I =0.956,
and ~ lgql ~ =5.253.

From Eq. (35) we note that the d-wave dependence of the
jump at T, appears only in the prefactor. Then the
specific-heat jumps at T, for different d waves will be pro-
portional to each other. On the other hand, the slope of
the specific heat at T„g, has a complex dependence on
the d wave. The corresponding weak-coupling values are
obtained by putting T, /coE =0, i.e.,

flwc=1. 43/a4

g~ wc=2(2 y) =2(2 0.681a6/a4).

f~wc=1.43/a4 was obtained by Pokrovskii, and ~wc
denotes the weak-coupling limit.

To illustrate the dependence of these ratios on the
strong-coupling parameter T, /roE and the d wave, we
consider the following two examples.

A. d-wave superconductor

The basis function is given by nz =&15/4sin 8cos2$
(i.e., k „—k~). We consider a spherical Fermi surface.
Then the various moments are easily calculated as

B. Extended s-wave superconductor

For concreteness we consider, as a possibility, an or-
ganic superconductor consisting of one-dimensional (1D)
chains. A possible choice of gz is ~2 cosk, and k is the
momentum in the direction perpendicular to the chains
as in the work of the Suzumura and Schulz. The aver-
age becomes ( gI, )=n'J odk~rit,

.The various . values of
the average are calculated as a4= 1.5, a6=2. 5,
a3=a5=0, az&=0. 150, a4&=0.355, and (~g&~) =09.

In Figs. 1 and 2, we have plotted f and g as a function
of the strong-coupling parameter T, /co foEr the d-wave
(solid curve) and the extended s-wave (dashed curve) su-
perconductors described above. One notes that f in-
creases monotonically from the weak-coupling values
0.67 for the d wave and 0.96 for the extended s wave,
which are similar to that of an isotropic superconductor'
and agree qualitatively with the numerical calculation of
Schachinger and Carbotte. ' The results for the slope g
are very interesting in that they start from the weak-
coupling values 2.33 for the d wave and 2.5 for the ex-
tended s wave, and then increase initially and show a
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FIG. 1. Normalized specific-heat jump at T„f:IC(T, )/y T—„as a function of the strong-coupling parame-
ter T, /coE. The solid curve is for a d-wave superconductor with
a basis function qs =&15/4 sin28 cos2$ ( —k „' —k ~ ), and the
dashed curve is for the extended s-wave superconductor with a
basis &2cosk~ in the case of an organic superconductor. For
details about the two bases, see Sec. II.

FIG. 2. Normalized slope in the specific-heat jump at T, as a
function of the strong-coupling parameter T, /eE for the d-
wave (solid curve) and extended s-wave (dashed curve) super-
conductors.

then, A, (co' —co) defined in Eq. (16) becomes

maximum. This feature is qualitatively different from
that of an isotropic superconductor. ' Our results agree
with the numerical calculation of Ref. 21.

2
cOE

A, ( co co ) =A.

coE+ (co' —co)

with

(40)

III. STRONG-COUPLING CORRECTION
TO THE GAP-T, RATIO

At zero temperature, we have the well-known. replace-
ment2 co„+co, co——+co', 2mT+~~ f" dco; then, Eqs.
(1) and (2) can be rewritten, by using Eq. (9), as

a)
z~(co) =1 I dco A,(co co)'/geo2'

A, =2A/coE . (41)

Using Eqs. (38)—(40), an equation for b,o is derived in Ap-
pendix B; it reads

1 =/(, Iln2COE/ho
—a

+-,'(a4»2COE /+p a4~
—a4/2)(&p/co~ )

+ ', (asln2COE/ho —ae 7as/12)(ho/coE )'1

ggl

i2+g2 2 )1/209k'
(38)

Here a; and a;& are defined in Eqs. (11) and (12), respec-
tively, and T, is determined frotn Eq. (13) with b,o=0,

2
Qk'~0

Z~(co)b,o= —I dco' A, (co' —co) 2 2 2
( i2+g2~2 )1/2 A, [e+(~4 —e)u +(s—

—",, )u ]=I, (43)

(39)

For an Einstein spectral density, A(v)= A5(v —coE);
I

where E and u are defined in Eqs. (17) and (18), respec-
tively. The gap-T, ratio can be solved from Eqs. (42) and
(43) by repeated iterations and the result is

2b,0 =3.53exp( —a21)[1+a31n(coz/b&T, )(T, /co@) + A3(T, /co~) ],
C

where

(44)

3.53a3=n + a4exp( —2a2I ), (45)

1
b3 = exp

(a4/2 —a2&a4+a4&)(3. 53 /8)e "+4m /3

a3
(46)
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A3 =
—,'[vr (e ——', )+pip2] +—,'p, p~+ —,'pip2m (s ——', )+m4( —",, —e)+ —,'p, &a4(~4 —e. )

+ ,P—i[a6(~+a2i) a/i 7a6/12] —'ag/P2, (47)

with

Pi=1.76e

P2 =a4e+ a4a2&
—

a4&
—a4/2 .

(48}

(49)

cases 2hp/T, increases monotonically as the coupling
strength is increased. The degree of enhancement of
2b,p/T, is comparable with that for an isotropic super-
conductor. '

From Eq. (44} one notes that the weak-coupling value
of the ratio 2hp/T, for a d-wave superconductor is given

by

2b,p/T, ~ wc =3.53e

which is always less than 3.53 for an isotropic supercon-
ductor. The dependence of 2hp/T, on the d wave
(through a4, a6, a2&, and a+) is quite complicated. In
Fig. 3, we have plotted 2hp/T, as a function of the
strong-coupling parameter T, /coz for the d wave and ex-
tended s wave described in Sec. II. We note that in both

I

IV. MORE STRONG-COUPLING CORRECTIONS

In this section, we calculate three other ratios for a d-
wave superconductor.

A. yTc/II, (o)

To determine the correction to y T, /H, (0), H, (0) as
the critical magnetic field at zero temperature, we first
calculate the free-energy difference between the normal
and superconducting phases. At T =0, Eq. (21) becomes

(( 2pg2 2)1/2~ 2( 2~g2 2)—1/2 p ))N(0} p
0 0

1 2 +4 CK6 4

2
= ——b,p 1 — (6p/a)E) + (hp/piE) (50)

where we have used the fact that Zz (pi„)=Zz(co„)=1 (see Appendix B) and Eq. (11). From Eq. (50), H, (0) can be ob-
tained as

H (0)= [4m'N(0)] kp[1 —a4(kp/p)E ) + )6(a6 a4/8)(&p/pig ) ]

Therefore, with Eqs. (51) and (44), y T, /H, (0) becomes

T2
=0.168e " 1 —a&in (T, /coE) + A (4,T /piE)

H, (0) &4Tc

(51)

(52)

I I I I
)

I I I I
)

I I I I
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I
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Tc/W

FIG. 3. Ratio 250/T, vs T, /coE for the d-wave (solid curve)
and extended s-wave (dashed curve) superconductors.

FIG. 4. Ratio yT, /H, (0) vs T, /~E for the d-wave (solid
curve) and extended s-wave (dashed curve) superconductors.
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with

Q4 =2Q3

b4 =exp
2a3lnb3+(3. 53 /16)a4e

2Q3

2

(53)

(54)

COE
A4=3Q3 ln

3 c

—2A ——a ——a (3.53/2) e
1 4

3 8 6 2 4 (55)

Here one notes that in the weak-coupling limit

y T, /K, (0) I wc =0. 168 exp(2a» )

for a d-wave superconductor which is always larger than that for an isotropic superconductor, 0.168. In Fig. 4 we have
plotted y T, /H, (0) versus the strong-coupling parameter T, /coE for the d-wave and the extended s-wave superconduc-
tors described in Sec. II.

B. Critical magnetic Seld

The zero-temperature critical magnetic field H, (0) is given in Eq. (51) and its value for T near T, can be obtained
from Eq. (22) as

H, ( T)=&4mN(0) [a4C2( T)ho ', a6C, ( T—)—ho]'

T, IH,'( T, ) I
can be calculated by using Eqs. (25) and (56); we have

H, (0) „coE
h, (0)—= =0.576+a4e "

1 —a~In (T, /co@) + A~(T, c/oz)

(56)

(57)

with

a~=(y, +2)na3, . — (58)

1
5

1 13
"P

—", m. —(3.53 /32)a&e "—a3ln(1. 13b3)

(y, +2)~ —a,
(59)

35 = I I
—Ssvr —I

&
a31n2 4 COE

3 c

——ag, — —ag, a, ln ( a6 —a4/8 )g,' —A 3
1

(60)

and

l, =(2e+y, e —8/3)n.
I I I I

(
I I I I

Here Ss, a3, b3, A 3, and P, are defined in Eqs. (34), (45),
(46), (47), and (48), respectively.

From Eq. (56), one notes that in the weak-coupling
limit,

0.60

h, (0)Iwc=0. 576+a4e

which could be either larger or smaller than the value of
0.576 for an isotropic superconductor. In Fig. 5 we have
shown h, (0) against T, /r0E for the 1 wave and extended
s wave used in previous sections. One notes the mono-
tonically decreasing of h, (0) as the coupling strength is
increased.

0.50—

C. London limit penetration depth

To calculate the London penetration depth A, L (T), let
us look at the response of the system to a static magnetic
6eld, represented by the vector potential A,

040 I I I I I I I I I I I I I I I I I I I

0.0 0.05 0.10 0.15 0.20
Tc/&

FIG. 5. Ratio h, (0)=H, (0)/T, IH,'(T, )—
I vs T, /cue for the d-

wave (solid curve) and extended s-wave superconductors.
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I I I I
(

I I I I
)

I I I I
)

I I I I

with A,l ' = [4n n, e /mc]'~~. From Eq. (62), we have

(62)

The kernel E;J. can be calculated in terms of the single-
particle Green's functions using standard many-body
theory. It reads

3ll e T hi, (co„)
4m' ' 4mc ' [~„++2~{oi„)]~~K; = g dQi,k;k, (61)

where n, is the density of electrons and k,. is the unit vec-
tor along the ith axis. Using Eqs. (9) and (61), we have

Q2 2

Y;=A,, 2=A,
L

2 Tg—JdQi, k 2
i I I 2 k l

( 2 +g2 2)$/2

0.90—

O.SO

~ 0.70

0.60

05p I I I I I I I I I I I I I I I I I I I

0.0 0.05 0.10 0.15
Tc/m

0.20

+ [(2e+y, s ——,') —Ss ]n ( T, /a)E )4],

(63)

where Eq. {33)has been used and the a2~ are defined as

(64)

a2~ =—', and a2~ =—,
' for the d wave described are in

Sec. II. Then [Y,(0)/T, IY", (T, )I]Iwc= —', and [Y3(0)/
T, I Ys( T, ) I ) Iwc= —,'. As the ratios for transverse and lon-

gitudinal directions are proportional to each other, we
only show the result for Yi (0)/T, I Yi ( T, ) I

in Fig. 6.

FIG. 6. Ratio Y i0{)/T, IY,'(T, )I (with Y~—=A,
~ andi, ~ asthe

transverse London penetration depth for a Geld perpendicular
to the symmetry axis of the order parameter) vs T, /coE for the
d-wave superconductor.

jump at T, and London penetration depth, and is com-
plex for other ratios. The magnitudes of the strong-
coupling corrections of these ratios are comparable with
that for an isotropic superconductor. An nonmonotonic
dependence of the slope in the specific heat is obtained,
which agrees with the recent numerical results. Our for-
mulas are also applicable to some extended s-wave super-
conductors having a basis function satisfying ( rli, ) =0
and ( vg ) =1. These ratios for the strong-coupling
correction have been illustrated as a function of the
strong-coupling parameter T, hoE for a d-wave supercon-
ductor and for an extended s-wave superconductor.

V. CONCLUSIONS ACKNO%'LED GMENTS

We have calculated, for a d-wave superconductor, the
strong-coupling corrections to the Bardeen-Cooper-
Schrieffer (BCS) ratios f =hC(T, )/y T„25o/T„
y T, /H, (0), and h, (0) as well as the ratios for the nor-
malized slope in the specific-heat jump at T„
g =T, (d /d T)b ( T, ) /b C( T, }, and London penetration
depth. We have used a step-function approximation for
the gap function and considered an Einstein spectral den-
sity for the bosons. We have obtained terms up to
0(T, /coE). In the weak-coupling limit, our results are
exact and our formula for b,C(T, )/yT, agrees with the
earlier works and the formulas for other ratios are new.
These weak-coupling ratios are no longer universal and
depend on the d wave considered. Furthermore, in the
weak-coupling limit, hC(T, )/YT, and 2ho/T, for a d-
wave superconductor are always less than that for an iso-
tropic superconductor, while y T, /H, (0) for a d-wave su-
perconductor is always larger than that for an isotropic
one. Among the strong-coupling ratios, the d-wave
dependence appears in the prefactor for the specific-heat

APPENDIX A:
GAP EQUATION FOR TNEAR T,

We consider a d-wave system with a3=a5=0; then,
Eq. (10) becomes

Zi, (co„)=1 .

Using Eqs. (5), (8), (9), (11),and (Al), Eq. (1) becomes

a4 50 3a6
1 =m.T g A(m n} —— +

(A 1)

(A2)

We will follow Marsiglio and Carbotte' closely. We first

This research was supported in part by the National
Sciences and Engineering Research Council of Canada
(NSERC), by the Canadian Institute for Advanced
Research (CIAR), and by the Ontario Center for Materi-
als Research (OCMR).
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write A,(m —n }of Eq. (16) as

A(m —n)= f dv
2vA (v) 1—
co +am n

2cOm COn

~m+an

and

ian
y~= —+

2 2~T
(A17)

4~m ~n+ + ~ ~ ~

(~2 +g2)2

(A3}

Here f(x) is the digamma function and g' '(x) are the
polygamma functions. To remain consistent, we need the
terms in P; and Q; up to 0 ( T/v) . For brevity, let us

consider an Einstein spectral density, i.e.,

with

a —co +vn n

A (v)= A5(v —coE) .

(A4)
Then Eq. (A5) becomes

(A1S)

Using (A3), Eq. (A2) becomes

1=f dv2vA(v)[(Pi+Qi) —
—,'a4(P2+Q2)bo

+ -', as(P3+ Q3 }~o1,
where

2mT 1

2i —1 2 2
m =0 Com Com+(2)(

(A5)

(A6}

1 =kcoE P, +Q& — (P2+Q2)ho+ —as(P3+Q3)AO

(A19)

where the v appeared in P; and Q; has been replaced by
coE. As small n values are dominant, we chose n =1.
Then we can rewrite Eq. (A17) as

2m T 4n
Qi g 2i —3 2 23

=o co (co +(2„)

P; and Q; (i =1,2, 3) are calculated as

(A7) y+ =
—,'+iy,

(~2 +~2T2) I /2
COE

27TT

(A20)

(A21)

1
2Fi

an

=2 1P2=
2 C2(T) F, , —

an an

(AS)

(A9)

To expand P; and Q; up to the 0(T, /c(3E) term, we first

expand them up to term of order y and then to the
term 0(T, /coE) . The expansions of F„F2, and F3 are
obtained as

P3 = C3( T) C2( T)+— F, ,
8 2 1

2
~n l3+ F2
2an an

1 1 5i
Q2 —4a)„sF, + qF3 —

3 F2
an 16an 8an

(A 10)

(Al 1)

(A12}

1 13~ 1, 7 4
F& =ln ' +—u — u

u 3 15

i 2 8 4F2/c2„= — 4u ——u
(2n.T}

(A22)

(A23)

(A24)

Q3 =4c(P„

2
2C2(T) 3 5 F3+ 8F&

——
6 +2 —

7 F2
an an 8 a„4 a„'

(A13)

with

u =1TT /co E (A25)

with

Fl =-,'I w3+ }+0(3- ) l
—e(-,'»

F2=22 T
(~"'(~+}—O"'(~ )l,1

t0'"(x+ }+0"'(~-) l
1

2(2~T}2

(A14)

(A15)

(A16)

Using Eqs. (A22)-(A24) in Eqs. (AS)—(A13) and (A19),
we obtain Eqs. (13)—(16).

APPENDIX B:
GAP EQUATION AT ZERO TEMPERATURE

Substituting Eq. (40) into Eq. (3S), we have

2
Ar gk COE 9k'

Zz(co) = 1 — c0'
~2 ~(~ )2 ( 2~222 2 )2/2 )

Then the normal-state renormalization factor Z& (co) is equal to 1. To carry out the integration, we make the expansion
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with

coE+(co' —co) co' +a co' +a (co' +a ) (co'2+a )

Q =Cg +COE

Using Eq. (B2), Eq. (Bl) becomes

Z~(co) =1—2AcoEg~( 2)~.( A )+ A2) )',
where

oo Q) 1 1
A) = dco

Q(co~2+g»2, (co' +a ) 2a

Q2 2
p lt'

1
2a 0( —6)

2a'

(B3)

(B4)

(B5)

2 ~4 24co co 1 1 co +O( 6)
p Q,2+g2 2 (~t2+a2)4 3 a4

(B6)

with Eqs. (B5), (B6), and (B3), Eq. (B4) becomes

g~2 ~ g2 2(~2 +~2)1/2
Z„(co)=1— a ln

(coE +co ) p

—a3l (B7)

where a3 and a3& are defined in Sec. II. We consider the cases of a3=a3& =0; then,

Zq(co) =1 . (B8)

In fact, for a&%0 and a&1%0, Z&(0)=1+0(b,p/COE) =1. Therefore Z&(CO)=1 can be taken as a general result. With
Eq. (B2), Eq. (39) can be rewritten (using co=0) as

hp=kcoEhp(2)~. A2 )',
where

f ~ dco 1

+coE +co' +Aped

(B9)

1 1 Q)E + y' COE 6p'gg
2 2 2

ln
2coE +~2 —g2g2 ~ —+~2 —g2g2

1 ~on~
1

c+—
~E 2

KATE

4
3 ~oui+—
8 coE

7 +0
6

5o
(B10)

Substituting Eq. (B10) into Eq. (B9),we obtain Eq. (42).
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