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Ground-state properties of the spin- —' antiferromagnetic Heisenberg model on a square lattice

by a Monte Carlo method
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The spin-2 antiferromagnetic Heisenberg model on a square lattice is studied by a Monte Carlo

method. The ground-state energy and the lowest energies of the sectors S,=1 and 2 are determined for
lattice sizes ranging from 4X4 to 16X16. The extrapolation to in6nite lattice gives an energy per site

equal to —0.6690+0.0002. The staggered magnetization was also measured for lattice sizes up to
24X24. The extrapolation to infinite lattice gives a value 0.307+0.006 in units where the saturated

value is —'.
2

I. INTRODUCTION

The quantum antiferromagnetic Heisenberg model has
raised much interest recently due to its connection to
high-T, superconductivity. '* In one dimension the
spin- —,

' model does not possess long-range order. On a

square lattice, however, numerical and analytical results
indicate that the spin- —, model is ordered with a nonzero

staggered magnetization which is about 60% of the clas-
sical value. Quantum fluctuations decrease the magneti-
zation but do not destroy the long-range order.

On a square lattice the ground-state properties of the
spin- —,

' model have been studied by several techniques

such as spin-wave theory, ' renormalization-group
methods, ' exact diagonalization, " and Monte Carlo
methods. ' Exact diagonalization has been carried out
for small systems up to 32 sites. " Variational Monte
Carlo methods, ' ' finite-temperature path-integral
Monte Carlo methods, ' and zero-temperature Monte
Carlo methods' ' were used to study larger systems.

In this paper we use a zero-temperature Monte Carlo
method which has been applied previously to the antifer-
romagnetic Heisenberg chain. The method differs from
other zero-temperature Monte Carlo methods. These
techniques are stochastic versions of the power method in
which the largest eigenvalue of a matrix is obtained by re-
peated matrix multiplication. In the present method a
probability distribution is defined which is proportional
to a string of (non-negative) matrix elements such that
the column index of an element equals the row index of
the following element. The Metropolis algorithm is then
used to estimate averages over the probability distribu-
tion so defined. If the string is long enough the averages
will be dominated by the leading eigenvector of the ma-
tr lx.

In the present method, the ground-state properties of a
d-dimensional quantum spin system is seen as the statisti-
cal mechanical properties of a (d + 1)-dimensional classi-
cal spin system. The extra dimension makes our method
distinct from other zero-temperature Monte Carlo
methods. Consider, for instance, the Green's-function
Monte Carlo method. ' It is based on the iteration of

the equation g„+,(s')=+,G(s', s)g„(s), where G is any
function of the Hamiltonian that projects out the ground
state. In order to use it as a stochastic process one has to
decompose G(s', s) as the product of a transition proba-
bility P(s', s) and a multiplicity function rn(s', s). Our
method avoids the need of the decomposition by the use
of the extra dimension. Moreover, it is not necessary to
make use of trial wave functions as is common in other
zero-temperature Monte Carlo methods.

The numerical results we have obtained are in good
agreement with results coming from exact diagonaliza-
tion and other zero-temperature Monte Carlo methods.
This is an indication that our method can give results
that are at least as good as the ones obtained from other
zero-temperature Monte Carlo methods. However, as
happens to those methods, our scheme can be used only
to treat those quantum problems for which the so-called
"sign problem" is absent.

II. THE METHOD

and

(B(rt, r2)) =g QB(r),T2)P(T))Tp),
7 l T2

(3)

Consider a matrix T whose elements T(r„r2) are non-

negative and, for a fixed value of K, define a probability
distribution P(v )=P(~, , ~z, . . . , ~x ) of the state
~=(r„~z, . . . , ~x ), apart from a normalization, by

T(+1&+2)T(+2&+3) T(+K —1&+E )T(+K&+1) '

The "interacting system" defined by this probability dis-
tribution is simulated by using the Metropolis algorithm.
For K large enough the properties of the system are dom-
inated by the leading eigenvector of T. The Monte Carlo
simulation is possible to perform because the Metropolis
algorithm requires only the ratio P(~')/P(r) of the prob-
abilities of two states. From the Monte Carlo simulation
one may obtain estimates of such averages as

(A(r)))=g A(r))P(v))
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where P(r, ) and P(r„r2) are marginal probability distri-
butions obtained from P(r), defined by

'T=2 g (S,"Sg +SfSj~)+2 g ( —,
' —S S;.) .

(ij & {ij &

(12)

P(r', }=+5(r'„r, )P(r) (4)

and

P(r'„r2) =g 5(~'„ri )5('T2, T2)P(1 )

The matrix T is considered to be irreducible (that is,
the elements of T are strictly positive for k larger than a
certain value) so that the Perron-Frobenius theorem
guaranties that its largest eigenvalue A,o will be nondegen-
erate and the corresponding eigenvector $0 will have pos-
itive elements, that is, $0(r, ))0. When K is large the
marginal probability distributions P(r, ) and P(r„r2) will

be related to the leading eigenvector (()0 by

P«1)= (00«1)~'

and

P(rl~r2) ~0 ( 0(rl)T(+1~+2)40(r2)

the corrections being of the order (A, , /A, 0) where A, , is
the second largest eigenvalue of T.

From Eqs. (4} and (5}we get the equation

P(r„r, )=A0 'T(ri, ri)P(ri)

which can be used to obtain the following formula:

& T(r, ,r, ))

This formula permits the calculation of the largest eigen-
value of T from the estimates of (T(ri, ri}) and
(5(r„r2) ) obtained from the Monte Carlo simulation.

III. THE MATRIX T

The method is applied to the spin- —,
' antiferromagnetic

Heisenberg Hamiltonian

&=+ S; SJ,
{ij &

(10)

m= —y (s;s,"+s&s&—s,'s;) .
{ij &

Now, if we consider the operator V'= —2&+% /2,
~here X is the number of nearest-neighbor pairs of sites
on the lattice, the eigenvalues E of % and k of 7 are re-
lated by E= —A, /2+% /4, so that the largest eigenvalue
of '7 will be related to the ground-state energy of &. The
operator Vis given by

where the sum. is over the nearest-neighbor pairs of sites
on a square lattice of N sites. To get a non-negative ma-
trix we perform a canonical transformation on & by let-
ting S, ~—Si, S,". —+ —S~, and S,.'—+S,' if site i belongs to
one of the sublattices and leaving the spins of the other
sublattice invariant. The transformed Hamiltonian will
be then

In the S' representation, the elements T(o,u')
=(,o~'T~cr'), o=(o„cr2, . . . , o11,), cr, =+.I, are non-

negative. The matrix T is block diagonal and each block
is characterized by the eigenvalue M of
S =S

&
+S2 + ' ' +S~. Moreover, each block is irre-

ducible so that the present Monte Carlo method can be
used to calculate the largest eigenvalue within each
block. A nondiagonal element is either zero or one. It
equals one when cr' and o. differ by just one pair of
nearest-neighbor sites having antiparallel spins, and van-
ishes otherwise. A diagonal element T(cr, cr) equals the
number of pairs of nearest-neighbor sites with antiparal-
lel spins in the configuration o..

IU. MONTE CARLO ALGORITHM

The Monte Carlo algorithm is defined as follows. %e
consider a cubic lattice of N XE sites composed of E lay-
ers each layer being a square lattice of L XL =X sites.
At each site there is a spin variable o.;k =+1, where the
index k =1,2, . . . , E indicates the layer and the index i
the position of the site within the layer. One starts with a
configuration I cr; I such that (a) for each layer k one has

g; o;k =2M, and such that (b) two consecutive layers
differ at most by one pair of nearest-neighbor antiparallel
spins. This must be so otherwise the product on Eq. (1)
would vanish. The Monte Carlo algorithm is constructed
in such a way that these two properties are preserved in
each step of the simulation.

At each time step of the Monte Carlo simulation we
first choose a layer at random, say layer k, and try to
modify its configuration according to the following cases.

(1) The chosen layer is identical to the preceding and
following layers. Then we pick up at random one of the
Ak pairs of nearest-neighbor antiparallel spins of the
chosen layer. The two spins of the pair are then ex-
changed with probability 1/Ak.

(2) The preceding layer (k —1) is identical to the fol-
lowing layer (k+1) but distinct from the chosen layer
(k) which differs from the other two by just one pair of
nearest-neighbor antiparallel spins. In this case the two
spins of the pair are just exchanged and the chosen layer
becomes identical to the other two layers.

(3) The preceding layer (k —1) is identical to the
chosen layer (k) but distinct from the following layer
(k + 1). The chosen layer differs from the following layer
by just one pair of nearest-neighbor antiparallel spins. In
this case the two spins of the pair are exchanged with
probability minI1, A„+1/A„

(4} The following layer (k+1) is identical to the
chosen layer (k) but distinct from the preceding layer
(k —1). The chosen layer differs from the preceding lay-
er by just one pair of nearest-neighbor antiparallel spins.
In this case the two spins of the pair are exchanged with
probability min[ 1, Ak, /Ak+, J.

(5) The three layers (k —1, k, and k +1) are distinct
from each other. The chosen layer differs from the
preceding and following layer by two distinct pairs of
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FIG. 1. Ground-state energy per site Eo/L, and lowest en-

ergies per site E& /L2 and E2/L of the sectors M =1 and 2, re-
spectively, as a function of 1!L . The straight lines are linear
fittings to the Monte Carlo data points.

3.0
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2.5-
Using the algorithm of the previous section we have

calculated the largest eigenvalue within each one of the
blocks M =0, 1, and 2, for L =4, 6, 8, 12, and 16 by us-
ing Eq. (9). The staggered magnetization was also es-
timated for these values and for L =10 and 24. We used
lattices with K ranging from 2000 to 4000. We have
checked our method for the case L =4 by comparing our
result with existing results obtained by exact diagonaliza-
tion [8].

The ground-state energy per site Eo/L, the first excit-
ed state energy per site E, /L, and the spin-2 state ener-

gy per site Ez/L are displayed in Table I for lattice sizes

ranging from L =4 to 16. The energy per site Eo/L,
E, /L, and Ei/L are plotted in Fig. 1 as a function of
(1/L) . Assuming the behavior Esr/L =a+cd/L,
M=O, 1, 2, the linear fitting to the data points gives
e= —0.6690+0.0002, co= —2.07+0.02, c& =0.22+0.02,
and c2 =3.18%0.07. The extrapolated value for the ener-

gy per site —0.6690+0.0002 and the slope constant
2.07+0.02 are in good agreement with results obtained
by Carlson [25], —0.66918(10) and 2.086; Trivedi and
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FIG. 2. Probability distribution of the z component of the
staggered magnetization p for L =4, 6, 8.
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TABLE I. Ground-state energy per site Eo/L, first excited

state energy per site E&!L,and lowest-energy per site E&/L
for states with M =2 calculated by the present Monte Carlo
method. a. 4.0—

E2/LEO/L 2.0

—0.5943(2)
—0.6539(3)
—0.6647(4)
—0.6680(8)
—0.6677(12)
—0.6690(2)

—0.6652(3)
—0.6704(4)
—0.6703(6)
—0.6692(4)
—0.6681(10)
—0.6690(2)

—0.7018(3)
—0.6783(2)
—0.6715(3)
—0.6699(3)
—0.6700(6)
—0.6690(2)
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FIG. 3. Probability distribution of the z component of the
staggered magnetization p for L =10, 12, 16, 24.

nearest-neighbor antiparallel spins. In this case we con-
sider the following subcases.

(5a) The two spins do not belong to the same plaquette
of four spins. In this case the spins within each pair are
exchanged if the pairs do not have one site in common.

(5b) The two pairs belong to the same plaquette and
have one site in common, that is, the bonds that connect
the spins are perpendicular. If the sum of the four spins
belonging to the plaquette is zero, then these four spins
are flipped. Otherwise, we flip only the spin of the com-
mon site and the spin of the diagonally opposite site.

(Sc) The two pairs belong to the same plaquette and do
not have any site in common, that is, the bonds that con-
nect the spins within each pair are parallel. If the two
spins belonging to the one of the diagonals of the pla-
quette have the same sign, the four spins are fiipped.
Otherwise, we choose randomly one of the diagonals of
the plaquette and fiip the two spins belonging to the
chosen diagonal.

It is straightforward, although tedious, to verify that
the transition probabilities defined by the above algo-
rithm satisfy detailed balance for a stationary probability
given by Eq. (2).
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4
6
8

10
12
16
24

0.2587(6)
0.234(3)
0.261(8)
0.323(4)
0.322(4)
0.318(4)
0.314(6)
0.307(6)

0.3036(5)
0.274(3)
0.288(6)
0.333(3)
0.328(3)
0.323(4)
0.317(6)
0.307(6)

TABLE II. This table shows the z component of the stag-
gered magnetization m, and m, for several values of L for the
ground state.

m,*

0.34
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Capeley [26], —0.6692(2) and 2.08(2); and Barnes and
Kovarick [27], —0.66923(13) and 2.083(8). These re-
sults were obtained by using zero-temperature Monte
Carlo Methods distinct from ours.

The appropriate order parameter for the present sys-
tem is the ground-state staggered magnetization per site
defined by

m= 0 2 eS; o
l

(13)

where e; is 1 if site i belongs to one of the sublattices and
—1 if it belongs to the other. However, one expects m to
vanish since finite lattices cannot have spontaneous sym-
metry breaking. Therefore, one considers, instead, the
root-mean-square staggered magnetization m t defined by

2 1/2
1m~=

0 eS; (14)tt'o

In actual calculation we have measured its z projection
m,~ given by

m, =
(p~ ~ x s;, s;*1

(15)

In the isotropic ground state of the finite lattices the
three components are the same so that m =&3m, . That
is exactly what actually happens in the simulation for the
cases L =4, 6, and 8. However, for larger values of L,
the Monte Carlo results, obtained by starting with a
configuration with a saturated staggered magnetization in
the z direction, show that the isotropy is broken and that
the system exhibits a staggered magnetization in the z
direction. This is shown in Figs. 2 and 3 where the prob-
ability distribution PL (p, ) of the variable p
=L g; e; —,'o; is displayed for L =4, 6, 8, 10, 12, 16,
and 24.

Table II shows m,*=+~@~PI (p, ) and m,t
=[g p PI (p, )]' for several values of L. For L = 10, 12,

FIG. 4. Staggered magnetization as a function of 1/L. The
straight lines are linear fittings to the Monte Carlo data points.

16, and 24, the staggered magnetization is identified with
the staggered magnetization in the z direction m, . For
L =4, 6, and 8 the results are to be multiplied by &3.
Figure 4 shows m, and m,' as a function of 1/L. Assum-

ing the behavior m, =m+a/L and m,"=m +b/L, the
extrapolation to infinite lattice gives m =0.307(6).

VI. CONCLUSION

We have studied the spin- —, antiferromagnetic Heisen-

berg model on a square lattice by a zero-temperature
Monte Carlo Method. We have calculated the ground-
state energy as well as the lowest energies of the sectors
S,=1 and 2 for lattice sizes ranging from 4X4 to 16X 16.
The staggered magnetization was also measured for lat-
tice sizes up to 24X24. The value of the extrapolated en-

ergy per site —0.6690+0.0002 and the staggered magne-
tization 0.307+0.006 are in good agreement with results
obtained by other zero-temperature Monte Carlo
methods.

In the present method, the ground-state properties of
the two-dimensional quantum antiferromagnetic Heisen-
berg model is represented by a three-dimensional classical
spin system. The extra dimension makes our method dis-
tinct from other zero-temperature Monte Carlo methods
by avoiding the need to decompose the projector into a
transition probability and a multiplicity function. The
numerical results indicate that the method can give re-
sults that are at least as good as the ones obtained from
other zero-temperature Monte Carlo methods.
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