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Numerical micromagnetic calculations rigorously describe the correlation between the microstruc-
ture and the magnetic properties of nanocrystalline permanent magnets. In isotropic nanocrystalline
permanent magnets exchange interactions override the anisotropy of the individual grains. There-
fore the spontaneous magnetic polarization deviates from the easy axes in a region along the grain
boundaries. For a fine grain structure with a mean grain size d < 20 nm the remanence is consider-
ably enhanced, since the volume fraction of the boundary regions where the spontaneous magnetic
polarization points towards the direction of the applied field becomes significantly high. The inho-
mogeneous ground state, however, favors the nucleation of reversed domains leading to a reduction
of the coercive field with decreasing grain size. A uniform grain structure with a very small range
in grain size avoids large demagnetizing fields and thus preserves a high coercivity. For a grain size
of 10 nm isotropic two-phase permanent magnets based on Fe;4Nd;B and a-Fe show remarkable
high-energy products, because the volume fraction of the magnetically soft phase can be increased
up to 50% without a significant loss of coercivity.

I. INTRODUCTION

The interplay between the intrinsic magnetic proper-
ties and the microstructure determines both remanence
and coercivity of permanent magnets. As a consequence
the magnetic behavior of permanent magnets depends
sensitively on microstructural properties such as grain
size, particle shape, grain boundary type, and the dis-
tribution of magnetically hard and soft phases. In or-
der to obtain high-energy products, it is necessary to
increase the remanence and keep the coercive field suf-
ficiently high.! McCallum et al.? reported an enhanced
remanence in melt-spun Nd-Fe-B magnets being com-
posed of nanocrystalline homogeneous grains without
any nonmagnetic phases separating adjacent grains. A
further increase of the remanence is possible in nano-
structured two-phase systems where small soft magnetic
grains of high spontaneous magnetization such as a-
Fe are strongly exchange coupled to a hard magnetic
phase. Coehoorn, Mooij, and Waard® found remarkable
high-energy products in melt-spun permanent magnets
of nominal composition containing a substantial frac-
tion of Fe3B grains. Recently, Ding, McCormick, and
Street? reported a maximum energy product of more
than (BH)max = 200 kJ/m® in mechanically alloyed,
isotropic Sm7Feg3-nitride powders where exchange in-
teractions between a soft a-Fe and a hard magnetic
Sm,Fe;7N, phase cause a significant enhancement of the
remanence.
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For nanocrystalline permanent magnets without any
nonmagnetic phases separating adjacent grains the ratio
of the remanent polarization J, to the saturation polar-
ization J, exceeds the theoretical limit 0.5,%¢ given by
the Stoner-Wohlfarth theory.” For noninteracting uniax-
ial single domain particles the remanent magnetic polar-
ization is given by?

Jr = J(cosb), (1)

where 6 is the angle between the easy axes and the sat-
uration field and ( ) denotes an ensemble average. Ac-
cording to (1) J,./Js is 0.5 for an assembly of noninter-
acting and randomly oriented particles, whereas J,./J,
is 2/m = 0.637 for microstructures with in-plane ran-
dom texture. In general, remanence enhancement is at-
tributed to intergrain exchange interactions.® Exchange
interactions between neighboring grains cause the spon-
taneous magnetic polarization to deviate from the easy
axes. As a consequence the resultant polarization paral-
lel to the direction of the applied field is increased. In
two-phase permanent magnets remanence enhancement
owing to exchange interactions is much more effective:
Almost all the magnetic moments of the soft phase are
aligned parallel to the direction of the saturation field,
which corresponds to the average direction of the easy
axes of the neighboring hard magnetic grains.®

In addition to the remanence, the coercive field of per-
manent magnets strongly depends on intergrain interac-
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tions and thus on microstructural parameters. Since ex-
change coupling of neighboring grains favors the nucle-
ation of reversed domains,®!° remanence enhancement
is generally achieved at the expense of coercivity. In
nanocrystalline isotropic magnets which show an en-
hanced remanence the coercive field considerably drops
with decreasing grain size.!! Two-phase permanent mag-
nets show remarkable high coercivities if the size of soft
magnetic grains is sufficiently small.}

A theoretical treatment of these phenomena must take
into account interactions of the grains. Callen, Liu,
and Cullen!? used a molecular field approximation to
describe intergrain interactions in amorphous ferromag-
nets. As shown by Hadjipanayis and Gong® this model
can describe the relation between remanence and coer-
civity found in Nd-Fe-Al-B-Si magnets. Fukunaga and
Inoue!® numerically investigated the effect of intergrain
exchange and magnetostatic interactions on remanence
and coercivity for an isotropic model magnet composed
of cubic particles. The results show that intergrain ex-
change interactions increase the remanence and reduce
the coercive field of isotropic magnets. Magnetostatic
interactions were found to be negligible. Using a one-
dimensional micromagnetic model, Kneller and Hawig!
estimated the critical dimensions of the phases and de-
rived the magnetic properties of two-phase permanent
magnets. The optimum microstructure was found to con-
sist of hard grains embedded in a magnetically soft ma-
trix with lateral dimensions of both phases about equal
to the domain wall width of the hard phase.

Whereas nucleation fields can be explicitly derived for
multilayers being composed of magnetically soft and hard
layers,14'15 a quantitative treatment of the correlation be-
tween the microstructure and the magnetic properties
in isotropic permanent magnets requires numerical and
computational techniques. In this study the dependence
of the remanence and the coercive field on the mean grain
size, the shape of the grains, and the distribution of mag-
netically hard and soft phases has been numerically in-
vestigated using a finite element technique. We consider
a two-dimensional grain structure where the easy axes
of the particles lie within a plane. The magnetization
is constrained to this plane and taken to be uniform in
the direction perpendicular to the plane. Despite the
restriction to two-dimensional microstructures the pre-
sented numerical model rigorously describes the magnetic
behavior of real magnets.

(1) The nonlinear micromagnetic problem is solved for
a realistic two-dimensional microstructure without any
further approximations. The influence of characteristic
features of the microstructure such as size and shape of
the grains can be treated quantitatively.

(2) Particle interactions are an inherent part of the
simulation model. The model takes into account both,
short-range exchange and long-range magnetostatic in-
teractions.

(3) The magnetic moments may become inhomoge-
neously arranged within a grain. Thus it is possible to
calculate the distribution of the magnetic polarization at
the grain boundaries which was found to influence the
magnetic properties significantly.

(4) Magnetic stray fields arising from magnetic surface
charges at the boundaries between magnetically soft and
hard grains and from magnetic volume charges owing to
an inhomogeneous distribution of the spins within the
grains are taken into account.

Reference calculations for three-dimensional particles
and micromagnetic energy considerations show that the
magnetic behavior of melt-spun Nd-Fe-B magnets can
be reasonably described by two-dimensional micromag-
netic calculations. The restriction to planar magnetiza-
tion processes overapproximates the stray field energy
and thus leads to smaller nucleation fields as compared
to the three-dimensional case. Micromagnetic calcula-
tions for two interacting hard magnetic particles show
that the nucleation field of dodecahedral particles and
infinitely extended hexagonal prisms with similar easy
axes configuration and equivialent diameters differ by
less than 10%.'® In three dimensions, curlinglike rota-
tions of the magnetization can always reduce the stray
field energy. The energy gain owing to magnetization
curling is small as compared to the contributions of
the magneticrystalline anisotropy energy and of the ex-
change energy which dominate the magnetization pro-
cess in small-grained, isotropic Nd-Fe-B magnets. Fuku-
naga and Inoue!® showed that magnetostatic interac-
tions do not considerably influence the magnetic behav-
ior of isotropic Nd-Fe-B magnets. Whereas the curling-
like magnetic states which are possible in three dimen-
sions reduce the stray field energy, the exchange energy
arising at the interface between misoriented neighboring
grains will be the same for planar and curling magnetiza-
tion processes. Therefore it will be sufficient to consider
two-dimensional microstructures, in order to describe the
magnetic properties of nanocrystalline isotropic Nd-Fe-B
magnets.

Since the simulation method relies only on micromag-
netic concepts and does not introduce any artificial as-
sumptions, the numerical results help to understand the
effects of microstructural features on remanence and co-
ercivity within the framework of micromagnetism. Sec-
tion II of this paper describes the micromagnetic back-
ground of the simulation model. Section III presents nu-
merical results for the size dependence of remanence and
coercivity. Section IV deals with the influence of the par-
ticle shape on the coercive field. The results presented
in Sec. V show the effects of the grain size and of the
distribution of magnetically hard and soft phases on the
magnetic properties of two-phase exchange hardened per-
manent magnets.

II. MICROMAGNETIC BACKGROUND

A theoretical treatment of magnetization processes
starts form the magnetic Gibbs free energy, ¢;, which
is composed of the exchange energy, the magnetocrys-
talline energy, the stray field energy, and the magneto-
static energy of the spontaneous magnetic polarization,
J,, in an external field, H.y;. The minimization of the
total Gibbs free energy with respect to J,, subject to
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the constraint |J,| = J,, provides a stable equilibrium
state of a magnetic structure. We assume a geometry
where the easy axes of the grains as well as the magne-
tization are constrained to a plane. The magnetization
is taken to be uniform in the direction perpendicular to
this plane. In other words, the grains are infinitely ex-
tended in the direction that is perpendicular to all easy

|

b= (AT @) + Kusin® o (1) + Kasin® o (r)

where K, K, are the anisotropy constants, and A is the
exchange constant. The demagnetizing field H,, whose
source is J,, couples the micromagnetic problem with
Poisson’s equation for the magnetic scalar potential: The
demagnetizing field H, follows from a magnetic scalar
potential U(r) by H, = —VU(r), where U(r) obeys
Poisson’s equation

AU (r)=V -J, (3)
with the solution

1
U (r) = m/ln|r—r’|V-J8d2r’
1

—_— —_— ! . !
T In|r—7"|J, ndf (4)

Here the first term takes care of the magnetic volume
charges V - J, within the grains and the second term of
magnetic surface charges J, - n (n denotes the surface
normal) at the grain boundaries.

Numerical micromagnetic calculations either minimize
(2) directly!®2° or solve the corresponding system of si-
multaneous differential equations.?! For the numerical
calculation of the stray field energy it is worthwhile to
consider two magnetostatic theorems. Brown?? showed
that the stray field energy ¢, due to J4(r) can be ap-
proximated by lower and upper bounds, given by

o > Wy [T, U] = /VU-J, & — %/(VU)str, (5)

Bo < WylJo A] =

VxA-J,)? d, 6
2000 ( ) (6)

where U is an arbitrary function of space which is con-
tinuous and regular at infinity, and A is an arbitrary
continuous vector whose derivatives are also continuous
everywhere. Both U and A need not be related to J,.
J

axes. Because of translational symmetry along the di-
rection perpendicular to the plane containing the easy
axes, only processes in this plane need to be considered.
For this two-dimensional geometry ¢; depends only on
the angle ¢ between J, and the easy axis and is given
by17,18

—(1/2)H, (r) - Ty (r) — Hex - Js (r)} &r, 2)

f
If maximized with respect to U, W; reduces to the stray
field energy ¢, and makes U equal to the actual magnetic
scalar potential, —-VU = H . The Euler-Lagrange equa-
tion which results from the variation of the functional W,
with respect to U is Poisson’s equation (3) for the mag-
netic scalar potential. Replacing the stray field energy ¢,
in the total magnetic Gibbs free energy by W; one ob-
tains an auxiliary functional W[J,,U] whose stationary
points correspond to the stationary points of the total
magnetic Gibbs free energy.?® All stationary points of W
are saddle points,?$23 which complicates the numerical
search for equilibrium states. Generally, iterative numer-
ical micromagnetic algorithms which alternate between
solving Poisson’s equation for fixed J, and minimizing
Gibbs free energy for fixed demagnetizing field proceed
towards a saddle point of W. A process of iterating to-
wards a maximum with respect to U and towards a min-
imum with respect to J, may easily lead to convergence
difficulties.®

On the other hand, replacing ¢, in the magnetic Gibbs
free energy by W3[J,, A] leads to an auxiliary functional
W([J,, A] whose local minima are in one-to-one corre-
spondence with those of the total magnetic Gibbs free
energy.?> Thus the minimization of W[J,, A] with re-
spect to J, and A provides a stable equilibrium state
and makes A equal to the actual magnetic vector poten-
tial V x A = poH, + J,. Asselin and Thiele?® proved
that this method is also correct for two-dimensional ge-
ometries. If the magnetic particle has the shape of an
infinite cylinder, the spontaneous magnetic polarization
and the demagnetizing field depend only on two Carte-
sian coordinates, say z and y, and are independent of the
third, z. Therefore the vector potential A reduces to a
one-component potential, A = A(z,y)2, where 2 is the
unit vector along the z direction. In two dimensions the
auxiliary functional, which is obtained upon replacing the
stray field energy in (2) by W5, writes?3

1

W [J., 4] :/{A(ch)z + Kisin? o + Kpsin® ¢ — Hex -J,} d*r + 2—“—/J3 d*r
0

1
o

The first integral over the magnetic body is the sum of
the exchange energy, the crystalline anisotropy energy,
and the magnetostatic energy. The following terms take
care of the stray field energy.

Finite element calculations based on a vector potential

L [va-axa)dr+ E,IT / (VA)? d2r. )
0

r
formulation exhibit the following advantages over conven-
tional numerical solutions of the micromagnetic problem:
Since the functional W[J,, A] depends only on local vari-
ables and their derivatives, its finite element discretiza-
tion leads to a sparse matrix formulation of the micro-



49 REMANENCE AND COERCIVITY IN ISOTROPIC. ..

magnetic problem. The problem is transformed into an
algebraic minimization problem with respect to the two
independent variables J, and A. Thus convergence dif-
ficulties of iterative methods which are associated with
a saddle-point principle can be avoided. Generally, it is
easier to minimize a function than to search for a saddle
point. Fredkin and Koehler?® applied (7) in micromag-
netic finite element calculations investigating magneti-
zation processes in irregular shaped particles and sys-
tems of two particles. To discretize (7) they interpo-
lated the potential linearily within each finite element
and assumed the magnetization to be uniform in each
element. Because the magnetization then is a piecewise
constant function, the calculation of the exchange en-
ergy, which involves the gradient of the magnetization, is
not straightforward. The ambiguity in evaluating the ex-
change energy can be avoided interpolating both the po-
tential and the magnetization by linear functions within
each element.?° In contrast to the algorithm of Chen,
Fredkin, and Koehler,2® we use spherical coordinates and
thus linearily interpolate the magnetization angle instead
of the components of J,. This approach guarantees the
magnitude of J, to be constant over the entire ferro-
magnetic particle. The last integral in (7) is an integra-
tion over the whole space which can be evaluated using a
spatial transformation.?® In principle, the finite element
mesh has to be extended over a large region outside the
particle. Mapping the exterior region into a finite sub-
domain reduces the size of the external mesh and avoids
the error associated with the truncation of the external
mesh.

The repeated calculation of equilibrium states for de-
creasing external fields provides the demagnetization
curve of the magnetic particles. In numerical micromag-
netic calculations the inhomogeneous equilibrium states
of the spontaneous magnetic polarization, J,, and the
demagnetizing field, H,, lead to significant discretiza-
tion errors.?” In order to reduce these errors a mesh re-
finement procedure has been applied: The calculation is
repeated on refined meshes, until the demagnetization
curve is independent of the number of finite elements
used.

III. GRAIN SIZE DEPENDENCE OF
REMANENCE AND COERCIVITY

Figure 1 presents the microstructure used for the inves-
tigation of the grain size dependence of remanence and
coercivity in nanocrystalline magnets. The particles of
randomly oriented easy axes are coupled by direct ex-
change interactions and have hexagonal shape. For the
calculations the material parameters of the Fe,4Nd,B
phase at T = 300 K (K; = 4.310° J/m3, K, =
0.6510° J/m3, A = 7.7107'2 J/m, J, = 1.61 T) (Ref.
28) have been used. The grain size has been varied be-
tween 10 nm and 60 nm.

Figure 2 shows the grain size dependence of the mag-
netic properties in isotropic nanocrystalline magnets.
The numerically calculated values for the remanence and
the coercive field are compared with experimental re-
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easy axes distribution

FIG. 1. Isotropic distribution of the easy axes and the cor-
responding spin arrangements for zero applied field. The grain
diameter is 10 nm.
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FIG. 2. Remanence and coercivity as a function of grain
size. The remanence enhancement is given with respect to the
theoretical limit for noninteracting particles. Circles, rema-
nence enhancement; squares, coercive field. The open symbols
refer to experimental values obtained for Nd;3.2Fer9.6B6Sii.2
melt-spun ribbons (Ref. 11).
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sults from Manaf et al.!! obtained for Nd;3 2Ferg ¢BsSii 2
melt-spun ribbons. Numerically calculated values are de-
noted by closed symbols, whereas experimental values are
denoted by open symbols. To compare numerically cal-
culated and experimental values of the remanence, we
have to take into account the in:plane anisotropy inher-
ent in the two-dimensional calculations. Therefore the
plot shows only the enhancement of the remanence with
respect to its value for noninteracting particles. Thus
the circles in Fig. 2 refer to 100 x J,./(0.637J,) for the
numerically calculated and to 100 x J,./(0.5J,) for the
experimental values of the remanence.

Remanence increases with decreasing grain size. For
a grain size d < 20 nm exchange interactions between
the grains enhance the remanence by about 15% as com-
pared to the remanent state of noninteracting particles.
However, highly remanent magnets exhibit low coercive
fields. Coercivity significantly decreases at a grain size
of about 20 nm. The numerically obtained results for re-
manence and coercivity are in excellent agreement with
the experimentally observed behavior.!!

This relation between coercivity and remanence can
be understood comparing the spin arrangements for zero
applied field as function of grain size. Exchange inter-
actions between neighboring grains account for the par-
ticular distribution of J, in the remanent state, plotted
in Fig. 1 for a grain size of 10 nm. After saturation by
a large external field, the equilibrium states have been
calculated for decreasing external field. As the external
field drops, the magnetic polarization of each individual
grain rotates towards its particular easy axis. However,
in the remanent state the spontaneous magnetic polar-
ization J, was found to deviate from the easy axes in the
vicinity of the grain boundaries. The competitive effects
of magnetocrystalline anisotropy and exchange interac-
tion cause a smooth transition of J, from one easy axis
direction to the other over a width of §g. As a con-
sequence the resultant polarization parallel to the field
direction is increased compared to the remanence of non-
interacting particles. Figure 3 clearly demonstrates the
dependence of high remanence effects on the mean grain
size. The emphasized areas in Fig. 3 indicate the re-
gions where J, deviates from its local easy axes by more
than 10° and 20°. The width of these inhomogeneous
magnetic states along the grain boundaries is compara-
ble with the domain wall with ég = m4/A/K;. Only
the magnetic moments within the boundary region where
J, deviates from the easy axes can increase the rema-
nence. The volume fraction of the inhomogeneous mag-
netic state along the grain boundaries becomes larger for
smaller grain size. Therefore remanence enhancement
is more significant for smaller grains. The remanence
of randomly oriented nanocrystalline particles which are
strongly coupled by exchange interactions increases with
decreasing grain size.

Furthermore, Fig. 3 reveals grains with almost all the
spins deviating from the easy axis. Exchange interac-
tions between neighboring grains override the magnetic
anisotropy of the individual grains if the average grain di-
ameter approaches the domain wall width. Owing to the
strongly inhomogeneous ground state, the expense of ex-

change and anisotropy energy in the remanent state is re-
markably high. Thus the system can obtain a significant
gain in exchange and anisotropy energy, if magnetization
reversal is initiated. The numerical calculations show
that for a mean grain size of 15 nm the gain in exchange
and anisotropy energy is three times larger than for a
grain size of 40 nm. The strongly inhomogeneous mag-
netic ground state formed in small-grained microstruc-
tures favors the nucleation of reversed domains, because
of the gain in exchange and crystalline anisotropy energy
after magnetization reversal. Thus one can conclude that
the deviation of the magnetic polarization from the easy
direction near grain boundaries becomes the crucial effect
which determines remanence and coercivity of nanocrys-
talline permanent magnets. However, it is not obvious
whether these deviations are due to exchange or magne-
tostatic effects, avoiding poles at grain boundaries.

In order to separate the effects of exchange and magne-
tostatic interactions, reference calculations omitting ei-
ther the stray field or the exchange terms in the total
magnetic Gibbs free energy were performed. Figure 4
compares the demagnetization curves obtained taking

FIG. 3. Inhomogeneous regions along the grain boundaries.
The arrows indicate the direction of the easy axes. The
shaded areas denote the regions where the magnetic polar-
ization deviates from the local easy axis by more than 10°
and 20°, respectively.
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into account (A) exchange and magnetostatic interac-
tions, (B) only exchange interactions, and (C) only mag-
netostatic interactions. The mean grain size was 15 nm
so that we can expect a significant volume fraction of
inhomogeneous magnetic states at the grain boundaries.
For calculation (A) the remanence was J,./J, = 0.72 giv-
ing a remanence enhancement of 14%, whereas the coer-
cive field reached only 22% of the ideal nucleation field,
2K,/J,. The results merely change if magnetostatic in-
teractions are neglected (B). A completely different be-
havior was found taking into account only magnetostatic
interactions (C). Here the remanence decreases rather
than increases as compared to the value of noninteract-
ing particles. Remanence enhancement is only possible
when a significant number of magnetic moments devi-
ates from the easy axes. Therefore the deviations of
the magnetic polarization from the easy direction near
the grain boundaries have to be entirely attributed to
exchange coupling of neighboring grains. Furthermore,
the calculation shows that magnetostatic interactions do
not significantly reduce the coercive field. The obtained
value of the coercive field is close to the expected value,
H. =0.48 x 2K, /J,, for randomly oriented, noninteract-
ing, spherical particles.” The slight additional reduction
of the coercive field may be attributed to the macrosopic
demagnetizing field of the cylindrical particle.

Numerical micromagnetic analyses clearly show that
strong exchange interactions account for remanence en-
hancement and low coercivities in isotropic nanocrys-
talline permanent magnets. Long-range magnetostatic
interactions play a minor role in the demagnetization
reversal process of small-grained magnets with uniform
grain structure. As discussed in the following section, de-
magnetizing fields become important for inhomogeneous
microstructures with a large range in grain size and par-
ticle shape.

grain size (nm)

FIG. 5. Grain size distribution and the corresponding mi-
crostructures of the particle configurations used for the sim-
ulations of size and shape effects.

IV. THE EFFECT OF GRAIN SIZE
DISTRIBUTION ON COERCIVITY

Figure 5 presents the grain size distributions of the
particle configurations used for investigation of size and
shape effects on the magnetic properties. The insets show
the corresponding two-dimensional grain structures. The
randomly oriented particles have direct exchange inter-
actions. Whereas configuration A has a nearly uniform
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FIG. 6. Demagnetization curves for uniform grain struc-
ture (A) and inhomogeneous grain structure (B). The mag-
netic polarization normalized by its saturation value is plotted
as a function of the external field. The external field is given
in units of 2K, /J,.
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grain structure, the particles of configuration B drasti-
cally vary in size and shape. To build the grain struc-
tures, a model simulating the grain growth has been
used:29:30 Starting from randomly located seed points,
grains grow with constant growth velocity in each direc-
tion. For the calculations the material parameters of the
Fe 4Nd;B phase at T = 300 K have been used. The
comparison of the demagnetization curves for the parti-
cle configurations A and B, given in Fig. 6, shows that
both remanence and coercive field strongly depend on
the microstructure.

In addition to short-range exchange coupling, long-
range magnetostatic interactions between the grains con-
siderably influence the magnetic behavior of permanent
magnets. A significant contribution to the demagnetizing
field arises from magnetic volume charges owing to inho-

mogeneous distributions of J, along the grain bound-
aries. Therefore the strength and orientation of the de-
magnetizing field reflects the grain structure. Figures 7
and 8 give a comparison of the spin arrangements and the
stray field of both microstructures for different applied
fields. The plots show that the absolute value of the stray
field reaches its maximum near grain boundary junctions
of strongly misoriented grains. In the lower right quar-
ter of microstructure B (see Fig. 8), where several small
grains come together, the local demagnetization factor
(Nest = po|Hs|/Js) for zero applied field was found to be
as high as N.g = 1.6. Whereas for microstructure A the
local demagnetization factor for zero applied field reaches
only values of N.g = 1.4. The increased stray fields con-
siderably reduce the coercivity of nanocrystalline mag-
nets with inhomogeneous grain structure.

FIG. 7. Spin arrangements
and demagnetizing field for
different applied field for

an isotropic nanocrystalline
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V. MAGNETIC PROPERTIES OF TWO-PHASE
PERMANENT MAGNETS

The demagnetization curves, presented in Fig. 9, show
the magnetic properties of isotropic two-phase magnets
for increasing volume fraction of the soft magnetic phase.
The insets show the corresponding microstructures being
composed of magnetically soft and hard grains. For the
soft magnetic and hard magnetic phase the material pa-
rameters of a-Fe and Fe;4Nd;B at T' = 300 K have been
used, respectively (a-Fe: K; = 4.6 x 10* J/m3, K, =
1.5x10* J/m3, A=25%x10"J/m, J,=2.15T).3 In
addition, Fig. 9 compares the demagnetization curve ob-
tained for an average grain size of 10 nm and 20 nm. The
results clearly show that a small grain size improves both
remanence and coercivity of isotropic two-phase magnets.
The spin arrangements for zero applied field, given in

Figs. 10(a) and 10(b), demonstrate the effect of the par-
ticle size: For a grain size of 10 nm almost all the spins
of the soft magnetic phase are aligned parallel to the di-
rection of the applied field. For a grain size of 20 nm the
range of exchange interactions, which couples the soft
magnetic moments to the hard magnetic phase, is too
short to align the soft magnetic grains completely. The
magnetic properties summarized in Table I show that
exchange interactions between hard and soft magnetic
phases increase the ratio of remanent and saturation po-
larization up to J,/J, = 0.92.

For the calculations the hard magnetic grains have
been randomly oriented fulfilling the condition
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FIG. 9. Demagnetization curves of isotropic two-phase per-
manent magnets. The insets show the corresponding mi-
crostructures. The arrows indicate the direction of the easy
axes. The open and shaded grains denote the soft and hard
magnetic phases, respectively.

where a; is the area of the hard magnetic grain 7 oriented
under the angle 9; with respect to the direction of the ap-
plied field. However, owing to the limited number of hard
magnetic grains, remanence enhancement is expected to
depend on the particular easy axes distribution assumed
for the calculation, especially if the volume fraction of the
hard phase is low. In order to give a quantitative treat-
ment of this effect, the easy axes distribution has been
varied systematically for the microstructure containing
25% Fe1aNd,B and 75% o-Fe. These investigations of
the influence of the easy axes distribution on the mag-
netic properties has been done for an average grain size
of d = 10 nm. The maximum remanence enhancement
of J./J, = 0.92 was found for an easy axes distribution
without any hard magnetic grains oriented perpendicular
to the field direction. However, in real magnets there are
always such grains. Therefore, for each following calcu-
lation one of the angles 9; has been fixed to 90° with all
the hard magnetic grains still fulfilling Eq. (8). The ratio
of remanent and saturation polarization and the coercive
field was found to vary with the easy axes distribution
between J,./J, = 0.92 and J,/J, = 0.66 and between
poH:. = 1.0 T and poH,. = 0.55 T, respectively. The con-
figuration where the hard magnetic grain in the center of
the microstructure is oriented perpendicular to the field
direction exhibits the lowest value of the remanence. Fig-
ures 10(a) and 10(c) show the spin arrangements in the
remanent state for the easy axes distributions exhibiting
maximum and minimum remanence enhancement. The
ratio of remanence to saturation polarization averaged
over all configurations still shows a remarkable value of
Jr/Js = 0.81 for a volume fraction of the soft magnetic
phase of 75% and a mean grain size of d = 10 nm. The
last five rows of Table I give the magnetic properties
obtained for different orientations of the hard magnetic
grains for the microstructure with a mean grain size of
d = 10 nm and a volume fraction of soft magnetic phases
of 75%. In the following figures the magnetic properties
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of the microstructure for a volume fraction of 75% a-Fe
and for a grain size of d = 10 nm denote the mean re-
sults obtained for the different orientations of the hard
magnetic grains. The magnetic properties for a grain
size of d = 20 nm have been calculated for the optimal
distribution of the easy axes without any grains oriented
perpendicalur to the field direction.

Figure 11 shows the remanence and the coercivity as
a function of the volume fraction of the soft magnetic
phase. The increase of the remanence with increasing
number of magnetically soft grains is much more signif-
icant for smaller grains. In addition, coercivity remains
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FIG. 10. Distribution of the spontaneous magnetic polar-
ization in isotropic two-phase permanent magnets for zero
applied field. The open and shaded grains denote the soft
and hard magnetic phases, respectively. The volume fraction
of the magnetically soft phase is 75%. (a) Mean grain size
D = 10 nm, optimal distribution of the easy axes without
any hard magnetic grain oriented perpendicular to the field
direction: J,./J, = 0.92; (b) mean grain size D = 20 nm,
optimal distribution of the easy axes: J,./J, = 0.69; (c) mean
grain size D = 10 nm, easy axes distribution with the hard
magnetic grain in the center oriented perpendicular to the
field direction: J./J, = 0.66.
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TABLE 1. Correlation between microstructural features and magnetic properties in isotropic nanocrystalline permanent
magnets. The first four columns characterize the microstructures. The following columns give the numerical results for the
remanence, the ratio of the remanent polarization J, to the saturation polarization J,, the nucleation field, the coercive field,
and the maximum energy product. The nucleation field denotes the critical value of the external field where the spontaneous
magnetic polarization rotates irreversibly. The last five rows give the magnetic properties of isotropic two-phase magnets for
different distributions of the easy axes.

Number of Mean grain Range in grain Soft magnetic

grains size (nm) size (nm) phases (%) Jr (T) Jr/Js poHN (T) poH: (T) (BH)max (kJ/m®)
16 10 0.5 0 1.22 0.76 1.22 1.75 287
16 15 0.75 0 1.15 0.72 1.44 1.44 258
16 20 1.0 0 1.12 0.70 1.52 1.52 237
16 25 1.25 0 1.10 0.68 1.92 1.92 233
16 40 2.0 0 1.08 0.67 1.92 1.92 224
16 60 3.0 0 1.05 0.65 1.85 1.85 212
64 24 3.5 0 1.12 0.70 2.39 2.39 243
64 29 32.0 0 1.06 0.66 1.52 1.52 215
16 20 5.0 10 1.19 0.71 1.19 1.19 272
16 20 5.0 25 1.10 0.63 0.91 0.91 304
16 20 5.0 40 1.37 0.76 0.59 0.59 361
16 20 5.0 75 1.39 0.69 0.27 0.57 345
16 10 2.5 10 1.26 0.76 1.59 1.59 308
16 10 2.5 25 1.21 0.70 1.37 1.37 338
16 10 2.5 40 1.50 0.83 1.21 1.21 439
16 10 2.5 75 1.85 0.92 0.61 1.01 662
16 10 2.5 75 1.79 0.88 0.57 0.57 616
16 10 2.5 75 1.66 0.82 0.90 0.90 523
16 10 2.5 75 1.57 0.78 0.54 0.60 460
16 10 2.5 75 1.33 0.66 0.20 0.55 280

remarkably high e\En for a volume fraction of the soft
phase of 75%, if the grain size is 10 nm. Besides the
increase of the remanence, a large number of magneti-
cally soft phases avoids hard magnetic grains which are
in direct contact. Thus the reduction of the coercive field
owing to exchange interactions between misoriented hard
magnetic grains can be suppressed. The remarkably high
values of the coercive field of about 1 T, found for the op-
timally structured two-phase magnets, can be attributed
to two micromagnetic effects: (1) Exchange hardening
of a magnetically soft grain is effective, if the extension
of the magnetically soft phase is smaller than twice the
domain wall width of the hard phase.3? (2) Exchange in-
teractions between hard magnetic grains, which decrease
coercivity, are avoided.
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FIG. 11. Remanence and coercivity of two-phase perma-
nent magnets as a function of the volume fraction of magnet-
ically soft phases. (0o—o) remanent polarization for a grain
size of 10 nm. (o — —o) remanent polarization for a grain size
of 20 nm. (O—0) coercive field for a grain size of 10 nm.
(3 — —0O) coercive field for a grain size of 20 nm.

Because it is possible to increase the remanence while
preserving a high coercive field, isotropic two-phase per-
manent magnets with an optimal microstructure exhibit
remarkable high-energy products. Figure 12 gives the nu-
merically calculated maximum energy product as a func-
tion of the volume fraction of the soft magnetic phase for
10 nm and 20 nm grain size. For a grain size of 10 nm and
a volume fraction of the soft magnetic phase of 75% the
maximum energy product exceeds 500 kJ/m3. For a large
grain size remanence as well as coercivity decrease, if the
volume fraction of the soft magnetic phase becomes too
high. Nevertheless, two-phase permanent magnets with
a grain size of 20 nm still exhibit a maximum energy
product of about 350 kJ/m? for a volume fraction of the
soft magnetic phase of 40%. For the calculation of the
energy products the demagnetization curves have been
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FIG. 12. Maximum energy product of two-phase perma-
nent magnets as a function of the volume fraction of magnet-
ically soft phases. (0—<) (BH )max for a grain size of 10 nm.
(0 — —90) (BH)max for a grain size of 20 nm.



6110 T. SCHREFL, J. FIDLER, AND H. KRONMULLER 49

corrected assuming a demagnetization factor, N = 1/2,
of a cylindrical particle. Because of in-plane anisotropy
in two-dimensional calculations the numerically obtained
energy products are probably overestimated.

VI. CONCLUSION

The numerical results summarized in Table I show
that the magnetic properties of isotropic nanostructured
permanent magnets are extremely sensitive to the mi-
crostructure. Numerical micromagnetic calculations pro-
vide the following guidelines to optimize the microstruc-

ture of nanocrystalline permanent magnets.

(1) In order to achieve a significant enhancement of
the remanence and to preserve a high coercive field
in isotropic nanocrystalline Fe;4Nd2B-based magnets, a
mean grain size d < 20 nm and a homogeneous mi-
crostructure with a very small range in grain size are
required.

(2) In isotropic two-phase magnets a small average
grain size improves the remanence as well as the coer-
cive field. For a grain size of about twice the domain
wall width of the hard phase, the volume fraction of the
magnetically soft phase can be increased up to 50% with-
out a significant reduction of the coercive field.
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FIG. 10. Distribution of the spontaneous magnetic polar-
ization in isotropic two-phase permanent magnets for zero
applied field. The open and shaded grains denote the soft
and hard magnetic phases, respectively. The volume fraction
of the magnetically soft phase is 75%. (a) Mean grain size
D = 10 nm, optimal distribution of the easy axes without
any hard magnetic grain oriented perpendicular to the field
direction: J,/J, = 0.92; (b) mean grain size D = 20 nm,
optimal distribution of the easy axes: J,./J, = 0.69; (c) mean
grain size D = 10 nm, easy axes distribution with the hard
magnetic grain in the center oriented perpendicular to the
field direction: J./J, = 0.66.



FIG. 3. Inhomogeneous regions along the grain boundaries.
The arrows indicate the direction of the easy axes. The
shaded areas denote the regions where the magnetic polar-
ization deviates from the local easy axis by more than 10°
and 20°, respectively.
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FIG. 9. Demagnetization curves of isotropic two-phase per-
manent magnets. The insets show the corresponding mi-
crostructures. The arrows indicate the direction of the easy
axes. The open and shaded grains denote the soft and hard
magnetic phases, respectively.



