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Small Ising lattices with both ferromagnetic (F) and antiferromagnetic (AF) exchange interactions (or
bonds) and increasing numbers of spins are studied by means of two independent methods: computation-
al solutions to the Hamiltonian problem and topological counting of frustration paths. Equal magni-
tudes and concentrations are assumed for both types of bonds. Two different geometries are considered:
square lattices (SL’s) with coordination number 4 and triangular lattices (TL’s) with coordination num-
ber 6. Two-dimensional samples with a total number of spins N between 4 and 64 are considered for
SL’s, while N is varied between 4 and 44 for TL’s. They are distributed in two-dimensional arrays where
periodic boundary conditions are imposed. After an array is selected, bond distributions (samples) are
independently and randomly generated in fixed positions. The physical parameters are then calculated
exactly for each sample. The emphasis here is on the ground-state properties and their dependence with
size and shape for the two kinds of lattices. All magnitudes correspond to a basic statistics over a large
number of samples for each array. The following magnitudes are reported: ground-state energy per
bond, frustration segment, abundance of first excited states, remnant entropy, low-temperature specific
heat, and site order parameters g, p, and h. Parameters p and h are introduced here, showing advantages
over other similar magnitudes. The results are in good correspondence with analytic studies for the
thermodynamic limit. This means that the spin site correlation (p) tends to vanish as N grows. Howev-
er, we have found that the shape dependence modulates the behavior of these systems toward the ther-
modynamic limit. There is no tendency to vanish for the bond correlation parameter (4). For both
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kinds of lattices 4 might be a constant independent of size and shape.

L. INTRODUCTION

Spin lattices with mixed exchange interactions have
been studied for about 15 years.! Originally proposed as
a simple model to understand spin glasses, such lattices
have found applications in several other fields.

In the present paper we want to go back to one of the
original problems, which describes the ground-state prop-
erties of two-dimensional square lattices SL’s (each spin
surrounded by four equivalent neighbors) with mixed fer-
romagnetic and antiferromagnetic exchange interactions
(or bonds as they will be referred from now on) of equal
magnitude. Additionally we extend the application of the
method described below to triangular lattices (TL’s) (each
spin is surrounded by six equivalent neighbors).

The present analysis is restricted to the case of an equal
number of either type of bond. We perform exact calcu-
lations on samples increasing the number of spins N,
varying the ways of distributing these spins in rectangu-
lar arrays, introducing the shape as one interesting
feature. The lattices will be characterized by some usual
parameters and two new ones to be defined below. The
results of the numerical calculations will also be related
to the topological properties of these systems.?

Most of the progress in this area has relied on approxi-
mate calculations by means of numerical treatments such
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as the Monte Carlo method,’ analytical results valid for
the thermodynamic limit,* and general topological treat-
ments.’ In this work we present the tendencies followed
by small samples as they get progressively larger. We
scan the relevant portion of the Hilbert space (or spin
configurational space as it is usually called) looking for
the low-energy states of each particular distribution of
bonds, calculating the most representative parameters.
In the next section we discuss the way this is done. The
computer time involved in these exact calculations grows
considerably. This is an important limitation for this
kind of work and lead us to stop at N =64 for SL’s,
where we believe the main tendencies show clearly. In
the case of TL’s the convergence is more rapidly reached,
so it is enough to reach N =44, to get a tendency similar
to the one shown by SL’s. This apparent difference is not
such if we compare the number of energy contributions
(the number of bonds) for the extreme cases: it is 128 for
SL’s and 132 for TL’s. We will use here average values
over 500 different bond distributions for the different pa-
rameters to be calculated below. This basic statistics
gives results that are stable enough for this kind of array
as we have proven recently.® All together we have solved
the exact Ising Hamiltonian for about 100000 different
lattices.

The approach of this work is to present our results for
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a large number of “computational experiments” on both
well-known and new parameters used to characterize
magnetic systems such as spin glasses. Two different
techniques are used and will be described in next section.

In Sec. 11, we briefly review the most relevant theoreti-
cal aspects introducing the basic definitions and notation.
In Sec. III, we present the results in figures, where the in-
dependent variable is the number of spins N. The tenden-
cies toward larger lattices (or toward the so-called ther-
modynamic limit) are discussed and compared with ear-
lier results when applicable. Finally, in Sec. IV, some
general and particular conclusions are obtained.

II. THEORY AND BASIC DEFINITIONS

Let us consider a two-dimensional lattice with L spins
along one direction and M spins along the other direc-
tion. The total number of spins is then

N=LXM . (1)

We shall refer to N as the size of the lattice. For rec-
tangular arrays we will follow the arbitrary notation that
M will refer always to the side with fewer spins.

The spins lay on the vertices of such a lattice. A bond
is defined along the straight line that joins two adjacent
spins (nearest-neighbor interaction). A bond can be ei-
ther ferromagnetic (F) or antiferromagnetic (AF) while
the magnitude of the interaction J is the same in both
cases and equal to 1 (one unit of energy). The total num-
ber of bonds will be denoted by B and it is 2N for SL’s
and 3N for TL’s. We restrict ourselves here to the case of
B /2 F bonds plus B /2 AF bonds. For TL’s with an odd
number of spins, lattices will have one more bond of a
certain kind, which will be compensated as indicated
below. The results reported below consistently make use
of periodic boundary conditions.

We call each different combination of L and M for a
given N an array. Thus, for 24 spins there are three
different arrays: 12X2, 8 X3, and 6X4. There are some
sizes that allow just one kind of array as, for instance,
N =35. For N less than 40 all the possible arrays are cal-
culated in the case of SL’s, while in TL’s all cases under
30 were taken into account. Other considerations of the
ways the different arrays were chosen can be seen from
the figures containing the results. Generally speaking, ar-
rays with M close to L were favored as the size increased.
The scope of the numerical calculations is decided by the
computer time limitations.

Within each array there are

_ (B) @)
(B/2)(B/2)
different possible distributions of B bonds in the way
presented above. Occasionally it is possible to subtract
for equivalent samples considering translations, rotations,
mirror images (reversing the signs of the bonds), or other
symmetry properties. However, the number of possible
different distributions grows essentially as the factorial
function. Each possible fixed distribution of bonds will
be called a sample. For a given array physical properties
differ when going from one sample to another. In the

6019

analysis below we consider average values over many
samples (500) to deal with results that can be compared
with the natural self-averaging values that arise toward
the thermodynamic limit.

As a way to gain some familiarity with the definitions,
the reader is invited to look for the generalities in Figs.
1-3. In the first one we present a particular SL 4X4.
Figure 2 represents another SL, this time for the array
3X2. In Fig. 3, we present a TL corresponding to a 6 X4
array. A single bar represents a F interaction while a
double bar stays for an AF bond. Other features con-
tained in these figures will be discussed below.

Two different techniques will be used to get numerical
results and perform the analysis: (i) a Hamiltonian ap-
proach, where numerical techniques are used to find the
ground-state properties; and (ii) a topological approach,
where some graphical techniques are used for the same
purpose. We will now present the basic of these tech-
niques defining along the way the main parameters that
can be calculated by either approach.

A. Hamiltonian approach
The Hamiltonian can be written as

H=3 J;S5;

j?

(3)

i<j

where the sums extend over all of the different pairs of
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FIG. 1. Two different distributions of bonds for 4 X 4 lattices,
showing the curved plaquettes marked by C and the odd bands
marked by an O. Single and double bars represent ferromagnet-
ic and antiferromagnetic bonds, respectively. Frustrated bonds
are shown by dashed lines. Frustration segments are shown as
straight lines. Signs represent the spins that define the ground
state of the systems as found by the numerical calculation.
Periodic boundary conditions are explicitly shown.
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FIG. 2. An example of a 3X2 square lattice without any
curved plaquette but with close loops of frustration segments
due to the presence of odd bands. Signs correspond to one of
the three possible ground states. The symbols were defined in
Fig. 1.

nearest neighbors, S; and S; represent the third com-
ponent of the spins at sites i and j, respectively. The
bond between such a pair of spins is represented by J;;
and can be either —1 (ferromagnetic) or +1 (antiferro-
magnetic).

A state can be represented by the ordered collection of
orientation quantum numbers, which can be either +% or
— 1. A trivial change in the scales renders values +1 or
—1, respectively, which is what will be used below. The
Hamiltonian is diagonal in this representation. However,
it is not obvious which states span the ground level of a
particular sample. It appears that it will be necessary to
go over the Hilbert space that possesses 2V states. A
small simplification occurs due to the invariance of the
Hamiltonian with respect to inversion of all the spins,
namely, S; — —S; for all i. It is then enough to deal with
half the Hilbert space, namely, 2V~ states.

We look here for the low-energy portion of the density
of states and its related properties. Namely, we find E,,
the ground level energy, the degeneracy W of this level
and the actual states to calculate several other parame-
ters as described below.
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N2\ /7

FIG. 3. An example of a 6 X4 triangular lattice showing the
curved plaquettes by means of a C and the odd bands by means
of an O. Spins are numbered to allow for an easier identification
of the two supernumerary bands. All independent bands are
pointed out by arrows. One of the two degenerate ground states
is shown by means of the frustration segments.
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The algorithm begins with a quick approximate way of
deciding the ground-state energy based on the replica
method. This is achieved by randomly generating N?
states, then for each state the method of steepest descent
is applied to find the lowest possible energy. With this in-
formation an enumeration of the 2V ! states is begun.
However, the algorithm is constructed with logical de-
cisions that avoid unnecessary calculations that would
lead to energies larger than that of the supposed first ex-
cited level. If the partial enumeration finds an energy
lower than the present one, the algorithm readjusts itself
and continues from there on with the new ground-state
energy. In this way the exponential computer times are
dramatically reduced. The computer time turns out to be
different for the different samples of the same type of ar-
ray. It is small for the cases of lower energies and little
degeneracy and large for the opposite cases.

Attention is also paid to the first excited level with en-
ergy E, +4. The total degeneracy U+ V of this level has
two components: the abundance U of secondary minima
and the abundance V of states that belong to the same en-
ergy valley and are direct single-spin excitations from the
ground state. In going from a ground state to a V state a
single spin is flipped. On the other hand, in going from a
ground state to a U state several spins must be flipped,
eventually reaching saddle points with higher energy, be-
fore reaching the secondary minima.

To compare parameters for different sizes we look for
intensive definitions of the relevant magnitudes. Thus, it
is convenient to define the ground-state energy per bond:

E

eg:f . (4)
The remnant entropy ¢ is the most convenient way to
look at the degeneracy W of the ground level. These two

quantities are related by

_InW
N

(5)

g

The magnetization per spin p can be readily defined as

N
23S
a i
=, 6
K=" Nw (©
where S represents the value of spin at site i for one of
the states a belonging to the microcanonical ensemble,
namely, to the ground level. In this way u takes values
between —1 and +1.
Correlations C, to any order of neighbor v can be
defined in the following way:

N
3 3 sk,
C = a i jv) , 7
v n,NW @
where n,, is the number of neighbors of order v, while the
sum over j(v) includes all of them.

The site correlation can be investigated by means of
the parameter g defined by Edwards and Anderson.” We
calculate this parameter by means of the following ex-
pression:



49 GROUND-STATE PROPERTIES OF FINITE SQUARE AND. .. 6021
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where a and B play the role of initial and final states
within the ground manifold. Each pair of states is count-
ed once and the case a=f is allowed. In this way the to-
tal number of pairs is W(W +1)/2, which appears as a
normalizing factor. The parameter q is then restricted to
the interval [ —1,1].

If the entire Hilbert space is used for these calcula-
tions, all the off-diagonal contributions tend to compen-
sate giving a result for g that trivially tends to zero as N
grows. It is not obvious how to separate ergodic valleys
in these systems. In lattices with net magnetism the ini-
tial application of a small magnetic field (which is taken
to be zero after completing the calculations) is an
effective way of performing the task. However, the densi-
ty of states is a maximum at zero magnetization. What
we have done is to look for one of those spins that are
strongly bound, which means that its four surrounding
bonds are not frustrated for one of the ground states.
Then we pick an arbitrary sign for it. All the remaining
ground states (if any) with this sign for the chosen spin
are said to belong to the same half the Hilbert space.
States with opposite sign for this spin are left out of con-
sideration. We understand that this is an arbitrary way
of deciding upon the ergodic valley in which the calcula-
tions will be performed. Different criteria on this matter
might lead to slightly different results for those parame-
ters that are strongly dependent on this decision.

All of the above parameters follow well-known
definitions and have been applied to different magnetic
systems. However, it does not seem that they are very
adequate for lattices with mixed bonds. On the other
hand, correlations to any order and magnetization, aver-
age to zero over a large number of samples, for any given
N. That is to say, these parameters do not discriminate
any behavior in these systems.

We introduce here a new site parameter p, which is
more drastic than g and diminishes faster than g as N in-
creases. Let us define p in the following way:

P=’}V‘§ [ 57

(8)

{ a

diviWw ] , 9)

where | | means absolute value while div represents an in-
teger division, so the result inside { } can be either O or 1.

A simple way to compare p and g is the following.
When going through the different states that form the
ground level a certain spin can flip several times. Such a
spin contributes to the calculation of g with a given
weight, which is smaller for those spins that flip more. In
the calculation of p a single spin flip means a zero value
for such a weight factor. That is to say, p measures the
fraction of the spin lattice that never changes when going
through the ground level. From this discussion follows
that

p=lql. (10)

Anyhow, the calculations of p require deciding upon

the ergodic valley corresponding to half the Hilbert
space. This is done in the same way as it was already dis-
cussed for the case of q. (Considering the whole Hilbert
space always gives p =0 as can be easily proven.)

It would be advantageous to have a magnitude that
does not depend on the ergodic valleys of the Hilbert
space. With this purpose we have defined a new parame-
ter h, whose value is the same when considering half or
the whole Hilbert space. We define the fraction of bonds
that never frustrate 4 in the following way:

_ 1 4 ISiaqu—Jijl .
h=23 {3 ——5——dvWy, (11)
i<jla

where the first sum extends over the B pairs of nearest
neighbors (i,j) and we make use of the integer division
introduced in Eq. (9). Theoretically the range for h
would be [0,1], but we will see that the actual values fluc-
tuate around 0.5.

B. Topological approach

The topological properties of these lattices provide an
alternate way to find the ground states. The smallest
closed circuit of bonds is called a plaquette.® The pla-
quettes that involve an odd number of AF bonds cannot
satisfy the requirements of all its bonds; it is then said
that such a plaquette if frustrated or curved (C). Other-
wise the plaquette is normal or flat. The total number of
curved plaquettes (always an even number) will be denot-
ed by Pc. It has been proposed’ that the energy of a par-
ticular state can be found by joining the curved pla-
quettes in pairs. This is achieved by means of frustration
segments that go from the center of one curved plaquette
to the center of another one, frustrating the bonds that
are crossed by the frustration segment.

It follows that the total number of frustration segments
is P /2. The length of a segment is the number of frus-
trated bonds that are associated to it. All of the frustra-
tion segments add up to the frustration length Ap. The
ground level comprises those cases of minimum Ap,
denoted by Ap,, which corresponds to the least frustra-
tion in the system. The degeneracy of the ground level is
the number of different ways in which a set of frustration
segments can be drawn keeping A, to its minimum pos-
sible value.’

We can define the average frustration segment (kpg)
for the ground level of a given sample as

2Ag
Pc ’

(Ag )= (12)

where the symbol { ) means average over a particular
sample. The energy E, corresponding to the ground
state can then be expressed as

E,=—B+2Ap, . (13)

The energy per bond is then simply written as

(14)
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or in the more meaningful expression:

€=—1+ fc(;‘_Fg) ,
where the balance between the number of curved pla-
quettes and the average frustration segment can be appre-
ciated.

The aim of the topological method is to find both Ay
and the number of different ways to get the same value
for Ap. These parameters depend primarily on the distri-
bution of curved plaquettes as follows from the proposal
of Toulouse.2 However, we also found that they also de-
pend on the topological characteristics imposed by the
boundary conditions. To realize this, let us define as
band the minimal circuit that can be closed by means of
the boundary conditions in each independent direction.
There are then L +M bands for SL’s. A band will be
said to be even when it possesses an even number of AF
bonds and odd otherwise.

In Fig. 1, we reproduce two different 4 X4 square sam-
ples that are equivalent as far as the distribution of the
four curved plaquettes is concerned. However, it is found
from the numerical calculation that they have distinct
values for Ag. The topological and numerical calcula-
tions can be matched if we add the condition that the
curved plaquettes must be joined in pairs preserving the
parity of the bands. If we look at the parity of the bands
in the two lattices of Fig. 1, we realize that these two
samples are no longer equivalent.

Another illustration on the importance of the bands is
shown in Fig. 2 for a 3 X2 square lattice with no curved
plaquettes at all. However, the parity of the bands de-
cides a basic frustration for this lattice that is readily
found by the numerical calculations.

In the case of triangular lattices the same topological
definitions apply. A particular example is presented in
Fig. 3. The plaquettes are now triangular and there are
three different directions on which bands can be defined.
However, it turns out that two of these directions can be
picked freely while the number of independent bands
along the third direction depends strongly on the
geometry of the array. We call these bands super-
numerary since they are not present in SL’s and since the
number of them fluctuates between 1 and M. It has been
proven!® that the number of supernumerary bands 7 is
given by

(15)

n=max(INm), (16)

where [ represents the set of all the divisors of L and m
represents the set of all the divisors of M. Namely, 7 is
the maximum common divisor of both L and M.

This can be applied to Fig. 3 where we represent a 6 X4
TL. There are then two supernumerary bands. This can
be verified by closing the lattice using periodic boundary
conditions. There are six bands parallel to the x, axis,
there are four bands along the direction of the x, axis,
while the bands along the direction of axis x; intercon-
nect themselves forming two independent helicoidal
bands.

We will not get deeper into the topological discussion
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since we use topology here as a mere technique to calcu-
late the properties of spin lattices. Nevertheless, there is
abundant literature that relates the physical parameters
of the Ising lattices to their corresponding topological
properties.!!:12

III. RESULTS AND DISCUSSION

Given a particular size (N ) and shape (L,M ), 500 sam-
ples were prepared for both SL’s and TL’s generating
randomly the locations for B /2 ferromagnetic and B /2
antiferromagnetic bonds. The bonds are frozen in their
original positions. A computer code was prepared to
scan the lower-energy portion of the Hilbert space. For
small enough samples (N <30) a great amount of infor-
mation was extracted. However, as the size grows the
computer time increases enormously. For larger samples
we concentrated mainly on the relevant properties of the
ground state which is what we report below in terms of
average values over the 500 samples corresponding to
each array.

In the case of TL’s with odd N it happens that B /2 is
not an integer number. Then 250 samples are generated
with (B+1)/2 F bonds and (B —1)/2 AF bonds, while
the remaining 250 samples correspond to the permuta-
tion of these assignments. However, we must point out
that no appreciable differences appear and we have done
this refinement with the only idea of strictly preserving
equal concentration of both kinds of bonds through all of
the arrays.

Both periodic and antiperiodic boundary conditions
were used. For a given sample dramatic changes may
occur when switching to different boundary conditions.
However, after the statistical treatment the differences
tend to disappear. In the present paper we use periodic
boundary conditions only.

Using the techniques outlined in the previous section
several physical and topological quantities were calculat-
ed for each sample. In Figs. 4-11, we give the results
for the main parameters superimposing the results for
TL’s and SL’s. The ordinate is the size N while the verti-
cal axis is broken to allow for both types of lattices.

The ground-state energy per bond as a function of size
is shown in Fig. 4. Different symbols denote the different
shapes according to the shorter side of the array (M):
Thus, for lattices ?X2 plus signs are used, while in ?X3
lattices, triangles are used. Other cases are explained in
the figure themselves. Small lattices show a larger energy
per bond, which decreases quickly to an asymptotic
behavior of about —0.70 for SL’s. This is consistent with
numerical estimations for the thermodynamic limit.* In
the case of TL’s, €, tends asymptotically to a value that
can be estimated at —0.56. A lower bound value can be
obtained by the ideal case in which the number of curved
plaquettes is precisely half the number of plaquettes
(maximum of the distribution) and the frustration seg-
ment is 1.0, the minimum possible value when all pairs of
curved plaquettes share a frustrated bond. Then the
values of —0.75 and —0.67 are obtained for €, in the
cases of SL’s and TL’s, respectively, as also shown in Fig.
4.
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FIG. 6. Remnant entropy o as function of size and shape.

Lattices with M =2 present a clear shape dependence.
They tend to saturate at about —0.63 for SL’s and at
—0.50 for TL’s. Since there is no similar indication for
any other shape, we conclude that this is a peculiar
behavior of these extremely narrow lattices, which are
not truly two dimensional in the sense that a spin in-
teracts with the same neighbor in opposite directions.
Due to this peculiarity we stopped the calculations for ar-
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FIG. 7. Relative degeneracy of states that are direct excita-
tions from the ground states, as function of size and shape
(square lattices only).
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FIG. 8. Relative degeneracy of states that are secondary
minima with energy E, +4 and cannot be obtained as single ex-
citations from ground states, as function of size and shape
(square lattices only).

rays with M =2 earlier than for the rest of the arrays.
Other than this peculiar feature of both square and tri-
angular arrays with M =2, there is no other shape depen-
dence for the energy of the ground manifold.

By means of Eq. (15), and knowing the number of
curved plaquettes for each sample, we can study the
behavior of the average frustration segment (A, ). Then
the statistics over the 500 samples is performed and these
results are presented in Fig. 5. For the case of SL’s we
notice that (A ) can be as high as 2.0 for N=6, de-
creasing toward a value close to 1.2 in the thermodynam-
ic limit. Interesting enough, if we feed this numerical
value back into Eq. (15), for the most common system
with N /2 curved plaquettes, we obtain €, =—0.70. The
main tendency of saturation is also shown by TL’s where
the same exercise can also be done. In these systems the
distribution maximizes at N curved plaquettes, yielding
€, = —0.56 as the asymptotic value in Fig. 4.
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FIG. 9. Comparison of spin site correlation parameters g and
p as functions of size up to N =30, for square lattices.
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The shape dependence of (kFg) is also presented in
Fig. 5 and it is found to be very similar for the two sys-
tems under consideration. As can be seen in Fig. 5,
(kpg) decreases when the array approaches the square
shape. Anyhow, the case M =2 departs from the main
stream for both systems. The previous discussion for €
also applies here.

The degeneracy W of the ground level (half the Hilbert
space) is better studied by means of the remnant entropy
o as expressed in Eq. (5). This is presented in Fig. 6 as a
function of size and shape using the same symbols defined
in previous figure. The size dependence for SL’s tends to
saturate at a value close to 0.11. This value is larger than
0.07 obtained in early applications of the method of
Toulouse,’ where the parity of the bands was not con-
sidered. For TL’s the saturation value is also close to
0.11.

Perhaps the most interesting point in discussing o is its
shape dependence which shows quite different behavior
in the two kinds of lattices under consideration. For both
systems the saturation value tends to be a property of M
the number of spins in the shorter side. However, while
in TL’s this value decreases with increasing M, in SL’s
the saturation values show alternate behavior: odd sides
of M showing lower remnant entropy. Then as M grows
the thermodynamic limit is to be found as the lower en-
velope of the TL points, while it shows an intermediate
behavior for SL’s. This is clearly a topological property
that we point out here as a result without attempting a
demonstration which is beyond the scope of this work.
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Another important size effect related to the degeneracy
of the ground state is that the presence of ground singlets
tends to disappear rather quickly as N increases.® This
means that there is a diminishing probability that the
ground-state properties of these systems are uniquely
defined.

Let us now depart momentarily from the main line that
deals with the ground level. For thermal processes the
excitations within a certain energy valley, or direct exci-
tations from the ground state, are the most important
ones. This is particularly true for low temperatures. Al-
though we are mainly interested here in zero-temperature
properties, let us make use of Fig. 7 that allows to study
the low-temperature behavior of the specific heat for SL’s
(the analysis can be easily extended to TL’s). At zero
temperature the system is trapped in a particular ground
state that we can visualize at the bottom of a certain en-
ergy valley. As temperature rises only direct excitations
or single spin-flip excitations of minimal energy (4|J])
will take place. Then, in the low-temperature limit (T
measured in units of |J|), the local partition function
around one of the ground states is given by

Z(T)=W+Ve 4T, a7
that leads to an asymptotic specific heat of the form

4/T
C(T)= _I%_K_f;_T_ ]
T> W [V/W+eYT)?
We realize that the specific heat is governed mainly by
the ratio V' /W (the ratio between the degeneracy of the

(18)
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first direct excitations and the degeneracy of the ground
state).

Even for a given energy valley the degeneracy of the
ground level could be large due to the several spins that
can be at zero-field positions (surrounded by the same
number of satisfied and frustrated bonds). So we look for
a representative valley looking for the average value of
V /W for a given sample and then taking the statistical
average over the 500 samples. As Fig. 7 shows this is
essentially a linear function of N, which makes the “mo-
lar” specific heat C(T')/N a true intensive variable of the
system. The low-temperature specific heat does not show
important corrections due to size or shape for small lat-
tices. The scattering of the data increases rapidly with N.
We believe that such instability is associated with the
lack of precision of ¥ within 500 samples only.

We can also count the number of energy valleys U,
each having a minimum energy exactly given by E, +4,
which we call secondary minima. In Fig. 8, we report the
ratio of the number of secondary minima U over the de-
generacy of the ground level W. Evidently U/W in-
creases faster than linearly as a function of N. This is
quite important because each local minimum is a poten-
tial attractor for this kind of systems. Thus, for instance,
a very low temperatures a Monte Carlo calculation could
be trapped by any such minimum without the possibility
of reaching a true ground state in finite computational
times. On the other hand, the onset of shape dependence
is also showing in the behavior of arrays with M =3 that
possess the largest relative number of secondary minima.
We present results up to N =40 only, due to the instabili-
ties showed by the statistical averages for larger lattices.

Let us go back to the ground-state properties of these
systems. Although not graphically reported here we cal-
culated magnetization and correlations to first- and
second-nearest neighbors for all of the samples in all
different sizes and shapes. As it can be expected, their
average value is zero, with a standard deviation that de-
creases with size. The site correlation or g order parame-
ter introduced by Edwards and Anderson,’ defined in Eq.
(8), was calculated for all samples up to N=30 in SL’s.
Then, a new parameter p was defined as given by Eq. (9),
which shows faster convergence toward the thermo-
dynamic limit. This is shown in Fig. 9, where both ¢ and
p are compared for the case of SL’s. We can recognize
that the theoretical relationship given by Eq. (10) is clear-
ly satisfied. Moreover, there is a complete resemblance
between the functional dependencies of p and ¢ with
respect to N. An important advantage of the new param-
eter is that the computer time needed to calculate p is
much smaller than the one used to compute q. From now
on we restrict our discussion to the p parameter defined
in the present paper.

The dependencies of p on both size and shape are
presented in Fig. 10. It can be seen that p goes to 0 as N
goes to infinity for both SL’s and TL’s. The general slope
is about the same for both systems. However, there are
some clear differences with respect to the shape depen-
dence in a way similar to what already was discussed be-
fore. Namely, TL’s show a monotonic increase with the
slope as M increases, while SL’s show an alternate
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behavior in which the samples with an even number of
spins in the shorter side show a more pronounced de-
crease for p. Before abandoning this discussion we
should remember that both p and g are dependent on the
choice of the ergodic condition as discussed above.

We have defined a parameter 4 in Eq. (11), which does
not depend on the choice of an ergodic condition. This
parameter searches for those bonds that never frustrate
as we run over all the states degenerate in the ground lev-
el. The fraction between this number and the total num-
ber of bonds gives 4. The physical interpretation is that A
represents the fraction of the lattice bonds that remain
without frustration as we scan the states of the ground
manifold. A concept related to this, called rigidity, had
already been introduced.’ However, in the case of rigidity
the search was for bonds that either always frustrate, or
just the opposite they never frustrate. Another way of
realizing rigidity would be that of a bond that keeps its
two spins in the same relative orientations in all ground
states.’ In spite of some resemblance to this rigidity, & is
an entirely new quantity. An additional positive element
is that the numerical evaluation of h does not require
long computer times.

The dependence of h on N is presented in Fig. 11, for
both kinds of lattices. There is one common feature: the
general tendency is to oscillate around 0.5 in both cases,
without a particular size or shape dependence. This in-
dependence is so clear that even the lattices with M =2
do not show any deviation as in all the previous proper-
ties. There is no dependence on the even or odd value of
M either. The result tends to indicate that 4 is not depen-
dent on geometry, topology, shape, or size as N goes to
the thermodynamic limit. The behavior of 4 with respect
to size and shape is not similar to any of the previous
magnitudes.

Coming back to Fig. 11, it can be noticed that there are
pronounced fluctuations for 4 in SL’s, particularly for
sizes under 30 spins, which are not shown by TL’s. At
first look, it looks like scattered data. Due to this fact we
performed two different tests on the stability of the data
shown in this figure. On the one hand, we repeated the
experiment on two additional sets of 500 samples under
30 spins: the result is that the figure stays basically the
same without a pronounced change in any of the points.
On the other hand, we performed a progressive statistics
for the square arrays up to 1000 samples: the result is
that the average value of & reported in Fig. 11 is quite
stable even for over just 60 samples.

The second of these observations deserves a deeper dis-
cussion. In Fig. 12, we present the progressive analysis
for 1000 samples corresponding to 6X6 arrays. The
statistics is updated every 20 samples. If we designate by
r the sequential number of a particular sample or run, we
perform independent statistics for » =20, 40, 60, 80, etc.
The average values thus found are represented by the
solid circles in Fig. 12. On top of that we also give the
statistical deviations from this value in the form of error
bars. Three comments are in order. First, (4 ) is close
to 0.5 with very slight deviations for r > 60. Second, the
standard deviations slowly decrease for small values of r,
tending to a stable value. Third, similar behavior is

VOGEL, CARTES, CONTRERAS, LEBRECHT, AND VILLEGAS 49

Tor SQUARE LATTICES
0.9 Array 6 x 6

0.0 L L - i L

"0 100 200 300 400 500 600 700 800 900 1000

r

FIG. 12. Progressive statistical analysis of & as a function of
the number of runs 7 included in the statistics, for square arrays
6X 6. The standard deviations are illustrated as error bars.

shown by the other square lattices for which the same
analysis was performed. However as the size increases
the distribution of 4 sharpens and the error bars decrease
slowly.!® The fact that #=0.5 in both SL’s and TL’s
could lead us to think that half of the bonds never frus-
trate for this kind of lattices, no matter as large these sys-
tems grow.

IV. CONCLUDING REMARKS

Small Ising lattices with mixed exchange interactions
present frustration that modulates the properties of the
system by size and shape. The topological properties are
better understood if the frustration along the boundary
conditions is shown explicitly by means of the parity of
the bands. When this is done, total agreement is obtained
between Hamiltonian and topological techniques applied
to each particular problem.

Specific heat does not show evidence for dependence on
either size or shape of square lattices. The general
behavior of the “molar” specific heat is that of an inten-
sive variable.

Ground-state energy of both SL’s and TL’s shows a
dependence with size for small samples (N < 30) that very
quickly disappears for larger values of N. The asymptot-
ic limit for very large values of N is about —0.70 for SL’s
and —0.56 for TL’s. No shape dependence is observed.

The remnant entropy o of the system, also tends to-
ward a saturation value of about 0.11 for both SL’s and
TL’s. There is a strong modulation of the shape on this
property that is more pronounced as the system departs
from the square shape. A successful way of segregating
this behavior is to characterize the samples by the side
with less spins (M ). It is then found that for SL’s, o
tends to alternate saturation values as M increases in
steps of one unity. However, the behavior for TL’s is
that the saturation values decrease monotonously as M
grows.

The average frustration segment (AFg ) approaches its
saturation value from above as N increases. In SL’s and
in TL’s the shape dependence is characterized by M in a
monotonic way: the larger M is, the lower is the asymp-
totic value.
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The two new order parameters defined here present a
behavior that shows that they represent a property of the
lattices. The parameter p varies much faster than the
Edwards-Anderson parameter g and is less time consum-
ing for computer calculation. On the other hand, the pa-
rameter h shows a clear tendency to be a constant in-
dependent of size and shape.

In the case of p, the thermodynamic limit is reached
much quicker for shapes with even and small values of M
in the case of SL’s. On the other hand, in the case of
TL’s there is a direct general correspondence: p de-
creases more strongly with size for smaller values of M in
a monotonic way.

The parameter s was defined in order to avoid ergodi-
city problems. On top of that we encountered that for
both SL’s and TL’s h tends to a constant value of about
0.5 as N grows, without a shape dependence. A sort of
erratic but reproducible dependence on size is observed
for very small samples (under 30 spins for SL’s and under
10 spins for TLs).
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Except for the case of 4 in all the other parameters the
results for samples with M =2 (only two columns or
rows) depart clearly from the rest. This is due to the fact
that these arrays are not truly two dimensional since each
spin is surrounded by the same neighbor along two
different directions. Due to the higher coordination
number for TL’s, as compared to SL’s, these samples
showed a more rapid convergence to the saturation value
of each result.
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