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Exact results on the two-dimensional Heisenberg spin- —' problem

M. O. Elout and W. J. A. Maaskant
Gorlaeus Laboratories, State University Lei'den, P.O. Box 9502, 2300 RA Leiden, The Netherlands

(Received 6 August 1993)

In this paper the two-dimensional Heisenberg model is considered, with a possible anisotropy in the

Heisenberg interaction in the 1 direction. Helical boundary conditions are introduced and an exact

mapping of the two-dimensional lattice to a one-dimensional lattice is given. This mapping allows for a
determination of the form of the wave function for 1 and 2 reversed spins. For this latter nontrivial case,
the quantization condition is also derived.

I. INTRODUCTION

In this paper the following Hamiltonian will be con-
sidered:

H=2JQ b,9 fj'+I, s"+s,"sf,

where J is the Heisenberg interaction constant, which is
also called the exchange integral. The operators 2;, s,",
and s are the usual spin operators acting on a particle
with a spin equal to —, at site i. The pairs i,j refer to
nearest-neighbor pairs. When the value of J is positive,
we are dealing with an antiferromagnetic system and
when it is negative, we are dealing with a ferromagnetic
system. This Hamiltonian has been introduced by
Heisenberg' to describe ferromagnetism in metals. The
constant 5 describes the z-directional anisotropy in the
Hamiltonian. When 6 equals one the isotropic Heisen-
berg case emerges, and when J~0, but keeping Jh con-
stant, the Ising Hamiltonian is obtained. Therefore the
just given Hamiltonian, has also been called the
Heisenberg-Ising or XXZ Hamiltonian.

If the spins are arranged in such a manner that they
form a chain, the one-dimensional Heisenberg model is
obtained. This model has been solved, i.e., the form of its
eigenfunctions and their respective energies have been
determined, by Bethe and Orbach. These eigenfunc-
tions are given by the so-called Bethe ansatz. This ansatz
and generalizations thereof are not only the solution of
the one-dimensional Heisenberg model but also have
proven to be extremely important in solving other (often
one-dimensional) models. Among these are the one-
dimensional system containing hard-core bosons, the
Kondo model and the six- and eight-vertex models.

Exact results concerning a two-dimensional array of
s= —,

' spins are much more scarce and mainly concern
some general properties of the ground state of the two-
dimensional antiferromagnetic Heisenberg model. The
most important of these, with respect to the form of the
ground state, are Marshall's theorem, specifying the am-
plitudes for every spin configuration in the ground state,
and the Lieb-Mattis theorem, ' determining the total spin
of the ground state. With respect to the possibility of a
phase transition in the two-dimensional Heisenberg mod-

el, the Mermin-Wagner theorem" states that there can
only be such a transition at a temperature equal to zero.

Since the advent of the new high-T, superconductors, '

knowledge of the two-dimensional Heisenberg model has
become more and more important. These superconduc-
tors contain Cu02 layers, which magnetic behavior can
very likely be described by the antiferromagnetic Heisen-
berg model. If holes are introduced in this layer, an ex-
tension to this model is needed allowing for hopping of
the holes through the lattice. This extended model is
called the t-J model. ' It is believed that the magnetic
behavior of the Cu + ions is very important in establish-
ing superconductivity in the high-T, superconduc-
tors. ' ' In trying to understand what the origin of su-

perconductivity is, much effort has been put into deter-
mining how the magnetic background affects the con-
ducting holes. This has been done by numerical means'
and by analytical means. ' Although some understand-
ing can be obtained from these methods, ' they always
will be approximate and one cannot be sure what their
real value is, with regard to the applicability of the results
they supply. To overcome this problem, it is imperative
to obtain exact results with respect to the two-
dimensional Heisenberg model. Here we will try to give a
first start in reaching such new results.

More specific, the aim of this paper is to obtain more
information about the form of the eigenstates of the two-
dimensional Heisenberg model using a Bethe-ansatz ap-
proach. We will concentrate on the case of two reversed
spins in an otherwise ferromagnetically aligned state. In
Sec. II a two-dimensional system with new helical boun-
daries will be introduced and its symmetry will be shortly
considered. In Sec. III Bloch's method' will be used to
derive the secular equations. In Sec. IV these equations
are given for the specific case of two reversed spins. In
Sec. V the exact form of the eigenfunctions will be given
and its quantization condition will be derived, solving the
case of two reversed spins to the same level as is done in
the one-dimensional XXZ model using the Bethe ansatz.
In Sec. VI these results will be discussed.

II. HAMILTONIAN AND LATTICE

Usually, for the two-dimensional problem a square lat-

tice is used, together with periodic boundary conditions,
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such that a torus emerges [Fig. 1(a)]. If the torus con-
tains N XN particles, a typical property of this system is
the fact that when one walks through the lattice along a
path in one direction, one will return to the starting point
after exactly N steps. Here, a system will be constructed,
in which the starting point will only be reached after
passing all the particles, and not just N.

Such a path can be thought of being a helix wrapped
around the torus. This can be done in two, more or less
perpendicular, ways, as shown in Figs. 1(b) and 1(c). If
one puts particles on the crossings of these two helices,
this leads to a system with N —1 particles, where N is
the number of times a helix is wrapped around the torus.
This torus can be transformed to a highly symmetric
one-dimensional ring, as shown in Fig. 2.

In order to see that there are N —1 particles, the sys-
tem will be constructed starting from a normal two-
dimensional plane with N particles in both directions (i.e.,
with N particles in total) wrapped on a torus with the
usual boundary conditions. To create two helices in this
system, one has to cut the torus open in two perpendicu-
lar directions, move the particles on one edge of both cuts
one lattice constant, and reconnect the particles again to
their nearest neighbors on the other edge. As shown in
Fig. 3, this results in two overlapping particles, of which
one has to be removed, hence leading to N —1 particles.
It is interesting to note that this procedure suggests other
helical systems, characterized by the number of steps the
particles are moved along the cuts (to be denoted by n,
and n2). The total number of particles in such a system
will be N —n

&
n2. Instead of moving the lattice such that

particles overlap, the lattice may also be moved such that
empty sites occur. After adding extra particles at those
empty lattice sites, one obtains systems with N +n&n2
particles.

Returning to the helical system defined in Fig. 2, the
symmetry elements are now readily recognized. There is
one C 2, axis, going through the middle of the circle.
In addition, there is a symmetry operation, which is de-
picted in Fig. 2. In one form, the outer circle is one of
the helices on the torus and the other bonds, lying inside
the circle, form the other helix. After applying the
drawn operation, this last helix will then form the circle,
and the bonds of the first helix, will lie inside the ring.
This operation, which will be called Q, is an element of
the symmetry group if the interactions along the two hel-
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2 13
b

FIG. 2. (a) shows a representation of the Hamiltonian, for
%=4, mapped onto a one-dimensional ring. This ring is one of
the helices. If the lattice is drawn along the other helix, (b) is
obtained. Therefore, the transformation from (a) to (b),
represented by the arrow, is a symmetry operation.

N —22

Q—= g' (i,¹i mod(N —1))
i=0

(3)

the following group can be constructed: E,
P, . . . , P', . . . , Q, QP, . . . , QP', . . . ; where P is a rota-
tion around the Cz axis, and i ranges from 0 to N, —1

(with N,:N 1). T—he pr—ime at the product symbol in-

dicates that only terms with i ~ Ni mod (N —1) must be
included. Its generators are P and Q, and one can Snd

and

P'=E, Q=EN

QP PNQ

(4)

ices are equal. Of course, there are other symmetry
operations, which also occur in the symmetry group of a
normal one-dimensional ring. However, we will focus
our attention a little more on the operation Q, since it
does not usually occur in symmetry groups of physical
systems. For the system in Fig. 2 we have

Q—:(4, 1)(8,2)(12,3)(9,6)(13,7)(14,11)(0)(5)(10) (2)

or for a system of general N

FIG. 1. (a) Shows the conventional torus chosen. Arrow 1

represents the action of the CN axis, arrow 2 the action of the
Cz circle. (b) and (c) show the two "perpendicular" helices,
which can be drawn on a torus.

FIG. 3. To construct the helical system, the conventional
torus is cut open in two directions. In the figure the part is
shown where the two cuts cross. In the next step the particles
along the horizontal cut are shifted one lattice spacing to the
right, and after this likewise along the other cut. This leads to
two overlapping particles, of which one therefore has to be re-
moved. From this procedure then follows the last picture con-
taining only X —1 particles.
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A derivation is given in Appendix A.
For N =3, N, =8, this means that the symmetry group

is isomorphous with the abstract group G&&, as listed by
Bradley and Cracknell. ' One can take, for a general
two-dimensional irreducible representation (irrep},

~ r

0 1 exp(kn ) 0
pn

1 0 ' 0 exp(Nkn )

as these satisfy Eqs. (4) and (5), where k =2ni A. IN„with
A, =O, . . . , N, —1. For i(, =0, N+1, 2(N+1), . . . it can
be derived that NA, =A,(modN, ), so that in these special
cases a one-dimensional irrep is found (see Appendix 8).
This then means that for an eigenfunction transforming
with a wave vector k under rotation, there is a degenerate
(or sometimes identical) eigenfunction, transforming with
a wave vector Nk, which can be obtained by operating
with Q on the first eigenfunction.

The Heisenberg-Ising Hamiltonian can be written
down very easily for the system drawn in Fig. 2. The
Hamiltonian is

I=&1 g 51$i~Si + I +SIXSi + 1 +SfSi + I

+K2 g 62$i Si +N +Si Si +N +Si Si +N
l

where the summation extends from i =0 to N, —1, s,- is
the a component of the spin operator at site i, J& is the
exchange integral for the first helix, J2 is the exchange in-

tegral for the second helix, 6, is the anisotropy parame-
ter along helix 1, and likewise for 62. The basis functions

P will be characterized by r, the number of reversed spins
from the ferromagnetic state, and the position of these re-
versed spins on the ring. Eigenfunctions can then be
written as

V n]y ~ r ~ y n nl j ~ ~ 7I'

where the summation extends over all possible
n„.. . , n„,with n; & n if i &j.

III. SECULAR EQUATIONS

The secular equations are found by calculating

„~H~e) =E(y„

n&, . . . , n

+J, g v, , +Jz g u, ,=Eu„„,(9)

where the first line represents the result of the Ising terms, and the second line the result of the XYterms. 'Np„denotes
the number of parallel spin pairs as seen along helix one, N,

„„„

the number of antiparallel spin pairs along helix 1,

and likewise for N „and N,„„u„.g, is the summation of all 'N,„„„spinarrangements nI, . . . , n„' difFering from

n &, . . . , n„by the interchange of two neighboring (as seen along helix 1}antiparallel spina, and again likewise for gz. If
('N,„„„J,h, + N,„„„Jzbz}v„„is added to the first two terms of Eq. (9) and is subtracted from the two summa-

tions, then one finds

+J, g (u, ,
—h,u„„)+Jz g (u, , —bzu„„)=Eu„ (10)

1 1 2 2
par + antipar par + antipar E ~

J& g(v ~,
—b,&v„„)+Jzg(v, „bzu~,. . . , ~ )= E—J)6)+J2hq

NE v„

or

J', g (A,v„„—v, , )+Jzg (hzu„„—u, , )=2Eu„
1

T 2
I'

(12)

J& =J&/J, J,'=J, /J, J=J, +J,
J&+JR=1)and

(hence

J,S,+J,Z,—2m= E—
2

(13)

For one reversed spin (r =1) these equations are solved

trivially by v„=exp(ikn, ) and s =J', b, +Jzb, z

—J
&
cos(k) —Jzcos(Nk), with k =2m ' /N, and

=0, . . . , N, —1. To relate this to the normal two-

dimensional lattice, one should note that any number k
between 0 and N, —1 can uniquely be written as A, &+NA, 2,

where k, and Xz can have values between 0 and N —1, ex-

cept when A,2=N —1, then A, , can lie between 0 and

N —2.
Moving the reversed spin along the J

&
helix by one step
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leads to a factor in front of the wave function, with a mo-
ment containing }1,, +N}1,2. The momentum of the parti-
cle along the J2 helix is associated with N}(,, +A,2. If one
plots all possible momenta characterized by A, in a graph,
with A, , +Ni, z along the abscissa and NA, &+A,2 along the
ordinate, one would obtain a slightly deformed square
lattice of points (see Fig. 4). When N becomes large, the
lattice becomes square, with lattice constants of 1 in both
directions. The corresponding lattice consisting of the
momenta would have lattice constants of 2n/N in both
directions, as one would obtain in the normal two-
dimensional case. Therefore when N goes to infinity the
helical boundary conditions and the normal cyclic bound-
ary conditions lead to the same eigenfunctions.

IV. SECULAR EQUATIONS FOR TWO
REVERSED SPINS

By substituting the different possible spin configu-
rations for two spins (r =2) into Eq. (12), the secular
equations will now be written down. If one assumes that
nz —n, &N then one finds

2su„„=4(J15+1J2b2)u„„

Jl(Vn 1n +Un +1n +Vn n 1+Vn n +1)

J2("n Nn +— un +Nn +"n n, N+ "n—n, +N)

(14}

NA, )+A, 2
50

Reciprocal lattice for N=7

50

40—
~ ~
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~ ~

~ 0 ~ -40
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~ ~ ~ ~ ~

~ ~
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.~ ~ ~
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FIG. 4. The two components A, &+NA, & and NA, &+A,z of the
momentum of one particle in a system with helical boundary
conditions are depicted.

the ones in Eq. (14).]
The two reversed spins may also be neighbors, on both

helices. One finds, for n2 n, =—1,

2evn n
=(2J', 6, +4J252)un n

—J1(u„,„+u„„+1)
J2( un1 Nn2+ Vn2n—1+N+ Vn2 Nn )

+
un1n~—+N }

and, if 1&n~ —
n& &N,

2eun n =4(J,E,+J2b2)un n

+V„+1„+V„„1+U„„+1)
J2(un1 Nn + Un n1+N+un2 —Nn) +un) n2+N—

(15)

[Take note of the fact that the seventh and eighth terms
on the right-hand side of this equation are different from

and for n2 —n
~
=N:

2sv„„=(4JI5,+2Jzb2)v„„
—J', (u„,„+u„+,„+u„„,+u„„+,)

J2(Vn Nn2+ Vn n2+N ) '— (17)

If we use the following three equations to define v„„for

n2 ~ n, & n 2+N 1, Eq. (14}is v—alid for all n, (n 2

Vn E t2, . . . , N 1J: V„+N—„+„Vn+nn +N Vn&n&+n —N+ n1+n Nn&—
n& n&

1( ~1un n +1 un&+1n&+1 Vn1n1}+J2(un1+1n1+N+Vn1+1 Nn1 n&+N n&+1 un&n&+—1 N}—
~~2vn&n&+N n&+Nn&+N n&n&

(18)

(19)

(20)

We can set both sides of the first equation equal to zero,
and retain only one equation (here the equation obtained
by putting the left-hand side equal to zero), since the oth-
er one follows from this equation by substituting n&+N
for n &, which is valid because of the rotational symmetry
of the system. This leads to

&«I». . . »—1): V. +N. +. Vn +" +N —o

Finally, the periodic boundary conditions must be

satisfied:

v —v
gg

&
rg2 n2nl +Xr (22)

The remaining problem will now be to find a form ofv„„,which satisfies Eqs. (14), (19), (20}, (21), and (22),

and renders c independent of the position of the two re-
versed spins.
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V. FORM OF THE SOLUTION

For the one-dimensional problem Bethe proposed the
following wave function:

(iki2)(n&+n2) a(n2 —n&) ) a(n& —n2)v„„=e ' ' ce ' '+c e
1 2

(23)

(24)

Equation (22) leads to two requirements:

where k represents the cyclic symmetry and is deter-
mined from the boundary conditions. There is only one
case (nz=n) + I), which is difFerent from the equations
for general (n „n2}, leading to an equation similar to Eq.
(19). Together with the cyclic boundary condition, this
equation determines c and the allowed values of a.

In our problem, there are N cases, di8'erent from the
equations for general (n(, nz), leading to Eqs. (19), (20),
and (21). To satisfy these N equations, N different c's and
a's are needed, and therefore the following form of v„„

1 2

must be used (see Appendix C}:
(ik/2)(n

& +@2)
U =e

Pl l n2

If we let the energy be determined by one a (and to en-

sure that c is real we could take its real part equal to
zero}, there are exactly 2N a,.'s, since the right-hand side
of Eq. (27) can be written as a polynomial of order 2N in

exp(a; ). In other words, for every chosen a, determining

e, there are 2N possible a,. s (including itself), which are
allowed in the summation of Eq. (24).

%'hen a, is a solution of the above equation then also
—a; will be a solution. The 2X possible a s thus consist
of pairs (a;, —a, ), which appear together in one term of
U„„.Hence the number of difFerent terms in u„„will

1 2 1 2

be exactly N, and therefore also the number of di8'erent

a, 's and c, 's. Since c; is determined by Eq. (26}, we still
have N constants left to be determined. The equations
(19), (20), and (21) will be used for this.

When substituting U„„into these equations, one finds
1 2

for Eq. (19):

a,.J) gu; c; 6;e ' —cos

—a,.+c; ' b, )e
' —cos

k=, A, =O, . . . , N, —1,= 2~A
(25) +2Jzcos g a;(c; —c; ')sinh[(N —1)a; ]=0 .

and

c; =( —1) exp(N, a;), for Eq. (20):

(2&)

where a;, c;, and a; can be general complex numbers.
To calculate the energy for this form of U„„consider

1 2

one term of the summation in Eq. (24) and substitute this
into Eq. (14). This gives

ks=2J', 5)+2J' b,222J')cos —cosh(a, )

Nkg a; c; b,2e
' —cos

Nk
+c; ' b,ze

' —cos =0. (29)

—2Jzcos cosh(¹; ) .Nk
(27)

and for Eq. (21):

)())n ~ [2, . . . , N 1]: g a; (c; ——c, ')sinh[(N —n)a;] =0 .

For all terms in Eq. (24) to lead to a correct eigenfunction
a11 the occurring a s must lead to the same energy. That
is, we must find all solutions for a,. of the above equation. The first of these three equations can be rewritten as

(30)

—J', , c, [b, )e
' —cos(k/2)]+c; '[b)e ' —cos(k/2)]

J~ ga, (c, —c, '}sinh[(N —1}a,]= gu, (c,. —c, '}
2cos Nk/2 (c, —c, '

(31)

the second equation as

Jz pa;(c, —c; ')sin.h(¹;)

c;[62e ' —cos(Nk/2)]+c, '[b,2e
' cos(Nk/2)—]

=Jz ga;(c; —c; ') +sinh(Na; ), (32)
(c;—c; ')

and the third equation as
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Vn E [1, . . . , N —2]: Jz ga;(c; —c; ')sinh(na;)=0, (33)

where N —n has been replaced by n. The last two equations have been multiplied by J2 to indicate that these two equa-
tions wi11 not occur when J2 =0.

If we use the following definitions,

5, =a, (c, —c, '),

P;=—
2 cos(Nk /2)

c;[b,ie ' —cos(k/2)]+c; '[hie ' —cos(k/2)]

(c;—c; ') (34)

c;[hze ' —cos(Nk/2)]+c; '[hze ' —cos(Nk/2)]
+sinh(Na, ),

(c, —c, '}

the previous three equations can again be rewritten as follows:

sinh(a I )

sinh(2a, }

sinh[(N —1)a, ]

sinh(Na, )

sinh(aN )

sinh(2aN )

sinh[(N —1)aN ]
sinh(NaN )

0
0

J'Ig 5;I';

Jzg 5;Q;

(35)

The matrix in this equation shows some resemblance to a Vandermonde matrix and can be diagonalized by the follow-
ing method, which is similar to the one used for Vandermonde matrices.

Consider the following polynomial in sinh(a):

sinh(a} N cosh(a) —cosh(ak )
Rj(a)= . g =—g A jksinh(ka) .

sill aj k=1 cos aj cos ak k=1
kPj

This polynomial has the following property:

~ (ak)=5k .J J

(36)

(37)

This means that the matrix A, defined by the elements A jk from Eq. (36), is the inverse of the matrix in Eq. (35). Multi-
plying Eq. (35) from the left by matrix A leads to the following equation:

J2+JI ~ IN 1~1+J2~1NQ—I

JI ~NN 1~1+J2~NNQI—

Jl ~ IN —I~N+ J2~1NQN

J2+JI~NN —I~N+ J2~NNQN

=0. (38)

For all 5; not to be zero, the determinant of this matrix must be zero. The determinant can be calculated as follows.
First define the following quantities:

(~ IN —1~2N ~ IN~2N —I)

j ( jN —1~2N ~jN~2N I )/~ ~—
j (~jN~IN —I ~jN I~ IN)/~ ~—

and the matrix:

(39)

1 0 0 0
0 1 0 0
s3 s3 —1 0

0
0
0 (40)

1
$N s~ 0 0 ~ ~ ~
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Note that the determinant of this matrix equals —1 .
Multiplying the matrix of Eq. (38) from the left by this matrix leads to

—J2+J1A 1X-1I'1

+J2A 1NQ1

J1A2N —1~1

+J2A2NQ1
—J's'

2 3

J1A 1~-1~2

+J2A1NQ2

J 1 A 1N —1~3

+J2A 1NQ3

+J2A2NQ2

—J's
2 3

+J2A2NQ3

J2

2+J1A2% —1~2 J1A2%—1 3

+JZA1NQN

J', A2& 1I
+J2A2NQN (41)

—J's'
2 N

—J2sN J2

and multiplying this with the same matrix from the right leads to

J2+J1A—1N 1 g sq'Pf
J

+J2A1N gs~'QJ.
J

1A2N 1 QSJ Pj
J

+J2A2N gs~'Q~
J

J1A 1N-1 X SJ'~~

+J2 A lN X SJ~QJ
J

—J2+Jl A2N 1XSJ'PJ-
J

+J2A2N QSJ QJ.
J

—JI
2

~ ~ ~

(42)

Jl
2

Because det( AB) =det( A)det(B) and the determinant of the matrix in Eq. (40) is not equal to zero, the determinant of
this matrix should be zero. Hence

—J2+J1A 1N 1 g s'P +J2A 1N g s'Q
J J

J1A2N 1+s~'PJ+J2A2N gsj'QJ
J J

J1A1N 1 g sj PJ +J2 A 1N g s~ QJ
J J

—J2+J1A2N 1 QSJ PJ+ J2A2N QSJ QJ.

J J

=0. (43)

Calculating this determinant, and realizing that

1 2=
A1N —1$J + A2N —1sj AjN —1

A 1~sJ + A2~s —AJ.

s 's ' s~'SJ = ( A—N, A 'N —A N AJ'N ))/S,
one finds that

(44)

tion condition can be found. To start with, I would like
to remark that the given method is exact, under the pro-
visions made in Appendix C, and therefore should supply
all the necessary solutions. On the basis of group theory
and the given total number of spin configurations for
r =2, the total number of solutions should be as follows:

=0 . (45)

VI. DISCUSSION

In order to elucidate the previous result a little more, it
will be investigated where the solutions of the quantiza-

—J2+J1 g AJN-1PJ J1 X AgNPg
J J

J2 g A,N-1Q, —J2+J2 X AJNQi
J J

This is the quantization condition. Equation (27) deter-
mines the allowed a 's for a given energy, and Eq. (45)
determines which energies are allowed. In principle, one
can subsequently, with Eq. (35) and a normalization con-
dition for the wave function, determine the form of the
a,-'s, but since they do not aSect the energy of the wave

function, we will not deal with this task here.

VA, even:

Vk odd: —1
2

&~ &r
in total: + — —1

2 2 2 2

N,

2
(46)

where X, has been taken to be even. Although all these
solutions should be contained in Eq. (45), it is not yet
clear what the actual values of the momenta a; for these
solutions will be. To gain some insight in this problem,
the structure of the quantization condition will be exam-
ined by first considering some special cases and then the
general case. Before doing so, it will be useful to rewrite
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P; and Q; as follows:

—1
P, = {coth(p, /2)[b, , cosh(a, )—cos(k/2)]

2cos Nk 2

+5, sinh(a, )j,
Q, =coth(q&; /2) [62 cosh(Na, )—cos(Nk /2) ]

+ ( 1+52)sinh(Na, .),

(47)

{Re(aj)=OflO& Im(a. ) & mj,

U {0+Re(a )( 00 film(a )=Oj,

U {0+Re(a ) ( 00 film(aj)=~j

(48)

ensures that s is real but still can obtain all values be-
tween + 00 and —00.

A. Special case J& =0

where c;=exp( p, /2) has been substituted.
Also, it is important to see that when one a; is chosen

all other parameters, as the other a s and all p s are
then determined (for given k and I&,Jz ). The other way
around, for determining the solutions of Eq. (45}, there is
only one parameter a;, which can be varied. Whenever
this parameter is referred to it will be called aj, instead of
a;. In general, a may be a complex number; however,
confining a~ to the area

B. Special case J& =0

When J', equals zero, again, a one-dimensional chain

remains, however, with its particles numbered in an
unusual fashion, leading to a quantization condition,
somewhat different from the Orbach form. When J',
equals zero, Eq. (45) leads to

g A;~Q, —1 (52)

or, in a more explicit form,

g Az coth
l

b,2 cosh(¹, )—cos
N

+ ( 1+hz)sinh(Na; )
' = 1 . (53)

From Eq. (36) follows

v =0. This means that when A, is odd, there are
nln2

N, /2 2—solutions for a given A, , with Re(a }=0. The
other solutions are to be found in the other regions of (48)
and lead to bound states. A detailed analysis is given by
Orbach and Bethe. The important fact to remember is

that the majority of solutions is in the area where

Re(aj ) =0, because then coth(qrj /2) shows it diver-

gences, leading to the solutions.

When Jz equals zero, the normal one-dimensional
chain is obtained, and hence a similar quantization condi-
tion to (45) should emerge. As noted in Appendix C, here
it is not possible to obtain N different a; s, and hence only
in this case our derivation of Eq. (45) cannot be used.

However, if one considers Eq. (35), one finds

sinh(a; ) Q 2[cosh(a; )—cosh(ak ) ]
k=1
kPi

(54)

J',+ 5;P; =0 . (49)

Since in fact N —1 of the P s do not exist, one may take
their accompanying a s equal to zero, and retain only
one P. belonging to a., leading to

coth
2

b, sinh(a }—
6, cosh(aj )—cos(k/2)

(50)

which is essentially the same condition as derived by Or-
bach. To get some idea of the structure of this equation,
let us consider its solutions in the area of a, where
Re(a~)=0. According to Eq. (26):

q.= —X,a +imi, ' (51)

where A,
' is 0 when A, is even and A,

' is 1 when A, is odd.
Hence, the left-hand side of (50) goes from —ao to + 00,
when Re(a }=0and Im(a ) goes from 2n(y+A, '/2)/Nt
to 2n(y+A'/2+1)/N„wit, h y an integer. This means
that coth(yj. /2) crosses the right-hand side (rhs} of (50}
for every y once and leads to a solution, unless the rhs
diverges. Therefore, for A, even there are N, /2 —1

different y's for a given A, leading to a solution. For A,

odd, one additional y must be excluded because aj =0 is
a solution of (50), but leads to pj=m, and hence to

Again, it will be indicated that most of the solutions are
to be found in the area where Re(a ) =0 (hence, when a.
is discussed we mean Im(a ), unless explicitly stated).
First it will be argued that all A;zcoth(q, . /2) are all in-

creasing or decreasing functions, for every i, of a . The
a s are the solutions to cosh(Na, )=cosh(Na } (i.e., all a;
including aj lead to the same energy). If the a s (includ-

ing aj ) are ordered according to increasing a;, it is easy to
see that if aj is increasing, its neighbors aj &

and aj+&
are decreasing, and vice versa. It is also clear from (54)
that the sign of AJ& is opposite to the sign of its neigh-
bors A,z and A +,~. Therefore, the A,~coth(y, /2)
are all decreasing or increasing at the same time. Fur-
thermore, ' the factors [52cosh(Na; ) —cos(Nk/2)] do all
have the same value for all a; for a given a .

Next it will be shown that aj cannot be allowed to vary
from 0 to ~, since this would lead to overcounting the
number of solutions. This is very simple to see because,
when a. traverses some area, in fact the other a s
traverse N —1 other areas. If a solution is found in a 's

area, the same solution will be found when a. traverses
one of the other a s areas. To avoid this overcounting
the domain of a. must be restricted. The following re-
striction is proposed:
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dE

da~ a.=(2n!N) y+A. '/2J

&0, 1.00
N = 5, y = 1, even symmetry.

2m' A,
'

2m A,
' lthen y+ —~ a & y+ —+-

N 2 ~ X 2 N

(55)

dE

duj a =(2m IN) y+i'l2J

2m A,
' 2m. A.

'
1

then y+ —~a ) y+ ———
N 2 ~ N 2 N

with y E I 0, . . . , N, /2]

where any subarea, with a y leading to an a smaller than
zero or larger than n., or with a y such that the derivative
of the energy is zero, will be excluded. These subareas
have been chosen, as to satisfy the following conditions.

(1}The sum in Eq. (50) does only diverge at the begin-
ning and the end of each subarea because
a;=a/+2mv;/N and a; =n a~ 2@v—; /—N, where the v, 's

must be chosen in such a way that the a s are also be-
tween 0 and ~.

(2) If a~ goes from 2m.(y+1,'/2)/N, to its other bound-
ary, the energy c decreases.

These conditions, in fact, ensure that every subarea is
traversed only by a and not by any other a;, which
prevents the solutions from being overcounted. This can
be seen as follows: the divergence at 2~(y+A, '/2)/N, is
caused by coth(yz/2) and a starts at this value moving
in the lower-energy direction until it strikes some diver-
gence [caused by another coth(y;/2)] from the higher-
energy direction. Because of the fact that if one
coth(y;/2) diverges, only this coth(y;/2) diverges and,
because of the fact that if aj moves in the lower-energy
direction all a; move in the lower-energy direction,
indeed every subarea is only covered by a ..

It is now clear that if neither Az„nor
[hzcosh(Na ) —cos(Nk/2)] change sign in a subarea, the
sum in Eq. (53) goes from —~ to + &a, if a traverses
this subarea. Az„will change sign if some 2mv;/N or

2nv, /N is .in—cluded in the subarea. This, however,
will happen only for one y for a given k, and only for X
odd. [bzcosh(Na )

—cos(Nk/2)] will also change sign
for only one y for a given k. Therefore, the same number
of solutions are found as in the previous one-dimensional
case in the area where Re(a~ ) =0.

C. General J&,J2

For general J&,Jz, the case is not as simple as above.
Again, it is necessary to restrict the allowable values of
a~ to avoid overcounting of solutions.

Because the four terms in the determinant of Eq. (45)
have divergences for the a' this is, in fact, possible. This
is illustrated in Fig. 5. In this picture the abscissa
represents a. [Re(a ) still being zero], and the ordinate is

-1.00

FIG. 5. Depicted are the lines of divergence for the quantiza-
tion condition for A, even. The abscissa represents a, , ranging
from 0 to m.. The ordinate represents J

&
cos(k /2), ranging from

—1 to 1. A detailed explanation is given in the text.

the value of J', cos(k/2). J2cos(Nk/2) has been chosen
to be 1 —~J', cos(k/2)~. The black straight and curved
lines are the points where any of the four terms in the
determinant diverge. The straight lines are the diver-
gences of coth(y /2) (i.e., whenever a equals some
2~(y+A, '/2)/N, ), and the curved lines are the diver-

gences of a coth(y;/2), which occurs when an a, , defined

by a by having the same energy, assumes the value of
2n (y +A, '/2) /N, .

One can also say that for every allowable
2a(y+A, '/2)/N, there is one straight line in the figure
(representing the fact that az assumes this value}, and
there is one additional curved line [representing the fact
that when a is on this line, one of the a; assumes the
value 2n(y+ A, '/2)/N, ]. This means that there are pairs
of lines, one straight and one curved, such that every pair
belongs to one y.

The domain of a can now be restricted in a way simi-

lar to the case with J', =0, using the following method
(where one should bear in mind that we are looking for
solutions for a given J', ,J2 and k).

Start with a. at a 2a(y+A'/2)/N, and, determine its
accompanying a s. Let a move in a direction such
that their energy decreases. Stop with a moving,
whenever a or any of its a,. 's encounter another
"divergence" line. If a encounters a minimum in c. as
a function of a, let any of the a, , which still can move,
move in such a way that the energy lowers [which
could mean that Re(a ) no longer equals zero, al-
though E remains real] until it encounters a divergence
line or the edges of the total domain, 0 or ~. The
values, which a has now traversed, including its start-
ing point and excluding its end point, constitute one of
the subareas, which again is a part of the restricted
domain of a . .

As an example this method has been used to construct
the black area in Fig. 5. It is clear that none of these
subareas is covered more than once, since one starts from
one 2m.(y+ A.'/2) /N, moving downwards, until one of the

a; encounters another 2m(y'+ A. '/2) /N, from above.
The case that one of the a,-'s strikes 0 or m and no
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divergence happens only when A. is odd because for I,
even, also at 0 and m. there are divergences and only for
one y, since only one divergence line (straight or curved)
is closest to 0 or m.. This one area must probably be ex-
cluded (as had to be done with the previous one-
dimensional case when Ajz changed sign), since the
determinant will not cover all values from —Oo to + Do,

and hence might not lead to a solution. For certain
values of J&,J2 and k, divergence lines may cross, which
might lead to a complication in constructing the
subareas. This, however, can be overcome by construct-
ing the subareas for J', +5, with 5 small and positive, and
taking the limit for 5&0. This makes the construction of
the subareas unambiguous, although some areas may
have a length approaching zero.

The main problem now is, that it is not clear how the
value of the determinant will behave on any of these
subareas. It is clear that it will diverge at the beginning
and at the end of every subarea. Unfortunately, it does
not necessarily do so from —~ to + 00. One may just
hope for some kind of conservation of solutions in the
subareas, meaning that if, by varying J&, a solution disap-
pears from one subarea (e.g., because the value of the
determinant diverges to —00 at both sides of the subarea,
instead of diverging from —~ to + ~), an additional
solution may appear in a neighboring area (where, for ex-
ample, the determinant now diverges to + ~ at both
sides, however, including 0, thereby satisfying the quanti-
zation condition, and leading to two solutions).

Despite these problems, one should bear in mind that
the quantization condition is exact and will supply all
solutions. It is just not clear what the exact momenta of
these solutions will be. Future work on this problem
should of course consider this. However, probably the
most important question to answer is how to extend the
above results to a general number of reversed spina. The
solution of the r =2 case is a Srst step in this direction
but not, by far, the only step to be made.

We would like to note that this result could only have
been obtained through the use of the helical boundary
conditions. These conditions allow for a one-dimensional
numbering of the particles and, hence, of the reversed
spins, conserving a high symmetry (at least C, , }of the
system. If we had used the usual two-dimensional num-
bering, the secular equations would have been difference
equations in at least two variables. For such an equation,
it is not possible to write its general solution in terms of a
finite sum of exponentials, and the quantization condition
cannot be derived. As this is possible using the helical
boundary conditions, it is certainly advisable to use them.

To extend the described results, one may look for some
ansatz or employ related vertex models. We are current-
ly pursuing our research in this last field.

N —1 J
II f(j)j=o

(Al)

where f(j) is some function of j. For the terms occur-
ring in the product the particle, which is at position j
after application of the permutation, was at position f (j)
before the permutation. Since one particle cannot be on
two different positions after a permutation, f (j} must
cover the whole collection of numbers I0, . . . , N, —1)
when j goes from 0 to N, —1. This means that the prod-
uct of two permutations can be written as

N —1

RR'= g
j=0

J
~ N —1

f(j) H
J

g(j)

N —1t

j=0

N, —1

f (J) g g(f (J))

N —1t J
g(f (j)) (A2}

Now, I' and Q are as follows:

N —1
C J

j+ 1 modN,

N —1 J
Nj modN,

(A3)

The left-hand side of (5) reads

j=0
N —1

j=0

¹jmode,

Nj modN, P Nj +1 modN,
r

J
Nj+ 1 mode

(A4)

and, since (N modN, ) = 1, the right-hand side gives

different moments for the exponential terms are uniquely

deSned by the energy of the eigenfunction. Also the

quantization condition is given, which determines which

moments are allowed (and of course which energies are
allowed).

APPENDS A: DERIVATION OF EQ. (5)

Equation (5) can be proven as follows. As noted before

any symmetry operation is in fact a permutation of the
particles. A symmetry operation R can, hence, be writ-

ten as

VII. CONCLUSIONS

In this paper the form of the eigenfunctions up to r =2
of the two-dimensional Heisenberg Hamiltonian with hel-
ical boundary conditions have been derived. The r =2
result is nontrivial. In this case the eigenfunction con-
sists of a sum of exponential terms, containing the posi-
tion of the reversed spins and an associated moment. The Q.E.D.

J
NJ +1modN,

(A5)

j+N modN,

j+N modN + Nj+N modN
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APPENDIX B: DERIVATION OF EQ. (6) r,'"=(DJ(Ri),D,J.(Rz), . . . , DJ.(Ri, )) . (81)

The irreps of the group defined by Eqs. (4) and (5) will
be derived, using these equations and the great ortho-
gonality theorem (GOT). Define the vectors r,'" in the h-
dimensional space (with h the order of the group) as fol-
lows: take from an irrep D'(R) (which is a matrix) its
component D (R ), where R is a symmetry operation, and
I numbers the irreps. The components of r;. are the
values of D (R} for all different symmetry operations.
That is

In our case h =2N„with the ordering of the symmetry
N, —1

elements as follows: E, P, P, . . . , P ', Q, QP,

QP, . . . , QP ' . The GOT now states that all possible

r,'. . (which are 2N, in total) must be orthogonal to each
other and are normalized to (h /d& )', where d& is the di-

mension of its irrep.
Also bear in mind that

e'k k 'J=O for krak', k=, k'=, A, and A,
' integer,= 2~A = 2~k'

j=0 N,
'

N,

=N, for k =k' .

First the one-dimensional irreps will be derived.
N,

Since Q =E, for a one-dimensional irrep Q can be 61. P ' =E, so

(82)

P=e'", k=2m. A, /N, , A, integer .

But, since QP =P Q, one finds

P=P A, =y(N+ I ), y=0, . . . , N 2. —

Therefore, the one-dimensional irreps are

Q=kl, P=e'", k =2m'/N, , A, =y(N +I), y=O, . . . , N —2 .

(84)

(85)

1 0 a +bc=1, b(a+d)=0,
bc+d =1, c(a+d)=0 .

a +bc b(a+d}
c (a+d) bc +d

Now consider the two-dimensional irreps. First the basis functions will be chosen in such a way, that P is always di-
agonal. Next, with Q =E, one finds

a bQ=, d
Q'= (86)

If aQ —d, this would mean that b =c =0 and, hence, that Q is diagonal. If this were the case, all matrices in the irrep
would be diagonal and then the irrep would not be irreducible, and therefore not even an irrep. Hence, a = —d, and the
following Q will be used:

a bQ=, bc= 1 —a (87)c —a

Since P ' =E, P can be written as

ik 0P=
0 ik' with k =2m', /N, , k'=2m', '/N, , k and A,

' integer . (88)

It is now clear that b and c may not be equal to zero, since, if this were the case, an r,'~ can be constructed (e.g., when

b =0, then i = 1,j=2) with all of its components equal to zero, violating the GOT. One now has to satisfy Eq. (5):

aeik be'
ik PNQIk

iNk

iNk'

iNk

iNk' ~aei =ae' r iNk z ik' iNk' ik iNk' ik'

(89)

If aAO, this leads to k =k' and A=y(N + 1). No, te that
these k values also occur in the one-dimensional irreps.
With bc =1—a, and b+0 and c%0 it is clear that
a%+1. This means that an r» from a two-dimensional
irrep with a A=y(N+1) can n, ever be orthogonal to the
one-dimensional irrep with the same A., and therefore
a =0.

This means that

0 b
Q= 1/b 0 alld k =Nk (810)

where A, may have all integer values between 0 and

N, —1, except for the values occurring in the one-
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dimensional irreps. Furthermore, every A, may occur
only once, either as A„either as NA, modN, .

Finally, b has to be determined by the normalization
condition, leading to ~b~ =1 or b=exp(i4). Any value
of P may be chosen. However, if one has been chosen, no
other P is allowed, since this would lead to violation of
the GOT. /=0 will be chosen. Therefore, we find for
the tao-dimensional irreps:

0 1

1 0
P=

e]k 0
0 eiNk

2irA,

N,
(B11)

with A, restricted as indicated above.
Finally, all vectors r,'J occurring in these irreps are or-

thogonal to the one-dimensional irreps, and hence these
irreps are indeed irreducible. Every A, generates two r,'"
(two per A, in the one-dimensional case because Q =El,
and two per A, in the two-dimensional case, since a two-
dimensional irrep generates four r,'" and uses two A, 's) and
therefore 2N, rI~. 's have been generated. Since the order
of the group is also 2N„ there are no irreps of dimen-
sionality higher than two.

(k/2)(n
&
+n2 )

"nn =e
1 2

~n —n2 1
(Cl)

where k is the same as in Eq (25). .
Substituted into Eq. (14), this leads to

APPENDIX C: DERIVATION OF EQ. (24)

Equation (24) will be derived, using some calculus of
finite differences. Equation (14) is the central equation to
be solved, the other equations should be considered as
boundary conditions. Equation (14) appears to be a
homogeneous linear difference equation with constant
coefilcients in two variables, namely, tt& and nz How.ev-
er, using the Civ symmetry of the system, group theory

justifies the following substitution:

eu„' „=2(J&b,&+Jzbz)v„'

1 oS (Vz n——1+Un n—+1)
2 1 2

—J2 cos
Nk

(nn& n—
&

N—+nn& —n&+iv ) (C2)

resulting into a finite difference equation in one variable
(nz n,—) of order 2N. According to the theory of finite
differences, it can be solved by determining the 2N roots
r, of it. s characteristic equation:

ziv ~ k iv+ iJ' cos r +J' cos —r N+'
2

+(s 2J', 5t ——2' Az)r+

k ~ ), Nk+J' cos —r" '+J' cos
2 ' 2

=0 . (C3)

Since r may not be zero, if one substitutes exp(a;) for r,
this equation is the same as Eq. (27). It can now be
shown that the general solution for u„'

„

is
2 1

n2
—

n&

~n2 —
n& ~i ri

l
(C4)

which leads to Eq. (24). We have assumed here that none
of the possible roots are multiple, which might, however,
occur for some energies [at maximum N different ener-
gies, all the other variables being constant in the energy
expression (27)]. This means, that for some k values pos-
sibly some solutions have been discarded (at maximum N
per k value, whereas approximately N, /2 are to be found,
uide infra)

Finally it is important to note that Jz cos(Nk/2) may
not be equal to zero, since then it is no longer possible to
determine 2N different roots and to satisfy the boundary
conditions. This does not pose us with any real problems
because when Jz is zero the normal one-dimensional
chain remains and the Bethe ansatz may be used, and
cos(Nk/2) is only equal to zero when N =3 and A, =4,
which will therefore not be considered.
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